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ABSTRACT
Modern AI algorithms are so complex, that it is often impos-
sible even for expert AI engineers to fully explain how they
make decisions. Researchers in education are increasingly
using such“black-box”algorithms for a wide variety of tasks.
This lack of transparency has rightfully raised concerns over
issues of fairness, accountability, and trust. Post-hoc ex-
plainability techniques exist that aim to address this issue.
However, studies in both educational and non-educational
contexts have highlighted fundamental problems with these
approaches. In this proposed project, we take an alterna-
tive approach that aims to make complex AI learner models
more intrinsically interpretable, while illustrating how such
interpretability can be evaluated. We aim to (1) develop
an interpretable neural network, comparing accuracy and
issues relevant to interpretability approaches as a whole, (2)
evaluate this model’s level of interpretability using a human-
grounded evaluation approach, and (3) validate the model’s
inner representations and explore some hypothetical advan-
tages of interpretable models, including their use for knowl-
edge discovery.
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1. INTRODUCTION
As machine learning models become more powerful and com-
plex, they can become difficult or impossible to interpret,
making their decision-making process opaque. When used
in high-stakes domains like education, this lack of inter-
pretability raises concerns around fairness, accountability,
and trust [7], while also obscuring pedagogical insights that
could improve learning outcomes among students. Most
efforts to tackle this issue rely on post-hoc techniques for
generating explanations of a model’s inner workings. How-
ever, these methods have shown serious inherent limitations,
making them inappropriate for use in educational settings.

The project proposed in these pages addresses this problem
by developing and evaluating an intrinsically interpretable
model—one in which the decision-making process is inter-
pretable by design, thereby making problematic post-hoc ex-
planations unnecessary.

This research will be conducted across three main studies.
The first will be focused on developing and improving an in-
terpretable neural-network-based learner model, the second
will seek to evaluate the intrinsic interpretability of such a
model, and the third will validate the patterns identified by
this model. This research is guided by the following overar-
ching questions:

1. What tradeoffs exist between accuracy and inter-
pretability when developing an interpretable learner
model?

2. How can the interpretability of such a model be eval-
uated?

3. How can the validity of such a model be evaluated,
and what implications does interpretability have for
knowledge discovery?

2. BACKGROUND AND RELATED WORK
The growing use of opaque “black-box”models in education
has been called the challenge of interpretability [1]. Such
models are commonly used to trace learners’ knowledge (de-
tect what they know) [14], identify affective states (such
as boredom, confusion, engagement) [9], or predict student
success [5]. However, their lack of transparency can im-
pede pedagogical usefulness, raise ethical concerns around
accountability, and erode trust among stakeholders (such as
students, teachers, or parents).

One way to address this challenge is though a post-hoc ex-
planation approach. These techniques, borrowed from the
broader eXplainable AI (XAI) community, are applied af-
ter a model has been created (hence the name) and try to
extract insights from indirect observations of model predic-
tions. Most post-hoc methods are model agnostic and rely
exclusively on inputs and outputs [3]. Two of the most
commonly used post-hoc methods are Local Interpretable
Model-agnostic Explanations (LIME) [15] and SHapley Ad-
ditive exPlanations (SHAP) [11]. In both cases, a surrogate
interpretable model is the key behind the explanations.

However, such post-hoc methods have demonstrated
problematic limitations, including disagreement between
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techniques [8], the risk of generating unjustified counterfac-
tual explanations [10], and the “blind” assumptions required
when treating a model as a literal black box [16]. Rudin [16]
goes as far as to suggest that post-hoc approaches are too
problematic to be used in high-stakes scenarios and that we
should instead be focused on trying to create intrinsically
interpretable models. Only recently have researchers begun
to bring awareness of such problems to education [20, 18].
Echoing Rudin [16], Swamy, Frej, et al. [19] have called for
a shift in focus from post-hoc explanations to intrinsically
interpretable models within the educational data mining
community.

Along this vein, the current proposal serves as a test case
for both the development and evaluation of an educational
model that is interpretable by design.

3. METHODOLOGY
Our approach to interpretability involves constraining the
inherent flexibility of a complex model (specifically a con-
volutional neural network, or CNN) designed to detect a
particular learning behavior (gaming the system) so that it
better approximates the way humans understand this be-
havior. This general line of thinking has been previously
explored [9, 17, 21], though the implementation details vary
significantly. Building on a prototype model that achieved
accuracy on par with a rule-based expert model of gaming-
the-system behavior [13], the first study in this project seeks
to further develop multiple interpretable CNNs at increasing
levels of complexity for later evaluation.

3.1 Developing an Interpretable Neural Net-
work

Gaming the system is a well-studied learner behavior defined
as “attempting to succeed in an interactive learning environ-
ment by exploiting properties of the system rather than by
learning the material” [2]. We chose to focus on detecting
this particular behavior due to existing literature, datasets,
and models. Specifically, we are using data previously re-
ported in Paquette et al. [12], consisting of sequences of
actions from 59 students using the Cognitive Tutor Algebra
system during an entire school year. Cognitive Tutor tasks
students with solving multi-step mathematical problems and
can provide on-demand hints. A total of 10,397 clips (i.e.,
student action subsequences) were previously labeled by an
expert [2] and contained 708 examples of gaming-the-system
behavior (6.8%). Using this dataset allows us to directly
compare the accuracy of our CNNs with the model based
on human expert insights described by Paquette et al. [12].

The models we are developing make it possible to interpret
their own convolutional filters, which essentially contain the
gaming-the-system patterns identified by the model. This
interpretability is achieved by constraining the weights of
the network’s convolutional filters to be binary rather than
continuous—an approach first described by Jiang & Bosch
[6]. Since each learned filter serves as a different pattern that
the network is seeking in the data, making filter weights bi-
nary makes it far easier to understand which combinations
of student actions the model considers important. Binary
filters also align more closely with the binary nature of the
input variables used by the model, further improving inter-

pretability.

This first study will pursue further refinements and model
fine-tuning. Modifications to our prototype model include
adjusting the feature set, constraining the number of acti-
vated features, incorporating variable sequence lengths, en-
forcing valid feature combinations, and explicitly matching
convolutional filters with inputs. This will allow us to tackle
some critical questions that remain unanswered, including
the tradeoffs between allowing the network too much or too
little flexibility, as well as the impact that additional con-
straints have on model accuracy and interpretability. Ad-
dressing these issues further requires confronting the ques-
tion of how to evaluate interpretability, which is the focus
of our second study.

3.2 Evaluating Interpretability
While the field has devised and validated robust methods
for measuring different aspects of model accuracy, evalua-
tion methods for interpretability have yet to be agreed-upon.
Within the framework proposed by Doshi-Velez & Kim [4],
this project takes what they call a human-grounded evalua-
tion approach. This category sits between application- and
functionally-grounded evaluation, reaching a sound middle-
ground that directly measures a model’s interpretability for
real humans, but through a simplified task that may not
capture the specific needs of learners themselves.

While an application-grounded evaluation approach may
provide stronger evidence of interpretability for end-users
(ie. students/teachers), its narrow scope would present
challenges beyond the increased resources required. Finding
that a model is not interpretable for end-users would not in-
form us of its interpretability for other stakeholders, such as
researchers. In this sense, a human-grounded approach can
serve as a precursor to more specific application-grounded
evaluation. The particular interpretability approach we
are taking also has the added benefit of being easy to
translate to student-teacher-friendly visualizations, so the
distinction between the two evaluation approaches in this
case is rather minor. A human-grounded approach, on the
other hand, will allow us to evaluate the interpretability of
explanations at multiple levels of complexity, all while still
maintaining the accuracy of such explanations in regards
to the models’ inner workings (in contrast to unreliable
post-hoc explanations).

For this evaluation, we will assign participants two tasks
designed to measure how well they have understood the
model’s decision-making process. These are (1) forward
simulation, in which participants must correctly predict the
model’s output given specific inputs and (2) counterfactual
simulation, in which participants must correctly identify how
a specific input needs to be changed in order to alter the
model’s given output. Participants from a wide range of
backgrounds (both with and without prior experience in ma-
chine learning) will perform these tasks through a question-
naire. As part of an iterative pilot phase, we will first test
the questionnaire with a group of graduate students in an
instructional technology program. This will allow us to iden-
tify potential issues with its questions or organization. we
will then seek participants through various sources, includ-
ing the mailing list of the International Educational Data



Mining Society (IEDMS) and the newsletter of the Society
for Learning Analytics Research (SoLAR).

The questionnaires will be administered through a digital
platform. It will include a consent form, questions regard-
ing participants’ background (to gather demographic data
and level of experience in related disciplines), an explana-
tion of the project and the task, an example of the task,
a practice task, and finally, the tasks themselves. For both
tasks, participants will be provided with a set of the model’s
convolutional filters (which contain the gaming-the-system
patterns identified by the model).

The forward simulation task will present participants with
the inputs for a particular instance—that is, the values for
each variable for a given clip of student actions. Participants
will be asked to predict whether the model would label this
clip as gaming the system or not gaming the system, given
the patterns in the convolutional filters. They will be asked
to perform this task five times, receiving a new set of inputs
for a different clip each time.

The counterfactual simulation task will again present par-
ticipants with the inputs for a specific clip, but this time
also providing the model’s predicted label. Participants will
be asked to identify a single change to the inputs that would
alter the model’s prediction. For example, given a series of
inputs and the model’s prediction of not gaming the system,
what change to the inputs would result in the model label-
ing this clip as gaming the system. Participants will select
the single correct answer from a series of multiple choice op-
tions. As with the first task, this will also be repeated five
times with five different scenarios.

After these tasks are complete, participants will be asked
to answer a series of questions regarding how they tackled
their tasks and how confident they felt about their responses.
These confidence levels will allow us to explore how well
one’s perception of model interpretability aligns with actual
interpretability.

For both the forward and counterfactual simulations, partic-
ipants’ accuracy rate (proportion correct out of total ques-
tions) will be calculated. The mean accuracy rate for the
entire sample will be used as the principal measure of the
model’s actual interpretability. With a goal of 100 partici-
pants, we expect to reach an estimated accuracy rate with
a 95% confidence level and a margin of error < 10%. The
Cohen’s Kappa (inter-rater reliability) will also be calcu-
lated to determine the level of agreement between partici-
pants. Participants’ responses to the multi-class problems
(those in the counterfactual simulation) will first be con-
verted to correct/incorrect in order for Kappa to measure
general agreement between these two classes. To compare
the accuracy rates between participants with prior ML ex-
perience and those without, an independent-samples t-test
will be used.

To explore the interplay between complexity and inter-
pretability, we will ensure that the number of convolutional
filters provided to participants for their tasks vary. If
they can accurately perform the tasks with less filters but
make more errors when presented with more filters, this

will be an indication that increased complexity hinders
interpretability.

For a more in-depth analysis, we will create a confusion ma-
trix from responses to the binary problems (those in the
forward simulation). Along with calculations of sensitivity
(recall), specificity, and precision, this will allow us to dive
into specific areas where participants may have encountered
trouble. For multi-class problems, a contingency table will
serve a similar purpose and help us identify if specific ques-
tions or answer choices were particularly difficult for partic-
ipants.

3.3 Model Validation
Our third study will be an analysis of the specific patterns
identified automatically by the model. Here we seek to val-
idate whether the model in fact aligns with reality or if the
patterns it picks out are nonsensical within the context of
the data and experts’ understanding of gaming-the-system
behavior. To do this, we will conduct both a quantitative
analysis of the patterns themselves and a qualitative inter-
view of an expert in this particular learner behavior.

The quantitative analysis will involve comparing the pat-
terns identified by the model with those identified by the
expert as published in Paquette et al. [12]. We will do
a pairwise comparison of patterns by calculating the Eu-
clidean distance, cosine similarity, and matrix correlation
between any two patterns. These metrics will allow us to
identify the most similar patterns between the two models.
For the Euclidean distance, we will use the Frobenius norm
for this rather than the nuclear norm in order to consider
all the elements of the patterns equally.

The purpose of this quantitative analysis is to get a gen-
eral sense of how similar the CNN’s patterns are to those
identified by the expert. On one hand, if the model is able
to identify similar patterns, this will provide evidence that
it is indeed picking up on gaming-the-system behavior. On
the other hand, having some more unique patterns as well
may indicate that the model is able to identify novel behav-
ior patterns that are not obvious to humans. However, to
test whether this latter case is true and it is not simply the
model picking up on non-sensical patterns, we will conduct
an interview with an expert in gaming-the-system behavior.

In this interview, we will ask this expert to engage in a
think-aloud as they are presented with each pattern identi-
fied by our model, and they will explain whether the pattern
makes sense for gaming-the-system detection or why not.
We will also ask them to provide their overall impression
of the model, its accuracy, and its interpretability. They
will be asked whether and how they might see such a model
being used to inform theories of learning or to inform our
understanding of the learner behavior being modeled. To-
gether with the results of the quantitative analysis, the in-
terview will provide an overall sense of the model’s validity
to real-world student action patterns indicative of gaming
the system.

4. CONCLUSION
While this project focuses on one specific type of algorithm
(convolutional neural networks) designed for a particular



task (detection of student gaming-the-system behavior)
using a single interpretability approach (constraining the
complexity of the convolution filters), its significance lies in
deeply expanding the conversation in a direction that is still
relatively unexplored within the educational data mining
community. The expected outcomes of this project include:

1. An intrinsically interpretable neural network model for
detecting a learner behavior, aligned with expert un-
derstandings and optimized for performance and inter-
pretability.

2. A robust approach for evaluating the interpretability
of neural network models in educational contexts.

3. Insights into the implications of intrinsic interpretabil-
ity for evaluating model validity and knowledge dis-
covery in education.

4. Contributions to addressing the challenge of in-
terpretability in educational data science, with
potential implications for fairness, accountability,
trustworthiness, and pedagogical usefulness.

Overall, this research aims to advance the development and
evaluation of interpretable machine learning models in ed-
ucation, promoting transparency and accountability in AI-
enabled educational technologies.
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