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ABSTRACT
Randomized A/B tests within online learning platforms en-
able us to draw unbiased causal estimators. However, pre-
cise estimates of treatment effects can be challenging due
to minimal participation, resulting in underpowered A/B
tests. Recent advancements indicate that leveraging auxil-
iary information from detailed logs and employing design-
based estimators can yield unbiased and precise statistical
inferences with minimal assumptions, even in small sample
sizes. Our ongoing research aims to incorporate the Rem-
nant Leave-One-Out Potential outcomes (ReLOOP) estima-
tor and its variants into ASSISTments, an online tutoring
platform. In this work, we define remnant (auxiliary in-
formation for experiments) data and identify the common
outcomes of interest for educational trials. We also formu-
late and train various predictive models using both prior
student statistics and prior assignment statistics, evaluat-
ing which model performs better in terms of Mean Squared
Error (MSE) and Coefficient of Determination (R2). In ad-
dition, we establish an infrastructure to facilitate combining
remnant-based predicted outcomes and ReLOOP estimators
in tutoring experiments, used to boost power in educational
A/B tests. Our preliminary findings suggest that incorpo-
rating auxiliary information into the ReLOOP estimator is
roughly equivalent to increase sample size by 44% compared
to conventional t-tests (difference-in-means estimator, DM)
and by 12% compared to Leave-One-Out Potential outcomes
(LOOP) estimator, which relies solely on experimental data.
When applied to A/B tests in online tutoring platforms,
improved precision via ReLOOP estimators allows for infer-
ences to be made earlier in the development process and thus
will lead to more rapid development of optimized learning
systems.
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1. INTRODUCTION

Randomized A/B tests, conducted on online Computer-Based
Learning Platforms (CBLPs) such as ASSISTments [3], are
employed to compare various conditions and identify the
most effective student support mechanisms. The founda-
tion of these tests is randomization, a crucial aspect of ex-
perimental design, which enables to draw well-founded in-
ferences: it ensures there is no confounding bias when the
probabilities of assigning students to different experimen-
tal conditions are known. Moreover, causal estimators and
standard errors that depend on the structure of the experi-
mental design are referred to as ”design-based” [7].

Nevertheless, A/B tests might face challenges with statis-
tical precision due to high standard errors of the relevant
estimators, since imbalanced baseline covariates among ex-
perimental participants and/or small sample sizes exist. Re-
cent advancements [6] demonstrate that using remnant data
(with available covariates and potential outcomes same as
experiments, without overlapping with experimental data)
and experimental within-sample covariate adjustments in
design-based estimators can provide unbiased estimators and
enhance estimated precision. The LOOP [8] and remnant-
based residualization (rebar) [5] estimators used covariate
data from experimental participants and non-participants,
respectively, to reduce standard errors. The ReLOOP [2, 6]
estimator, combined those two estimators, boosting statis-
tical precision even more. It outperformed both LOOP and
rebar when applying them to over 250 randomized A/B com-
parisons conducted within ASSISTments. Our current study
plans to integrate ReLOOP into new experiments within E-
TRIALS (Educational Technology Research Infrastructure
to Advance Learning Sciences) on the ASSISTments plat-
form [1, 4], to facilitate exact causal inferences and boost
optimal educational strategy developments.

2. RESEARCH FOCUSES
Now we focus on applying ReLOOP to one specific experi-
ment with students randomized to receive different tutoring
strategies (e.g. hints), and aim to expand ReLOOP to other
experiments running on E-TRIALS. In the experiment, stu-
dents see hints as usual under condition 0, and students are
prompted to reflect on what they are confused about be-
fore seeing the first hint under condition 1. The outcomes
of interest are taken to be average correctness after first
hint and average correctness across all problems in one as-
signment. We determine some prior student statistics and
prior assignment statistics as remnant of other students us-
ing ASSISTments, nonoverlapping with experimental data.
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Next, we utilize unmatched control subjects (remnant) to
fit various neural networks, predicting control potential out-
comes without sacrificing the integrity of the experimental
design. Also, such resulting predictions in the experimen-
tal set are used to adjust the causal estimators, along with
within-sample covariates, to reduce estimated standard er-
rors. Furthermore, we want to explore how to determine
a more representative remnant, and how to obtain better
predictive models.

Our research also aims to address several related statisti-
cal questions. We examine whether using imputations from
remnant-based models can improve estimated standard er-
rors, and determine the most effective one among various
trained neural networks. Next, we plan to investigate the
potential of utilizing ReLOOP [6] based on representative
and unrepresentative remnants for estimating subgroup and
overall population effects. Moreover, our goal is to establish
a common historical data repository for all E-TRIALS ex-
periments, select crucial features for both predictive model
training and covariate adjustments, and formulate better
universal predictive models using a common remnant.

3. STATISTICAL METHODS
3.1 Experiments in ASSISTments
Experiments running on ASSISTments using A/B tests fol-
low the randomization mechanism, which benefits causal in-
ferences by ruling out confounding factors. However, unlike
observational studies using data from online tutors, the sam-
ple size in A/B tests is limited to students who worked on
the relevant modules while the study took place, leading to
small sample sizes. Fortunately, we can access rich prior
student and assignment logs within ASSISTments, and use
such auxiliary data to decrease experimental standard errors
without sacrificing the unbiased estimators and design-based
inferences that recommend A/B tests [5].

3.2 ReLOOP for Causal Inferences
In a study with N subjects indexed by i = 1, 2, ...N , each
is randomized into treatment (Ti = 1) or control (Ti =
0) groups. Outcomes Yi and baseline covariates Xi are
recorded. Assuming Ti are independently Bernoulli dis-
tributed, and pi = P (Ti = 1) with 0 < pi < 1, we want

to explore the average treatment effect τ̄RCT = y(1) − y(0)

where y(1) and y(0) represent the sample means of poten-
tial outcomes under treatment and control respectively. Al-
though τ̄RCT is a theoretical value and is never directly ob-
served, it can be estimated using the difference-in-means
(DM) estimator:

τ̂DM =
1

n

∑
i∈T

Yi −
1

N − n

∑
i∈C

Yi (1)

T and C represent treated and control groups. τ̂DM is an un-
biased estimator in Randomized Controlled Trials (RCTs),
while depends on unobserved potential outcomes and over-
looks baseline covariates.

To estimate the average effect more precisely, we first fit a
deep neural network to data from students who had worked
on the same problem set before the onset of the experiment
or had worked on other problem sets in the same unit, pre-
dicting the outcome of interest as a function of covariates.

Then, we used that trained algorithm to generate predicted
outcomes ŷr for all of the students in the experiment.

In Bernoulli-randomized A/B tests, we seek to impute po-

tential outcomes, ŷ(z)
RCT

(x, ŷr;α), using covariates x and
predicted ŷr in experimental data. We have:

ŷ(z)
RCT

(x, ŷr;α)OLS = αz
0 + αz

1x+ αz
2ŷ

r (2)

where α =
[
α0, α1, α2

]
, estimated in both treatment and

control groups. Furthermore, Leave-One-Out approach helps
ensure unconfounded treatment assignment via excluding
the treatment assignment Z from influencing imputations

in ŷ(z)
RCT

(x, ŷr;α). For each participant i, estimate α
using data from the other n − 1 participants, computing

ŷi(0)
RCT

(x, ŷr) = ŷ(0)
RCT

(xi, ŷ
r
i ; α̂(i)) and ŷi(1)

RCT

(x, ŷr) =

ŷ(1)
RCT

(xi, ŷ
r
i ; α̂(i)) with parameters α̂(i) excluding the ith

participant’s data. Then Horvitz-Thompson estimator’s idea
is applied here:

m̂i(x, ŷ
r) = pŷi(0)

RCT

(x, ŷr) + (1− p)ŷi(1)
RCT

(x, ŷr) (3)

where p denotes the probability of an individual participant
being assigned to the treatment condition.

Moreover, ReLOOP estimator is established as:

τ̂LOOP (x, ŷ
r) =

∑
i:Zi=1

Yi − m̂i(x, ŷ
r)

np
−

∑
i:Zi=0

Yi − m̂i(x, ŷ
r)

n(1− p)

(4)
The potential of adding ŷr to τ̂LOOP (x) estimator to boost
precision over τ̂DM and τ̂LOOP (x), depends on MSE and R2

of remnant-based predictive models [6].

4. PRELIMINARY RESULTS
4.1 Data Processing
We extracted both remnant and experimental data from the
ASSISTments database, and variables are consistent in both
remnant and experiment, with two outcomes of interest be-
ing the average correctness after first hint and total average
correctness. We analyze data on two levels: prior student
statistics and prior assignment statistics. The remnant data
was augmented with additional relevant problem sets, which
are located in the same section as the target problem sets in
the curriculum, to enlarge the remnant sample size.

We evaluated effective sample sizes in both remnant and ex-
perimental data, filtered students and assignments having
no missing values in significant features, performed feature
engineering to obtain our interested outcomes, and trans-
formed data to desired structures. Also, one hot encoder and
standardization are applied to categorical and continuous
features, preparing them for neural networks’ training. Our
processed data include 899 student records and 17,466 as-
signment records for remnant data, and 465 student records
and 10,297 assignment records for experimental data.

4.2 Predictive Models
Given our data is structured at two distinct levels, student
and assignment, we developed two separate models for each
level, and then integrated them into a combined model to
leverage information from both dimensions. The model for



Table 1: Metrics Calculated from 5-Fold Cross Validation

Metric Student Assignment Combined

Correctness MSE 0.0793 0.0779 0.0759

Correctness R2 0.1756 0.1904 0.2120

CorrectnessT MSE 0.0499 0.0489 0.0456

CorrectnessT R2 0.2353 0.2515 0.3009

Table 2: Metrics Calculated from Experimental Data

Metric Student Assignment Combined

Correctness MSE 0.1083 0.0819 0.0781

Correctness R2 −0.1203 0.2827 0.3157

CorrectnessT MSE 0.0747 0.0574 0.0527

CorrectnessT R2 −0.1369 0.2927 0.3508

Note:

Correctness: Average Correctness after first hint.

CorrectnessT: Total Average Correctness.

prior student statistics, illustrated in red in Figure 1, is a
simple feed-forward neural network. It includes a single hid-
den layer equipped with sigmoid activation functions and in-
corporates dropout to mitigate overfitting. The model dedi-
cated to prior assignment statistics, depicted in blue in Fig-
ure 1, employs a recurrent neural network (RNN) architec-
ture. This model features a single layer of Long Short-Term
Memory (LSTM) nodes, which benefits from both inter-layer
and recurrent dropout mechanisms to enhance its robustness
and generalization capacity.

During the training phase of these models, we optimized hy-
perparameters such as dropout rate, the number of layers,
and the number of nodes per layer through a combination
of grid search and cross-validation techniques. ADAM opti-
mization algorithm guided the backpropagation process for
all models. We utilized the MSE as the loss function for
both outcomes: average correctness after first hint and to-
tal average correctness. Our preliminary results obtained
from cross-validation and experimental data are presented
in Table 1 and Table 2 respectively.

Based on these, it is evident that the combined predictive
model, derived from the remnant data, achieves the lowest
MSE and the highest R2 shown as bold. Intriguingly, despite
the model reliant on prior student statistics exhibits poor
performance on the experimental data indicated via nega-
tive R2, its integration into the final combined model results
in decreased MSE and increased R2, meaning that synergy
between the datasets significantly enhances the model’s pre-
cision beyond what each dataset could attain independently.
Also, our endeavors to refine the predictive models have suc-
cessfully contributed to reducing estimated standard errors.
However, it is important to note that ReLOOP operates
without assuming that the predictions provided by these
models are optimal, precise, or inherently correct.

4.3 Casual Estimators
To evaluate the effectiveness of using remnant-based pre-
dicted values in boosting statistical precision, we conducted
comparisons across causal estimators (simpDiff, LOOP, ReLoop
OLS and ReLoopPlus) described below, including point es-

Table 3: Causal Estimators

Estimator Est Est Standard Error

simpDiff −0.0276 0.0426

LOOP −0.0181 0.0376

ReLoopOLS −0.0042 0.0355

ReLoopPlus −0.0055 0.0355

timates and estimated standard errors in Table 3.

• simpDiff: no adjustments, difference-in-means (DM)
• LOOP: adjustments using within-sample covariates.
• ReloopOLS: adjustments using remnant-based impu-

tations ŷr
i , employing Ordinary Linear Squares (OLS)

regression.
• ReLoopPlus: adjustments using with-sample covari-

ates and remnant-based imputations ŷr
i via combining

Ordinary Linear Squares (OLS) regression and Ran-
dom Forest (RF).

In conclusion, utilizing predictive models trained on rem-
nant data to impute outcomes in A/B tests and incorpo-
rating these imputed outcomes into causal estimators can
significantly enhance statistical precision in educational ex-
periments. Adjustments using remnant-based imputations
ŷr
i contribute most to reducing estimated standard errors

according to Table 3 and are shown as bold. Also, since
sampling variance scales as 1/n, ratios of sampling vari-
ances can be thought of as ”sample size multipliers” [6]–
that is, decreasing the variance by a factor of q is analogous
to increasing the sample size by the same factor. There-
fore, results of causal estimates demonstrate that leveraging
ReLoopOLS and ReLoopPlus effectively equates to a 44%
increase in sample size when compared to traditional t-tests
(simpDiff), and provides a 12% improvement over LOOP
estimator reliant solely on experimental data. Besides, the
prediction model combining student and assignment statis-
tics yields the most substantial gains in precision.

5. DISCUSSION
5.1 Future Research
Statistical inference in subgroups can be less precise due to
their inherently smaller sample sizes, and unrepresentative
remnant and/or samples have less potential to boost statis-
tical precision. Our future research will focus on how to deal
with such questions, and next paths are shown as following:

• Investigate the advantages of using remnant-based im-
putations to conduct causal inferences within subgroups.

• Evaluate the utility of ReLOOP estimator in scenarios
where the remnant data structure does not mirror that
in the experiments, and/or samples are unrepresenta-
tive of the population.

• Expand the application of predictive models and ReLOOP
estimators to additional experiments within E-TRIALS
to ascertain the robustness of our approaches.

5.2 Advice Sought
Also, we want to get some advice regarding the below points
to improve success of ReLOOP estimators to boost precision
in causal inferences on educational A/B tests:



Figure 1: Prediction models. The red model predicts performance using only prior student
statistics, the blue model predicts performance using only prior assignment statistics, and the
combined model shown in grey uses both two models to predict performance.

• How to obtain a better representative remnant for ex-
periments, or establish a universal remnant for all ex-
periments running on E-TRIALS?

• How to deal with missing values rather than dropping
or masking them when training predictive models us-
ing remnant data?
Specifically, there are two kinds of missing values. The
first type occurs when a student does not request hint
while completing the assignments. As a result, we have
the total average correctness but lack the average cor-
rectness after the first instance of hint. Nevertheless,
we believe it is important to retain these samples as
they provide valuable information for predicting stu-
dent performance. The second type of missing value
arises when a student has completed only a few prior
assignments, which leads to missing values when train-
ing an LSTM with a fixed maximum sequence length.

• Are there any other potential predictive models we
should try, to obtain more optimal predictive models
regarding MSE and R2, when dealing with sequence
data?

• How can turn these results into general advice for A/B
tests in EDM?

Addressing these questions will enable us to automate causal
inference in new educational experiments on E-TRIALS with
a reasoned basis. Additionally, based on identifying com-
monalities across all experiments via feature engineering,
we can pinpoint key covariates to adjust confounding bias
in causal estimators and boost precision in educational A/B
tests.
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