
Identifying and Evaluating Novel Knowledge Component
Models for Programming Skills

Mehmet Arif Demirtaş
University of Illinois Urbana-Champaign

Urbana, IL, USA
mad16@illinois.edu

ABSTRACT
Identifying key concepts in programming is important for
accurately tracking skill development and designing better
support mechanisms for students. Prior research has identi-
fied a plethora of skills at varying levels of granularity, from
broad abilities such as code comprehension and tracing to
fine-grained skills like using individual syntactic elements
correctly. However, the extent to which these skill models
reflect students’ skill acquisition process has not been empir-
ically explored. Knowledge components, which are acquired
units of skills and abilities inferred from the performance
on a set of tasks, can be an appropriate starting point in a
framework for evaluating these skill models and generating
new models in a data-driven manner. Yet, previous applica-
tions of knowledge components for programming could not
identify a robust and interpretable skill model, which may
imply that programming skills are more complex than ini-
tially assumed. Thus, we aim to design a knowledge com-
ponent model for programming that reflects student devel-
opment while maintaining the interpretability of individual
components. My findings so far have shown that language
elements, combined with the context they are used in, can
viably model the skill acquisition process of students. In my
future work, I aim to design tools for identifying the com-
binations of language structures that accurately reflect the
skill acquisition process in programming.

Keywords
computing education research, knowledge components, pro-
gramming plans

1. INTRODUCTION & BACKGROUND
Identifying the skills acquired while learning to program is
an important goal in computer science education. Under-
standing these skills in depth can help in tracking student
development accurately, as well as designing effective learn-
ing environments that better support novice learners. How-
ever, the computing education community lacks an evidence-

based model for fine-grained skills developed during the learn-
ing of programming. Abilities such as code comprehension
and writing syntactically correct code have been identified
to be crucial in introductory programming courses [24], but
the breadth of these abilities makes it more difficult for these
to be used for knowledge tracing and personalized support
mechanisms. Other works surveyed programming courses to
identify atomic skills like using individual syntactic elements
(e.g. operators, conditional structures, or types of loops) as
fundamental concepts in introductory computing [23]. Still,
these concepts were not based on student data but rather re-
flected expert consensus, which can be susceptible to biases
like expert blind spot [15]. Many EDM studies for under-
standing student skill development on programming data
have also leveraged domain expertise [8, 19, 2, 21].

Knowledge components (KC), acquired units of skill that
can be detected by measuring student performance on a set
of tasks, can provide a useful framework for identifying key
skills in a data-driven manner. Originally defined as part of
the Knowledge-Learning-Instruction (KLI) framework [12],
knowledge components can be used for both tracking student
learning and modeling the skills that are being learned. Ac-
cording to the KLI framework, students should achieve lower
error rates in problems related to a knowledge component as
they get more opportunities to practice the underlying skill.
Thus, a knowledge component model can be evaluated on
student data using learning curves, by tracking the change
in error rate as students practice the skill represented by
a KC [6]. Learning curve analysis has been successfully ap-
plied for tracking skill development and refining skill models
in many domains through knowledge components, including
algebra, physics, geometry, and language studies [11, 13, 16].

In contrast to these other fields that utilized knowledge com-
ponents for improving skill models, previous applications
with KCs in programming have yielded mixed results. Early
studies have successfully utilized manually annotated KCs
on problems for supporting students e.g. through individ-
ualized problem selection [4]. However, this approach was
not scalable to open-ended problems as it required manual
annotation. Rivers et al. [19] was the first work to evalu-
ate the extent to which language features can model student
skill acquisition in programming education by using abstract
syntax tree (AST) nodes as a KC model on open-ended code-
writing data. Surprisingly, their learning curves did not
show a decrease in error rate for many of the AST nodes (e.g.
for loops, return statements, addition operation), leading to

M. A. Demirtas. Identifying and evaluating novel knowledge compo-
nent models for programming skills. In B. Paaßen and C. D. Epp,
editors, Proceedings of the 17th International Conference on Edu-
cational Data Mining, pages 969–973, Atlanta, Georgia, USA, July
2024. International Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12730015

https://doi.org/10.5281/zenodo.12730015

questions on the validity of the use of syntax elements as an
accurate model of skills in programming. Shi et al. [21] used
an alternative approach to develop a KC model from open-
ended data by optimizing a neural network to predict sets of
problems that generate successful learning curves, and man-
ually inferring KCs through interpretation of the problems
included in the set at the end of this optimization process.
However, their work was limited in interpretability as the
identified KC candidates could combine multiple unrelated
concepts observed in student submissions as a single KC.
These studies may imply that code-writing data collected
from open-ended submissions for programming exercises, a
common form of data collected in programming courses, is
not appropriate for learning curve analysis. However, our
initial findings imply otherwise.

Our preliminary evidence suggests that learning curve anal-
ysis can identify programming KCs under certain conditions.
In our recent work, we replicated Rivers et al.’s study [19]
on modeling student learning with syntactic elements with
a larger dataset and showed that AST nodes can be a vi-
able KC model, contrary to their findings. The identified
KC model had a better model fit as measured by AIC, BIC,
and RMSE [13], and the individual KCs produced learning
curves with steady declines in error rates, indicating mas-
tery of the underlying skills [12]. However, we also observed
that AST nodes that better represent learning tend to be
used in similar contexts in most programs, such as condi-
tional statements and loops, and AST nodes for language
elements used in many different places throughout the pro-
gram, such as operators, had poor performances as KCs.

Inspired by this finding, we intend to develop a methodol-
ogy for identifying combinations of language structures that
accurately model student skill acquisition in a data-driven
manner. We believe that programming plans and common
code patterns can be useful candidates as structures that
capture underlying skills. Previous literature on plans and
patterns identified these structures through more subjective
methods, such as surveying experts or conducting cognitive
task analyses, which may not necessarily reflect the skill ac-
quisition process of novices at large. By using KCs as a
framework for evaluating skill models, we aim to identify
evidence-based programming plans that can be validated on
student data, using methods such as learning curve analysis.
The primary research questions of interest are as follows:

1. RQ1: To what extent does students’ ability to use
syntactic elements model skill acquisition in program-
ming?

2. RQ2: To what extent does students’ ability to use pro-
gramming plans model skill acquisition in program-
ming?

3. RQ3: How can we develop and evaluate novel knowl-
edge components that model skill acquisition in pro-
gramming?

Section 2.1 details my previous study and findings address-
ing RQ1. Section 2.2 explains the design and the preliminary
results from a new study that addresses RQ2 and Section 2.3
discusses some possible approaches for answering RQ3.

2. RESEARCH PROGRESS
2.1 Evaluating syntax elements as a skill model
In our recent work, we have shown that the ability to use
syntactic elements can model skill acquisition in introduc-
tory programming to some extent contrary to prior findings.
Our work was a replication of a study by Rivers et al. [19] on
a larger dataset collected over seven semesters of instruction
in an introductory programming course, including signifi-
cantly more programming exercises compared to previous
studies. Using the knowledge component model based on
abstract syntax tree (AST) nodes proposed in the previous
study [19], we compared ASTs generated from student sub-
missions and correct solutions to detect which AST nodes
are used correctly in a student submission. By treating each
AST node as a separate knowledge component, each student
submission provided an attempt at many KCs at once to be
analyzed using learning curve analysis (Figure 2). While the
prior studies using this KC model achieved learning curves
that do not show any clear learning trend [19, 21], our learn-
ing curves showed a steady decline in error rates, indicating
healthy learning across many knowledge components. More-
over, our knowledge component model had a better model
fit and higher predictive power compared to baselines from
previous studies.

In our further analysis, we noted that AST nodes that repre-
sent control flow structures (“If”, “For”, “Return”) and data
structure declarations (“Dict”, “Tuple”) exhibited a more
consistent decline in error rate across semesters, compared to
nodes for operators. Two example learning curves are shown
in Figure 1. We attribute this difference to some language
structures appearing in mostly similar places and contexts
in correct solutions: in many of our exercises, data struc-
ture declarations would follow the function signature, and
control flow structures would be at the end of the program.
Thus, students can start to correctly place these structures
after a few attempts. On the other hand, operators could
appear anywhere in the program, making it more difficult
for students to infer which conditions create the required
context for the use of a specific operator.

Er
ro

r R
at

e
(%

)

Attempt

KC: Tuple

0 6 8 1042

60

80

40

20

0

100

Fitted CurveRaw Data

Er
ro

r R
at

e
(%

)

Attempt

KC: Not In

0 3 4 521

60

80

40

20

0

100

Fitted CurveRaw Data

Figure 1: An example learning curve for two knowledge com-
ponents from the same semester. The curve for“Tuple”shows
that as students have more attempts at practicing this KC,
error rates at problems steadily decrease. On the other hand,
the curve for the “NotIn” operator does not show a declining
trend in observed attempts.

2.2 Evaluating programming plans as a skill
model

Inspired by this finding, we adopted programming plans [22]
as an alternative to syntactic features as a skill model. We
used programming plans as KCs on the same dataset de-
scribed above to understand if programming plans can model

KC Outcome

✓

✗

✗

Student
submission

Correct
submissions

Instructor
solution TF

-ID
F

si
m

ila
rit

y

All AST nodes
used

Edit set

Transaction data

(a) Extracting ASTs (b) Finding the
 most similar solution

(c) Comparing trees (d) Computing
 steps

A
ST

_1
A

ST
_2

A
ST

_3

1 2 3
AST_2

Comparing
student

submission to
the solution

space

St
ud

en
t

A
ST

Student
AST

AST_2

vs

Figure 2: Our pipeline for extracting AST-based knowledge components from student submissions (Section 2.1). For each student
submission, the correct solution that is syntactically most similar to the submission is found and used as ground truth to identify
which KCs are correctly used in the given submission. See original work for details.

Figure 3: Two examples of the counting plan, along with
learning curves from two semesters, showing a decrease in
error rates.

skill acquisition better than language elements. To this end,
we annotated a set of more than 300 programming exer-
cises with programming plans proposed by Iyer et al. [9].
We consider student submissions on these problems as at-
tempts made to practice the KCs represented by the anno-
tated plans.

By testing programming plans on student data, we produce
empirical evidence to support the validity of programming
plans as a mental construct as well as evidence on which
plans correspond to discrete skills learned by students. Our
results show that some plans (e.g., counting, sum) can model
student learning in introductory programming well, while
others do not. Figure 3 shows the two examples with the
counting plan and learning curves from two semesters on
the plan. Interestingly, the plans that had consistently suc-
cessful learning curves were plans that had more specific use
cases, whereas plans that only described a common struc-
ture (e.g. multiway branching) had learning curves with no
consistent decrease in error rates.

However, we also observed that manually annotating plans
only on a problem level presents an obstacle to collecting
accurate data on some plans, pointing to a need for an auto-
matic method for detecting these structures in submissions.

2.3 Generating new knowledge components for
programming

Influenced by the gaps we have identified so far, we aim to
develop a data-driven methodology for identifying structures
that reflect skills acquired in programming courses. While
our studies showed promising results for both syntactic el-
ements and programming plans, a method for identifying
structures that optimize the model fit on learning curves,
similar to Shi et al.’s work [21], can improve our knowledge
component models. Thus, I plan to examine optimization-
based processes for refining a proposed set of knowledge
components, which can help in finding a balance between
model fit and interpretability.

Moreover, with the capabilities of large language models
(LLM) in computing education becoming ubiquitous [18],
processing student submissions with LLMs can be an al-
ternative approach for identifying common patterns. The
capabilities of these models in explaining code, generating
code pieces, and programs with explanations have been dis-
cussed [20, 3, 10]. Knowledge components proposed by
LLMs conditioned on student submissions can contribute to
this discussion by exploring the connection between gener-
ated code pieces and the skill acquisition process of students.

Another possible approach could be merging multiple lan-
guage elements, such as combining the use of multiple AST
tokens as a single node as proposed in the discussion by
Rivers et al. [19]. Based on the findings from our repli-
cation, combining multiple AST nodes to add context in-
formation to knowledge components may result in a do-
main model with better represents student learning. Learn-
ing Factors Analysis (LFA) [6], a skill model improvement
method guided by model fit metrics, provides a possible tool
for this exploration.

3. CONCLUSION
Generating a skill model in programming that can capture
the use of combinations of syntactic elements, organized

in a certain way under a particular context, may model
student learning accurately while also being easily inter-
pretable. With automatic detection of such interpretable
structures, it can be possible to track student learning bet-
ter through knowledge tracing techniques [1]. A fine-grained
skill model represented by these structures can also simplify
the implementation of scaffolding techniques such as subgoal
labeling [5, 14] or Parsons problems [17, 7] in any domain
with a sufficiently large set of example programs. During
the doctoral consortium, I hope to discuss possible methods
for generating these skill models and designing studies that
can better evaluate the generated skill models.

4. REFERENCES
[1] G. Abdelrahman, Q. Wang, and B. Nunes. Knowledge

Tracing: A Survey. ACM Computing Surveys,
55(11):224:1–224:37, Feb. 2023.

[2] B. Akram, H. Azizolsoltani, W. Min, E. N. Wiebe,
A. Navied, B. W. Mott, K. E. Boyer, and J. C. Lester.
A Data-Driven Approach to Automatically Assessing
Concept-Level CS Competencies Based on Student
Programs. In CSEDM@ EDM, 2020.

[3] B. Akram and A. Magooda. Analysis of Students’
Problem-Solving Behavior when Using Copilot for
Open-Ended Programming Projects. In Proceedings of
the 2023 ACM Conference on International
Computing Education Research - Volume 2, volume 2
of ICER ’23, page 32, New York, NY, USA, Sept.
2023. Association for Computing Machinery.

[4] V. Aleven and K. R. Koedinger. Knowledge
component (KC) approaches to learner modeling.
Design recommendations for intelligent tutoring
systems, 1:165–182, 2013.

[5] R. Catrambone. The subgoal learning model: Creating
better examples so that students can solve novel
problems. Journal of experimental psychology:
General, 127(4):355, 1998.

[6] H. Cen, K. Koedinger, and B. Junker. Learning
Factors Analysis – A General Method for Cognitive
Model Evaluation and Improvement. In M. Ikeda,
K. D. Ashley, and T.-W. Chan, editors, Intelligent
Tutoring Systems, Lecture Notes in Computer Science,
pages 164–175, Berlin, Heidelberg, 2006. Springer.

[7] B. J. Ericson, P. Denny, J. Prather, R. Duran,
A. Hellas, J. Leinonen, C. S. Miller, B. B. Morrison,
J. L. Pearce, and S. H. Rodger. Parsons Problems and
Beyond: Systematic Literature Review and Empirical
Study Designs. In Proceedings of the 2022 Working
Group Reports on Innovation and Technology in
Computer Science Education, ITiCSE-WGR ’22, pages
191–234, New York, NY, USA, Dec. 2022. Association
for Computing Machinery.

[8] C. Fernandez-Medina, J. R. Pérez-Pérez, V. M.

Álvarez-Garćıa, and M. d. P. Paule-Ruiz. Assistance
in computer programming learning using educational
data mining and learning analytics. In Proceedings of
the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’13, pages 237–242, New York, NY, USA, July 2013.
Association for Computing Machinery.

[9] V. Iyer and C. Zilles. Pattern Census: A
Characterization of Pattern Usage in Early

Programming Courses. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, pages 45–51, New York, NY,
USA, Mar. 2021. Association for Computing
Machinery.

[10] B. Jury, A. Lorusso, J. Leinonen, P. Denny, and
A. Luxton-Reilly. Evaluating LLM-generated Worked
Examples in an Introductory Programming Course. In
Proceedings of the 26th Australasian Computing
Education Conference, ACE ’24, pages 77–86, New
York, NY, USA, Jan. 2024. Association for Computing
Machinery.

[11] K. Koedinger, K. Cunningham, A. Skogsholm, and
B. Leber. An open repository and analysis tools for
fine-grained, longitudinal learner data. In Educational
Data Mining 2008. Citeseer, 2008.

[12] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
Knowledge-Learning-Instruction Framework: Bridging
the Science-Practice Chasm to Enhance Robust
Student Learning. Cognitive Science, 36(5):757–798,
2012.

[13] K. R. Koedinger, E. A. McLaughlin, and J. C.
Stamper. Automated Student Model Improvement.
Technical report, International Educational Data
Mining Society, June 2012.

[14] B. B. Morrison, L. E. Margulieux, B. Ericson, and
M. Guzdial. Subgoals Help Students Solve Parsons
Problems. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, SIGCSE
’16, pages 42–47, New York, NY, USA, Feb. 2016.
Association for Computing Machinery.

[15] M. J. Nathan, K. R. Koedinger, and M. W. Alibali.
Expert blind spot: When content knowledge eclipses
pedagogical content knowledge. In Proceedings of the
Third International Conference on Cognitive Science,
volume 644648, pages 644–648, 2001.

[16] H. Nguyen, Y. Wang, J. Stamper, and B. M.
McLaren. Using Knowledge Component Modeling to
Increase Domain Understanding in a Digital Learning
Game. Technical report, International Educational
Data Mining Society, July 2019.

[17] D. Parsons and P. Haden. Parson’s programming
puzzles: A fun and effective learning tool for first
programming courses. In Proceedings of the 8th
Australasian Conference on Computing
Education-Volume 52, pages 157–163, 2006.

[18] J. Prather, P. Denny, J. Leinonen, B. A. Becker,
I. Albluwi, M. Craig, H. Keuning, N. Kiesler,
T. Kohn, A. Luxton-Reilly, S. MacNeil, A. Petersen,
R. Pettit, B. N. Reeves, and J. Savelka. The Robots
Are Here: Navigating the Generative AI Revolution in
Computing Education. In Proceedings of the 2023
Working Group Reports on Innovation and Technology
in Computer Science Education, ITiCSE-WGR ’23,
pages 108–159, New York, NY, USA, Dec. 2023.
Association for Computing Machinery.

[19] K. Rivers, E. Harpstead, and K. Koedinger. Learning
Curve Analysis for Programming: Which Concepts do
Students Struggle With? In Proceedings of the 2016
ACM Conference on International Computing
Education Research, ICER ’16, pages 143–151, New
York, NY, USA, Aug. 2016. Association for

Computing Machinery.

[20] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen.
Automatic Generation of Programming Exercises and
Code Explanations Using Large Language Models. In
Proceedings of the 2022 ACM Conference on
International Computing Education Research - Volume
1, volume 1 of ICER ’22, pages 27–43, New York, NY,
USA, Aug. 2022. Association for Computing
Machinery.

[21] Y. Shi, R. Schmucker, M. Chi, T. Barnes, and
T. Price. KC-Finder: Automated Knowledge
Component Discovery for Programming Problems.
Technical report, International Educational Data
Mining Society, 2023.

[22] E. M. Soloway and B. Woolf. Problems, plans, and
programs. ACM SIGCSE Bulletin, 12(1):16–24, Feb.
1980.

[23] A. E. Tew and M. Guzdial. Developing a validated
assessment of fundamental CS1 concepts. In
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pages
97–101, New York, NY, USA, Mar. 2010. Association
for Computing Machinery.

[24] B. Xie, D. Loksa, G. L. Nelson, M. J. Davidson,
D. Dong, H. Kwik, A. H. Tan, L. Hwa, M. Li, and
A. J. Ko. A theory of instruction for introductory
programming skills. Computer Science Education,
29(2-3):205–253, July 2019.

