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ABSTRACT
Promptly addressing students’ help requests in office hours
has become a rising challenge for instructors in large CS
courses with heavy coding assignments. Therefore, in this
research, we propose several different predictive models based
on students’ coding activity data to predict when students
will seek help and what questions they will ask. Addition-
ally, in order to solve the problem of help-abuse, we pro-
pose a method to quantify students’ coding efforts before
and after they seek help. We describe our plan and designs
thoroughly in this paper and hope to receive constructive
feedback on any aspect of this study. We believe this study
could make a huge contribution to improving the learning
experience in office hours.
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1. INTRODUCTION
Computer Science has witnessed a significant rise in popular-
ity as a chosen academic discipline. With such high demand,
course sizes have also expanded. Consequently, instructors
are currently grappling with a substantial amount of stu-
dents’ help requests. Addressing those requests properly
and promptly is important, but it is still quite challenging
in any large course.

To address those help requests, instructors can host a one-
on-one meeting with a student at a scheduled time; this
method is called Office Hours. During the meeting, stu-
dents can directly communicate with the instructor about
any questions related to the course. Compared with other
help-seeking approaches, like public online post forums[4] or
LLM chatbots[16], office hours offer a more personalized, in-
teractive, and direct interaction. Traditionally, office hours
are hosted in person; the teacher sits in their office with an
open door, and students are welcome to drop by and ask any

questions they have. Prior research has shown that this tra-
ditional method might be underutilized;[11, 17]; thus, some
instructors have started experimenting with online/virtual
office hours instead. The teacher will open a Zoom meet-
ing to wait for any help requests from students, and during
the interaction, students might share the screen with the
teacher, showing the code or errors they received. Since the
COVID-19 pandemic, this format has been widely applied,
and we have observed how this online format increases the
attendance of office hours.[14] However, this online format
brought another issue. With the increasing help demand,
the office hours queue got longer and longer, and instruc-
tors started to notice some students were exploiting office
hours as a ”hint generator” for their assignments and hoped
teachers would tell them what to do when they encountered
any minor problem. Since the online format lowers the cost
of requesting help, some students just stop trying to resolve
problems or debugging errors by themselves and rely on of-
fice hours. This excessive usage of help resources, called
help-abuse[18], is becoming increasingly common and caus-
ing instructors to worry that they might not be able to de-
liver help to real struggling students in time. While several
attempts, like group sessions[13] or split deadlines[2], have
been made in the classroom to accommodate the increasing
help demand, a more comprehensive approach is still needed.

To better manage the office hours resources and request
queue, an office-hours ticketing system called MyDigital-
Hand (MDH)[20] was developed to facilitate support interac-
tions between students and TAs for large CS courses. MDH
has been deployed in CS1 and CS2 courses across three uni-
versities. To obtain help during office hours, students vir-
tually raise their hands by filling out a form at the MDH
website. Students are then placed in the queue. Requests
can only be made when an office hours shift has started,
and when the teacher is available to help the next student,
they can select a student in the queue and inform them to
enter the Zoom meeting or enter their office and then start
the interaction. After the interaction ended(resolved), the
teacher would go back to MDH to close the request ticket in
the queue and be ready for the next request. This system
provides a great potential to analyze students’ office hours
behaviors[15, 6, 7, 8, 9, 21, 22, 10], such as when and why
they seek help.

Many researchers used surveys to investigate students’ view
of office hours usage.[22] Others tried to seek the relationship
between students’ office hours attendance and their perfor-
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mance and found contradictory results.[3, 8] However, most
of the above research on analyzing students’ office hours be-
haviors either heavily relied on survey data or only stud-
ied office hours in isolation. There is little research trying
to combine students’ help-seeking behavior and other learn-
ing activities. Based on our preliminary research[6, 7], CS
students are primarily asking questions about their coding
assignments; therefore, we believe the correlation between
their coding activity and their help-seeking behaviors ex-
ists, but no one has investigated yet. Also, there is a lack of
research on building predictive models to assist office hours
management. Building such models can help us identify
students who need help in real-time and estimate the fu-
ture queue load to assist instructors in better distributing
the office hours resources. Therefore, we aim to answer the
following questions in this work:

• RQ1: Can we use students’ coding status to predict
when they will seek help in office hours?

• RQ2: Can we use students’ coding status to predict
what questions they will ask when they raise an office
hours request?

– RQ2.1: Can we predict what type of question stu-
dents will ask?

– RQ2.2: For an implementation request, can we
predict which function/part of the code students
are struggling with?

– RQ2.3: For a Test Failure request, can we predict
which failed test students are trying to resolve?

• RQ3: How can we measure the necessity or urgency of
students’ help requests based on their coding behavior
and previous help requests?

1.1 Proposed Contribution
By addressing RQ1 and RQ2, we can gain a better under-
standing of students’ coding behavior before they seek help
in office hours. Such understanding could in turn inform us
in more detail on when and why students are most likely to
request help in office hours, as well as provide useful insight
for future research on what features in students’ code might
indicate struggling. RQ1 focuses on predicting when the re-
quest might occur, whereas RQ2 focuses on what specific
question the student might want to ask.

By exploring when students should seek help in RQ3, we can
identify possible solutions to the help-abuse problem. In-
structors can use our model to identify and prioritize office
hours requests from students who have tried enough solu-
tions but are still struggling. Moreover, this understanding
can help students too; we can automatically encourage stu-
dents who didn’t make enough effort before requesting to try
more solutions; or inform students to seek help when they
are truly struggling.

2. CURRENT AND PROPOSED WORK
2.1 Data Collection
We have collected the office hours usage and GitHub code
commit data for this work, which originates from the 9 of-
ferings(Fall 2017 - Fall 2021) of an undergraduate CS2 Java

Programming course at a research-intensive university in
US. The course initially offered both online and in-person
sections; however, due to the COVID-19 pandemic, all un-
dergraduate course offerings in Fall 2020 and Spring 2021
were moved online a few weeks into the semester. The over-
all structure of the course, as well as the task deadlines,
remained the same with interactions, including office hours,
moving to individual web meetings but retaining their over-
all structure. Although the lecture meetings have returned
to in-person since Fall 2021, the office hours still remain
fully online. In this study, we will only focus on online of-
fice hours since it is the format that will be continuously
used in the future. Students in the course complete 12 lab
assignments, three guided projects, and two main projects.
Additionally, we also plan to collect more data from recent
semesters(Spring 2022- Spring 2024).

Our office hours data are collected through MDH, which
includes the request time, start time, end time, and students’
descriptions of their questions. Table 1 shows the number
of requests we collected each semester.

We collected the code commit data through the GitHub repo
for each student’s assignment. During their programming
assignment, students periodically submitted their code so-
lution to GitHub through a commit push, and then their
code will be tested by a series of black-box unit tests called
teaching staff test cases; the final test report will be given
back to them automatically so that they can improve their
code solution. In this study, we collect the exact code and
their test report for each code commit.

Table 1: Number of office hours requests and students for
each semester (F= Fall, S=Spring)

In-person F17 S18 F18 S19 F19
requests 1146 609 1224 860 1650
students 208 157 259 174 256

Online S20 F20 S21 F21
requests 1401 3452 2509 3270
students 191 303 289 405

2.2 Study Design
The overall study design and methodology are shown in Fig-
ure 1. We proposed five models to build in this study. Model
1-4 are predictive models to answer RQ1 and RQ2 based on
the code features extracted from the pre-help commit(the
commit before the help request was raised). All four predic-
tive models are classification models at the core. Model 5 is a
quantitative model to answer RQ3 by measuring the amount
of effort students made before and after they received help
from office hours.

2.3 Data Processing
We first combined the office hours data and the code submis-
sion (Github commit) data by student and time; then, for
each office hours request, we automatically identified one
pre-help commit(code submitted before the help request,
within one hour) and one post-help commit (code submit-
ted after the help request, within one hour). For each code
submission, we plan to extract the following coding features.
All coding features are inspired by previous analysis in our
team on students’ code commits[5].



Figure 1: Overall study design and data flow chart. Pre-help code commits mean the code commit before the student raised
the office hours request. Post-help code commits mean the commit after an office hours interaction ended.

• The total number of additions, deletions, files changed,
and amount of change in each function/file.

• The percentage of additions, deletions, files changed,
and amount of change in each function/file.

• The status(Fail or Pass) for each student’s self-written
tests or teaching staff test.

• Abstract Syntax Tree[23], SANN[12]

• Code embedding, such as code2vec[1]

• The total number and average size of solution functions
and solution classes.

• The number of testing methods, assertion density, and
statement coverage

After extracting those features from students’ code, we will
train our predictive models. To train each model, we will
first split the train and test dataset with a ratio of 8:2 . We
will then apply Random Forest, SVM, GDBT, and LSTM as
candidate models and evaluate their performance with ac-
curacy, recall, precision, and F1-score. A detailed discussion
of each model and how it can answer the research question
are provided in the following subsections.

2.4 Model 1: Predicting When to Seek Help
In RQ1, we would like to predict when students would seek
help. Model 1 breaks down this problem to predict which
commit will be followed by an office hours request. Specifi-
cally, for each commit, if an office hours request exists within
one hour and also before the next commit, we call this com-
mit the pre-help commit. This one-hour window is chosen
arbitrarily and might be subject to adjustment. With this
definition of pre-help commit, our task in Model 1 is essen-
tially to predict whether a commit is a pre-help commit or
not. The labeling process for this task can be easily done

automatically. Then, we can use the methodology and the
coding features we proposed before to build the binary clas-
sifier as Model 1.

However, when a student uses office hours, it could vary de-
pending on the individual’s preference or habits. With only
coding data, our model might not perform well. Therefore,
we might also include students’ demographic data and pre-
vious office hours usage data in the training as well.

Table 2: Preliminary categorization results of office hours
requests. Only requests for the main project assignments in
F20 and F21 are included.

Category F20 F21
Implementation 334 222
General Debugging 392 263
TS test failures 127 124
Self-written test failures 30 24
General test failures 103 38
Improving test coverage 21 20
Static analysis notifications 9 7
Others/Unclear 314 102

Total 1330 800

2.5 Model 2: Predicting What Type of Help
In our preliminary research[7], we divided students’ office
hours requests based on the provided description for the
F20 and F21 semesters. Then, two TAs manually labeled
each request(Kappa=0.83), and the results are in Table 2.
We only focused on requests related to their main projects.
Based on the results, we found that students are mostly ask-
ing about the implementation, debugging, and test failures
of their programming assignments. Additionally, we dis-
covered a significant difference in commit frequency before,
during, and after students requested help, depending on the
type of assistance they sought. Therefore, we believe it is



Table 3: Pseudo example labeling for RQ 2.2 and RQ 2.3; ’-’ indicates we can’t identify which specific function or unit test
students are struggling with and thus need to be removed.

Example Description Question Type Label(specific question)
what value should I return in Car.getName() when the name is empty? Implementation Car.getName()

How should I calculate the new position of the car? Implementation Car.updatePosition()
I don’t know how to write updatePosition() Implementation Car.updatePosition()

I am confused how to start the project Implementation -
testCar.testUpdatePosition() failed Test failures testCar.testUpdatePosition()
test failed when car name is empty Test failures testCar.testEmptyName()

2 test failures Test failures -

crucial to study students’ coding behaviors separately based
on the type of requests they make.

In order to build a classifier based on the above categoriza-
tion, we currently still need to address two problems. (1)
we only labeled two semesters amount of the data; a large
portion of the data stays unlabeled and it would be very
time-consuming to do so manually. (2) A high percentage of
the data cannot be classified into any meaningful category
because of the ambiguous description the students provided.
To address these problems, we plan to use semi-supervised
learning[19] as the framework to iteratively train the model
and classify each unlabeled help request. We first treated
every request in the others/unclear category as unlabeled
data, combined with new semesters’ unlabeled data. At the
first iteration, we will train a classifier using labeled data and
then use it to predict and pseudo-label the unlabeled data.
Then, we select the most confident predictions in the newly
labeled dataset and merge them into the labeled dataset;
then, we discard the pseudo labels for the remaining unla-
beled dataset. We then use both sets of data to re-train
the classifier, with this process being repeated over several
iterations to get better classifiers. During each iteration, we
evaluate the classifier against a separate validation set to
ensure that the quality is maintained as we move forward.
The training step will stop once the labeled dataset stops
increasing, and the model at the last iteration will be our
final target model.

2.6 Model 3&4: Predicting Specific Questions
With Model 2, we would successfully categorize the students’
requests into different types. In RQ2.2 and RQ2.3, we focus
on two major categories: Implementation and Test Failures.

For the Implementation requests, we opt to investigate which
function/methods students are asking about. We plan to ex-
amine each implementation request manually and label the
ones with clear descriptions of which methods they need as-
sistance with. For the rest of the requests that don’t clearly
specify this information, we will remove them for training
this model. Similarly, we will also manually label Test Fail-
ure requests with the name of the unit test they reported
they failed in the request description. With these two la-
beled datasets and extracted coding features, we could easily
build Model 3 and Model 4.

However, due to the unclear nature of the request description
data, we might only get a small labeled dataset for training.
To address this problem, we can utilize techniques like data
augmentation, data synthesis, cross-validation, and regular-
ization to increase the dataset and prevent overfitting. Ad-

ditionally, since we have over 40 unit tests and functions for
each project, our approach of treating each unit test/func-
tion as a single category might be problematic. We might
need to perform a clustering algorithm first to merge several
functions or unit test categories together.

2.7 Model 5: Quantifying students efforts
In RQ3, our question is to identify students who should re-
ceive help based on their coding activity. Our key idea is
that if a student makes enough effort to address their prob-
lem before they request help, then they are truly struggling
and need to be prioritized. Furthermore, prioritizing stu-
dents who are more likely to put in effort after the inter-
action before they return for additional assistance can in-
crease the efficiency of office hours. Therefore, in Model 5,
our goal is to quantify the students’ efforts before they seek
help and after they receive help. We will use a series of
metrics to represent the amount of effort students made, in-
cluding commit frequency, time till the last/next improved
solution, and coding features listed before. And then, we
will calculate the average and median value for each metric
as a benchmark for deciding if a student made enough ef-
fort; this benchmark might be subject to adjustment if we
observe any special distribution of the metric.

3. ADVICE SOUGHT
We are primarily seeking some advice and answers to the
following questions:

• Any additional coding features we can extract and uti-
lize in any models we proposed?

• For the question about RQ3 and who should seek help,
are there any additional aspects we should think of
other than students’ coding efforts?

• For Model 3 and Model 4, how can we improve the
modeling approach?

• Is there any methodology or design flaw you spotted
in this research?

• As a CS educator, do you think our proposed models
are useful to you? If so in what way? If not what
are your primary concerns about office hours in your
class?

In addition to the above questions, we would also be open
to suggestions on almost every aspect of the study.
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