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ABSTRACT
In studies that generate course recommendations based on
similarity, the typical enrollment data used for model train-
ing consists only of one record per student-course pair. In
this study, we explore and quantify the additional signal
present in course transaction data, which includes a more
granular account of student administrative interactions with
a course, such as wait-listing, enrolling, and dropping. We
explore whether the additional non-enrollment records and
the transaction data’s chronological order play a role in
providing more signal. We train skip-gram, FastText, and
RoBERTa models on transaction data from five years of
course taking histories. We find that the models gain mod-
erate improvements from the extra non-enrollment records,
while the chronological order of the transaction data im-
proves the performance of RoBERTa only. The generated
embeddings can also predict course features (i.e. the depart-
ment, its usefulness in satisfying requirements, and whether
the course is STEM) with high accuracy. Lastly, we discuss
future work on the use of transaction data to predict stu-
dent characteristics and train course recommender models
for degree requirements.
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1. INTRODUCTION
Prior work has shown that standard enrollment data can be
used to infer content similarities between courses within [11]
and across institutions [10]. One hypothesis for how these
models capture semantics, is that they encode students’ ag-
gregate perceptions of a courses as communicated by the
contexts in which they are selected by a student (e.g., in
which semester and along with which other courses) [13].
Transaction data includes additional student actions and,
therefore, more potentially inferable student perceptions of
course semantic information and course similarity.

Two important features of transaction data are: 1) it con-
tains more granular information on top of student enroll-
ment actions, such as waitlisting and dropping, including
students’ reasons for doing so; 2) the order of the student ac-
tions is available as these granular actions are timestamped
instead of just term-stamped, as is the case with conven-
tional enrollment data that has inhibited chronological sort-
ing within semester in past work. We hypothesize that both
features might provide more granular semantic information
and similarity signal, and thus improve similarity-based rec-
ommendations. In this study, we first present summary
statistics of transaction data and features of courses that
will be used in subsequent analyses. Next, we present the
methodology and results related to the following research
questions:

• RQ1: Does the extra non-enrollment transactions (wait-
listing and dropping) provide additional course similar-
ity signal on top of enrollment transactions?

• RQ2: Does the chronological order of the transaction
data provide more course similarity signal than ran-
dom (within-semester) order?

We quantify the amount of signal gained by these two fea-
tures by comparing the performance of skip-gram, Fast-
Text, and RoBERTa models with varying additional non-
enrollment records and orders. We further investigate how
well the model representations from transaction and enrollment-
only data represent other semantic features of courses by
predicting features of the courses, such as department, STEM
/non-STEM designation, student major diversity, utility in
fulfilling requirements, and course popularity.

We find that the extra non-enrollment records do provide
more similarity signal. Most models trained with full trans-
action data perform better than the baseline models that are
only trained on enrollment actions. We also find that the
chronological order of the transaction data does not improve
the course similarity signal for skip-gram and FastText, but
does improve the signal for RoBERTa. Lastly, we find that
the best embedding model (FastText trained on transaction
data) is able to predict course features better than the best
embedding model trained only on enrollment actions.

2. RELATED WORK
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Big Data is one of the driving forces behind educational rec-
ommender systems and learning analytics as there is an in-
creasing volume, variety, and integrity of data obtained from
various educational platforms [2]. Furthermore, as the use
of MOOCs (massive open online courses) and other digital
platforms has increased, student data (ranging from student
enrollment data to behavioral data like clickstream) has be-
come more granular. Representations of students, lessons,
and assessments from historical lesson student-content inter-
actions in an online tutoring system are used to create per-
sonalized lesson sequence recommendations [14]. Students’
daily activities, including potentially sensitive, private data,
could be used to predict their success in online courses using
supervised machine learning systems [3].

In traditional higher education institutions, there have been
efforts to conduct predictive modeling and create course
recommender systems using a variety of novel institutional
data. These data include enrollment histories, major decla-
rations, and catalog descriptions. Large-scale syllabus data
was introduced as a novel source of information on tasks of
predicting course prerequisites, credit equivalencies, student
next semester enrollments, and student course grades [6]. It
was found that course descriptions resulted in the highest
signal representation accuracy in predicting course similar-
ity, the prediction task we are also concerned with. Student
enrollment data and course catalog data were also used to
create course recommendations given students’ academic in-
terests and backgrounds at a liberal arts program [9]. The
course recommendations were based on topic modeling on
course catalog descriptions, and were found to be relevant
for a wide range of academic interests. A course recommen-
dation system based on score predictions with cross-user-
domain collaborative filtering was developed using course-
score records based on different student majors [4]. In par-
ticular, the algorithm was designed to effectively predict the
score of the course for each student by using the course-score
distribution of the most similar senior students.

More recently, it has been shown that incorporating data
from multiple heterogeneous sources improves course recom-
mendations [5, 16]. Specifically, sources such as course, stu-
dent, and career information are integrated with ontology-
based personalized course recommendation to help students
gain comprehensive knowledge of courses based on their rel-
evance. Course description data was integrated with job
advertisement data to identify necessary job skills [17] with
a hybrid course recommendation system to extract relevant
skills and entities, and provide recommendations on multi-
ple individualized levels of university courses, career paths
with job listings, and industry-required with suitable on-
line courses. Course description and job advertisement data
were also used to build a heterogeneous graph approach for
cross-domain recommendation for both students and profes-
sionals[19]. However, student enrollment data used in these
previous studies only have contained courses that students
enroll in each semester, as the type of granular and detailed
student behavioral data are not always readily available in
traditional formal higher education learning environments.
Our study utilizes a new source of detailed, more granular
course enrollment data for course similarity-based recom-
mendation.

Figure 1: Transition diagram for enrollment status

Nascent findings [18] on the application of FastText to course
equivalency task, found that there is 97.95% improvement
in model performance from skip-gram to FastText. Since
course names are morphologically rich, usually with informa-
tion such as the department, level of division, and whether
it is cross-listed, we expect that transaction data would pro-
vide more course similarity signal. Additionally, transaction
data contains non-enrollment tokens that we concatenate
to the end of course names (i.e. English 100 W denotes a
course that is waitlisted) to distinguish various actions. We
take advantage of such additional tokens with subword rep-
resentations from FastText and RoBERTa.

3. DATA
The transaction data was provided through official chan-
nels at UC Berkeley, a large public university in the US. It
shows a history of students enrolling, dropping, and wait-
listing into classes, with each row representing one of these
actions with a specific timestamp It is set to be from 2016
Fall — 2022 Summer. Table 1 contains the size and number
of unique courses of the original transaction data, and its
various filtered versions. Table 2 shows an example of the
transaction data where one student (xxxxxx123) enrolls in
110 Math and gets waitlisted in 150 Molecular & Cell Bi-
ology; while another student (xxxxxx456) attempts to drop
148 Sociology but is unsuccessful. Figure 1 shows how en-
rollment status token changes based on user actions. Each
action would generate a row of records with the correspond-
ing status token. For example, when a student attempts to
enroll in a course, there are 3 scenarios: 1) enroll success-
fully and their action is recorded with the status token ”E”;
2) waitlist in the class and their action is recorded with the
status token ”W”; or 3) their action does not affect their
enrollment status and it is recorded with the status token
”n-a” which we filtered out. At a later time, when the stu-
dent moves up the waitlist and successfully enrolls in the
class, another record with token ”E” will be recorded. And
any time when a student drops a course, status token ”D”
will be recorded.



Table 1: Size and number of unique courses of transaction
data and its various filtered versions
Data size unique courses
Transaction original 11,136,719 16,686
Transaction filtered
(student initiated,
action affects status)

9,141,091 9,251

Transaction filtered
(student initiated,
action affects status,
outcome status = E)

2,807,265 8,817

Transaction filtered
(student initiated,
action affects status,
outcome status = E, D)

4,335,464 9,025

Transaction filtered
(student initiated,
action affects status,
outcome status = E, D, W)

5,273,907 9,033

Table 2: Example of transaction data

Student id
Enrollment
request
timestamp

Semester Course
Enrollment
status
outcome

Enrollment
message

xxxxxx123
2021-10-11
15:22:15

Fall 2021
150 Molecular
& Cell Biology

W

You have been
placed on the
waitlist in
position number 3.

xxxxxx123
2021-10-11
15:29:17

Fall 2021 110 Math E

Your enrollment
request has been
processed
successfully.

xxxxxx456
2021-3-11
20:48:39

Spring 2021 148 Sociology NaN
You cannot drop this
class.

While the transaction data contains various features associ-
ated with student enrollment actions such as the source and
reasons for the enrollment request, we focus on ”enrollment
status outcome”. It contains token “D” (dropped), “E” (en-
rolled), “W” (wait-listed), or n-a (when the action does not
affect enrollment), and the enrollment message contains the
description accompanying the enrollment status outcome.
The top 3 enrollment status messages corresponding to the
four status tokens are listed below:

• Token “D”

– A Grade of [LETTER] has been assigned for this
Drop Request.

– Your enrollment request has been processed suc-
cessfully.

– Warning - Enrollment status is Withdrawn.

• Token “E”

– Your enrollment request has been processed suc-
cessfully.

– You have already taken this class.

– Invalid Access to Override Class Links

• Token “W”

– You have been placed on the waitlist of [CLASS]
in position number [NUMBER].

Table 3: Summary table of statistics on the transaction data

Median number
of actions

Top 3 departments
Proportion of
STEM/
non-STEM

Proportion
of different
divisions

Median
course
requirement
lists satisfied

Enrolled
records

2,408.5

Computer Science,
Business Admin-
Undergrad,
Statistics

54% STEM,
56% non-STEM

59% upper,
41% lower

18

Waitlisted
records

6,188
Computer Science,
Mathematics,
Chemistry

66% STEM,
34% non-STEM

58% lower,
42% upper

12.5

Dropped
records

6,188

Computer Science,
Business Admin-
Undergrad,
Mathematics

58% STEM,
42% non-STEM

55% lower,
45% upper
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– The Requirement Designation Option was set to
’YES’ by the enrollment process.

– Course previously taken and may be subject to
institutional repeat policy.

• Token “n-a”

– Unit Limit Exceeded For Appointment Period.

– You are unable to enroll in this class at this time.

– Class [CLASS] is full.

We then filtered the transaction data to only contain student-
initiated actions and actions that affect enrollment status,
filtering out the records with the enrollment status token
”n-a” and removing 20% of the rows. Actions that are not
student-initiated include those that are initiated by the ad-
ministration (e.g., manual enrollment of a student), and
those that are batch-processed (e.g., if a class is canceled,
then everyone is dropped). Actions that affect enrollment
status include dropping, enrolling, enrolling from waitlist, or
dropping to waitlist. Actions that do not affect enrollment
status include adding grade, changing grade, or changing
waitlist position.

3.1 Analysis of Transaction Data
We conducted data analysis of the transaction data to ex-
plore the types of courses students get enrolled, waitlisted
for, and dropped the most. The categories we investigate
are: whether the course is STEM, its divisions, and its use-
fulness in satisfying degree requirements. We select the top
100 courses to analyze. As show in Table 3, the courses for
all three actions include popular courses in Computer Sci-
ence and Business Administration. The majority of wait-
listed and dropped records contain STEM courses and lower
division courses, while the majority of enrolled records con-
tain non-STEM and upper division courses. Enrolled records
contain the highest median number of course requirement
lists that are satisfied, followed by dropped, and then wait-
listed records. We further investigate these features in a
later section to quantify the prediction power of course em-
beddings trained on the transaction data.

4. MODELS
We apply three embedding models to the transaction data.
Two of the models, skip-gram and FastText, have been eval-
uated on a similar task of course equivalencies. The third
model is a SentenceTransformer network architecture with
a custom trained RoBERTa model as the word embedding
model layer.



4.1 skip-gram Course2Vec
The Course2Vec model, like aWord2Vec model, learns course
representations by treating an enrollment sequence as a sen-
tence and each class in the sequence as a word [12, 11]. To
distinguish between courses associated with different enroll-
ment outcomes, the enrollment status outcome token is con-
catenated to the end of the course (e.g. ”Math 10A E”) be-
fore passing the course sequence to the transaction model. A
transaction sequence with the token concatenated is [”Molec-
ular & Cell Biology 160 E”,”Molecular & Cell Biology 160 D”,
”Statistics 134 W”], in which a student enrolls in Molecular
& Cell Biology 160, drops it, and is waitlisted in Statistics
134.

4.2 FastText Course2Vec
The department name, course affixes, and course number
are typically included in course titles, which have a rich
morphological structure. Prefixes like ”C” in ”History C140”
indicate a course that is taught jointly by two or more de-
partments, whereas suffixes like ”A” or ”B” in ”Chemistry
1A” and ”Chemistry 1B” indicate courses that should be
taken sequentially. At UC Berkeley, lower-division courses,
upper-division courses, and graduate-level courses are des-
ignated by course numbers below 100, 100-199, and 200 and
above, respectively. So FastText [1], which represents words
as a bag of character n-grams and is able to compute out-
of-vocabulary words, is expected to take advantage of the
extra enrollment status tokens of the transaction data.

4.3 Sentence Transformer with RoBERTa
RoBERTa [8] is a modification of the original BERT model
that is trained on a much larger dataset and removes the
Next Sentence Prediction objective. We first trained a byte-
level Byte-pair encoding tokenizer rather than a WordPiece
tokenizer like BERT to make sure all words will be decom-
posable into tokens as it builds its vocabulary from single
bytes. Each transaction sequence is again treated like a sen-
tence. We then trained the RoBERTa model from scratch on
a task of Masked Language Modeling, noting the similarity
in completing a sentence and suggesting a course sequence.
Next, we constructed a Sentence Transformer network [15]
using the RoBERTa word embedding model and a mean
pooling layer. For RoBERTa models trained on multiple en-
rollment status tokens, we derived the course embeddings
using a sentence consisting of all the course’s related tokens
(i.e. Data 100 E, Data 100 D).

4.4 Model Training and Evaluation
We use the equivalency validation set containing 480 course
credit equivalency pairs maintained by the Office of Regis-
trar as ground truth for course similarity. To increase the
validation set, we swap the pairs, resulting in 960 pairs. We
then filtered the validation set to include only courses that
occur in the intersection of all filtered data (8,817 unique
courses as shown in table 1) and courses that could be pre-
dicted by all models, yielding a total of 784 pairs.

Recall@10 is calculated for equivalency validation pairs us-
ing the model evaluation metrics and validation dataset (con-
taining pairs of courses with equivalent credits) established
in a previous study [12]. We find similar courses to the
first course for each validation course pair by ranking other

courses based on cosine similarity of their vector represen-
tations, and we calculate recall@10 based on the rank of
the second course. For transaction Course2Vec models that
take into account enrollment status tokens – for instance
Course2Vec trained on classes with enrollment token “W” –
equivalency pairs that could not be predicted because either
one does not exist in the vocabulary set of Course2Vec (to-
ken “W”) are then predicted by a Course2Vec model trained
on non-token sequences. To obtain a single embedding for
a course with a Course2Vec model trained on multiple ver-
sions of the course with different enrollment tokens (E, D,
W), we use 3 different methods: 1) simply use this model
to get the embedding for the original course without any
tokens (i.e. Math 1A), 2) average and 3) concatenate the
embeddings of the various versions of the course with dif-
ferent tokens. To obtain a course embedding with Sentence
Transformer based on a RoBERTa trained on transaction
records with different tokens, we use 2 methods: 1) simply
pass in the course without any tokens; 2) pass in a synthetic
course sequence containing various versions of the course
with different tokens (i.e. Math 1A E, Math 1A D).

We then use ten-fold cross-validation to select the best model
hyper-parameters. We split the 784 validation pairs into 10
folds. Then, within each phase of the cross-validation, 80%
of the validation pairs are used to find the best training
hyper-parameters, which are then used to create a model
to evaluate on the rest of the 20% of the pairs. The ranks
of the test pairs are recorded for each fold, then they are
appended together to calculate overall recall@10. We don’t
use temporal cross-validation because the validation set con-
sists of similarity pairs that do not have established dates
associated with them. Grid search is used on the following
hyperparameter space for both skip-gram and FastText:

• Min count: [10, 20, 30, 40, 50, 60, 70, 80, 90]

• Window: [2, 3, 4, 5, 6, 7, 8, 9]

• Vector size: [200, 210, 220, 230, 240, 250, 260, 270,
280, 290, 300, 310]

• Sample: [3.e-05, 2.e-05, 1.e-05]

• Alpha: [0.01, 0.02, 0.03, 0.04]

• Min alpha: [0.0001, 0.0003, 0.0005, 0.0007]

• Negative: [10, 15, 20, 25]

See Appendix A.1 for optimal hyperparameters for the best
model. The optimal hyperparameters for our data are likely
to differ from others’ based on size of course catalog and
number of enrollments.

5. RESULTS
5.1 RQ1: Utility of non-enrollment transac-

tions records
We found that transaction records do provide more course
similarity signal. As shown in table 4, most models trained
with enrollment (E) and non-enrollment (D& W) transac-
tions (whether the tokens are hidden, averaged, concate-
nated) show improvements from the baseline models that



Table 4: Percent improvement of the best models trained on
transactions (E,D,W) from baseline models trained only on
enrollment (E)

Baseline
(random)
recall

Random
Baseline
(ordered)
recall

Ordered

Skipgram 0.296
2.53%
(E&D/
no token)

0.244
0%
(E&D/
no token)

FastText 0.446
4.22%
(E&D/
avg)

0.367
14.5%
(E&D&W/
concat)

RoBERTa 0.309
4.96%
(E&D&W/
no token)

0.347
-2.19%
(E&D&W/
no token)

Table 5: Percent improvement of the best models trained
on chronologically ordered transaction records from those
trained on randomly ordered records

E E & D E & W E & D & W
Skipgram 0.296-17.6% 0.304-19.6% 0.296-22.6% 0.295-17.9%
FastText 0.446-17.6% 0.464-11.9% 0.418-11.9% 0.458-7.67%
RoBERTa 0.309+12.4% 0.320+3.19% 0.305-3.35% 0.324+4.72%

are only trained on enrollment records. Only skip-gram
and RoBERTa trained on chronologically ordered transac-
tion records do not show any improvement from their re-
spective baseline models trained on chronologically ordered
enrollments. Additionally, we see that the best models that
outperform the baseline E model are either models trained
with the tokens E&D, or models trained with E&D&W. The
enrollment status token W does not improve from the base-
line model, as models trained on E&W perform worse than
the baseline E models, suggesting that W transactions could
be random noise. The greatest percent improvement from
enrollment to transaction records is to use FastText trained
on the full records (E,D,W) and ordered sequences. Over-
all, the best-performing model for skip-gram is that trained
on E&D random order (no token), the best FastText model
is that trained on E&D random order (average token), and
the best RoBERTa model is that trained on E chronological
order (no token).

5.2 RQ2: Utility of chronological transactions
records

The chronological order of the transaction data does not
improve the course similarity signal for skip-gram and Fast-
Text, but does improve the signal for RoBERTa, as shown
in table 5. The greatest percent decrease in performance
from randomization to chronology is skip-gram trained on
E & W transactions, and the greatest percent increase in
performance from randomization to chronology is RoBERTa
trained only on enrollments.

In general, the best model overall is FastText trained on
random (within-semester) ordered E & D transactions (eval-
uated by averaging the E and D embeddings), with a re-
call@10 of 0.464. And the best model trained only on en-
rollment events is FastText trained on randomly (within-
semester) ordered events, with a recall of 0.445.

Figure 2: TSNE visualizations of courses in selected depart-
ments created by skip-gram and FastText

5.3 Visualizing embeddings
To provide an intuitive explanation for the increase in re-
call@10 from course2vec skipgram to FastText, we present
comparisons of the TSNE visualizations of courses in ran-
domly selected departments produced by these 2 models
(Fig.2.). We chose to not present all departments to avoid
overcrowding the visuals. The colored points indicate dif-
ferent departments, the transparent blue points indicate the
rest of the courses in the validation pairs, and the faint grey
lines indicate connections between equivalency pairs. Vi-
sually, we see that the FastText embeddings appear more
closely clustered than the Course2Vec skipgram embeddings.

6. ANALYZING PREDICTIVE POWER
We investigate how well we could predict the various fea-
tures of the courses using the best model trained on ex-
tra non-enrollment actions vs. the best model trained on
only enrollment actions. These features include whether the
course is STEM (binary), the department of the course (80
categories), the division (3 categories), diversity of student
majors enrolled in the course (binary), the course’s utility
to satisfy requirements (binary), and its popularity (binary).
Diversity (the number of different types of unique student
majors enrolled in the course), requirement utility (the num-
ber of requirement lists the course satisfy), and popularity
(the frequency of student interactions with the course) are
made into binary variables by categorizing the course as be-



Table 6: Accuracy of baseline majority, logistic regression,
and MLP in predicting course features, using the baseline
enrollment (E) and best transaction (E,D) embeddings

Baseline
majority

Logistic
regression
(E)

MLP
(E)

Logistic
regression
(E, D)

MLP
(E,D)

STEM/
non-STEM

0.519 0.993 0.994 0.995 0.999

department 0.0885 0.998 0.987 0.995 0.998
division 0.549 0.994 0.984 0.984 0.998
student major
diversity

0.785 0.816 0.975 0.944 0.983

course
requirement
utility

0.510 0.816 0.950 0.950 0.989

popularity 0.472 0.846 0.963 0.914 0.984

low and equal to or above the median value. We compared
the accuracies (Table 6) of a baseline majority, logistic re-
gression, and MLP classifier using the best embeddings of
the enrollment actions (FastText trained on randomly or-
dered E records) and the best embeddings of transaction
actions (average FastText embedding trained on randomly
ordered E & D records), obtained through 5-fold cross vali-
dation. See Appendix A.2 for the optimal hyperparameters
for logistic regression and MLP.

In general, for all models, the best transaction embedding
is able to improve on the enrollment embedding. For both
embeddings, logistic regression and MLP models are able to
achieve almost perfect accuracy on predicting STEM/non-
STEM, department, and division of the courses in the val-
idation pairs. The biggest improvement comes from course
requirement utility (16.4% increase for logistic regression).
Overall, transaction embeddings have great predictive power
in classifying various course features.

7. DISCUSSION & FUTURE WORK
Does chronology add more similarity signals to enrollment
data? Our results suggest that there is no more signal in
chronology than randomization. Overall, the best-performing
model for skip-gram is that trained on E&D random order,
the best FastText model is that trained on E&D random
order, and the best RoBERTa model is that trained on E
chronological order. This suggests that these models are
more likely to pick up on course similarity signals when the
data contains transactions (E,D,W) and are randomly or-
dered. The reason that randomized course sequences work
better than ordered ones could be that randomization gives
courses more contexts, especially popular courses. Popular
courses are more likely to be chosen first in a course se-
quence for a semester, meaning that they may have fewer
different courses in their context window than other courses
during training for skip-gram and FastTexts, compared to
courses that are chosen in the middle of the sequence. How-
ever, for chronologically ordered transactions, FastText is
the only model that’s able to pick up more signal, likely be-
cause of its ability to take advantage of the morphological
structure of course names, despite the potential negative ef-
fect of chronology in reducing contexts. Future work could
focus on investigating further the reason why randomization
provides better similarity signal than chronology.

There are several other areas of additional future work. First,
a limitation of our work is that it may not be practical
for many institutions to collect or utilize transaction data.
These data are rare, so we only had one institution’s dataset
to analyze, limiting our ability to make claims on general-
izability. Future work could focus on investigating whether
the same conclusions hold for transaction data of other in-
stitutions. Second, the fact that RoBERTa is able to benefit
from the signal of the chronology of the transaction data,
while FastText benefits from the random order could justify
future work into combining the embeddings of FastText and
RoBERTa. Next, we could explore better ways of obtaining
course embeddings from RoBERTa to take advantage of its
contextual nature. The subpar performance of RoBERTa
compared to FastText despite it being a contextual model is
one of the limitations of our work. When we are obtaining
the course embeddings, we are not taking advantage of the
contextual nature of the model to the fullest extent. Usu-
ally, a sentence is passed to the contextual model to obtain
a word embedding using the contexts of the sentence. In
our case, to get a course embedding, we could pass in an ac-
tual transaction sequence containing the course. We could
also use Set Transformer as an additional model of compar-
ison for course embedding, given our finding that the order
of course sequences did not matter[7]. Next, future work
could also focus on investigating why wait-listed transac-
tions don’t provide additional signals on top of enrollment,
where as dropped, or dropped and waitlisted actions do add
additional signal. Perhaps students are more likely to drop
a course as they enroll in an equivalent course, than wait-
listing a course as they enroll in another course that satis-
fies the same requirement. Lastly, while transaction data
is shown to predict course features well, we could also use
it to predict student-level features. For instance, we could
explore the rationality of student decision-making by using
additional transaction data features such as reason for en-
rollment actions.

8. CONCLUSION
Our study investigates the utility of novel transaction data
(which contains granular non-enrollment student actions and
chronologically ordered records) in similarity-based course
recommendations. We evaluate such similarity signals with
skip-gram, FastText, and RoBERTa models. We showed
that transaction records including enrolling, waitlisting, and
dropping student actions improve course similarity signals
from enrollment records. Additionally, we found that chronol-
ogy does not provide more course similarity signal than ran-
domization of transaction records for skip-gram and Fast-
Text, but does so for RoBERTa. In fact, the best-performing
model is FastText trained on random enrolling and dropping
transactions. Our study provides some new pieces of infor-
mation that could help course recommendation systems. We
now know that chronology of enrollment is not beneficial to
course2vec using skip-grams or FastText, but does benefit
the transformer-based RoBERTa. We also found transaction
course embeddings have greater predictive power in classi-
fying courses into features such as STEM/non-STEM desig-
nation, department, and requirement satisfaction. The ac-
curacy from predicting which courses satisfy major require-
ments significantly improves by using transactions (enroll
and drop events) – from 81.6% to 95.0%, which is likely
close to human advisor-level fidelity. This increase could be



essential for course recommender models that may want to
learn degree requirements from data.
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APPENDIX
A. OPTIMAL MODEL HYPERPARAMETERS
A.1 FastText
The optimal hyperparameters for the best performing model
(FastText trained on randomly ordered E & D transaction
records) are as follows: min count = 50, window = 9, vector
size = 210, sample = 3.e-05, alpha = 0.04, min alpha =
0.0007, negative = 15.

A.2 Predictive Models
The hyperameters used for the multinomial logistic regres-
sion are: max number of iterations = 1000, penalty = l2
norm. The hyperparameters used for MLP are as follows:
hidden layer = 100, activation function = relu, solver =
adam, alpha = 0.0001, batch size = min (200, number of
samples), learning rate = 0.001, maximum number of itera-
tions = 200.


