
Generating High-Precision Feedback for Programming
Syntax Errors using Large Language Models∗

Tung Phung1

MPI-SWS
mphung@mpi-sws.org

José Cambronero2

Microsoft
jcambronero@microsoft.com

Sumit Gulwani2
Microsoft

sumitg@microsoft.com
Tobias Kohn2

TU Wien
tobias.kohn@tuwien.ac.at

Rupak Majumdar2
MPI-SWS

rupak@mpi-sws.org
Adish Singla2

MPI-SWS
adishs@mpi-sws.org

Gustavo Soares2

Microsoft
gsoares@microsoft.com

ABSTRACT
Large language models (LLMs), such as Codex, hold great
promise in enhancing programming education by automat-
ically generating feedback for students. We investigate us-
ing LLMs to generate feedback for fixing syntax errors in
Python programs, a key scenario in introductory program-
ming. More concretely, given a student’s buggy program,
our goal is to generate feedback comprising a fixed pro-
gram along with a natural language explanation describ-
ing the errors/fixes, inspired by how a human tutor would
give feedback. While using LLMs is promising, the critical
challenge is to ensure high precision in the generated feed-
back, which is imperative before deploying such technology
in classrooms. The main research question we study is: Can
we develop LLMs-based feedback generation techniques with
a tunable precision parameter, giving educators quality con-
trol over the feedback that students receive? To this end, we
introduce PyFiXV, our technique to generate high-precision
feedback powered by Codex. The key idea behind PyFiXV
is to use a novel run-time validation mechanism to decide
whether the generated feedback is suitable for sharing with
the student; notably, this validation mechanism also pro-
vides a precision knob to educators. We perform an exten-
sive evaluation using two real-world datasets of Python pro-
grams with syntax errors and show the efficacy of PyFiXV
in generating high-precision feedback.

Keywords
Programming education, Python programs, syntax errors,
feedback generation, large language models

∗1: Corresponding author.
2: Listed in alphabetical order.

1. INTRODUCTION
Large language models (LLMs) trained on text and code
have the potential to power next-generation AI-driven edu-
cational technologies and drastically improve the landscape
of computing education. One of such popular LLMs is Ope-
nAI’s Codex [1], a variant of the 175 billion parameter model
GPT-3 [2], trained by fine-tuning GPT-3 on code from over
50 million GitHub repositories. A recent study ranked Codex
in the top quartile w.r.t. students in a large introductory
programming course [3]. Subsequently, recent works have
shown promising results in using Codex on various program-
ming education scenarios, including generating new program-
ming assignments [4], providing code explanations [5], and
enhancing programming-error-messages [6].

We investigate the use of LLMs to generate feedback for
programming syntax errors, a key scenario in introductory
programming education. Even though such errors typically
require small fixes and are easily explainable by human tu-
tors, they can pose a major hurdle in learning for novice stu-
dents [7]. Moreover, the programming-error-messages pro-
vided by the default programming environment are often
cryptic and unable to provide explicable feedback to stu-
dents [8–10]. Ideally, a human tutor would help a novice
student by providing detailed feedback describing the er-
rors and required fixes to the buggy program; however, it is
extremely tedious/challenging to provide feedback at scale
given the growing enrollments in introductory programming
courses [11, 12]. To this end, our goal is to automate the
feedback generation process using LLMs-based techniques.

More concretely, given a student’s buggy program, we want
to generate feedback comprising a fixed program and a natu-
ral language explanation describing the errors/fixes, inspired
by how a human tutor would give feedback. While models
like Codex, trained on both text and code, are naturally
suitable for this, the critical challenge is to ensure high pre-
cision in the generated feedback. High precision is imper-
ative in building educators’ trust before deploying such an
AI-driven technology in classrooms. A recent work inves-
tigated enhancing the default programming-error-messages
using Codex [6]; one of the takeaways, quoted from their pa-
per, is “The key implications of this work are that program-

T. Phung, J. Cambronero, S. Gulwani, T. Kohn, R. Majumdar,
A. Singla, and G. Soares. Generating high-precision feedback for pro-
gramming syntax errors using large language models. In M. Feng,
T. Käser, and P. Talukdar, editors, Proceedings of the 16th Inter-
national Conference on Educational Data Mining, pages 370–377,
Bengaluru, India, July 2023. International Educational Data Mining
Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115653

https://doi.org/10.5281/zenodo.8115653

1 print "x"
2 a = input("xxx")
3 print "Xx x"a
4 b = input("xxx xxx?")
5 print "xxxxxx" a + b

(a) Student’s buggy program

1 print "x"
2 a = input("xxx")
3 print "Xx x"+a
4 b = input("xxx xxx?")
5 print "xxxxxx" +a + b

(b) Generated fixed program

The student forgets to concate-
nate the string literal with the
variable. We can fix the error by
adding a plus sign between the
string literal and the variable.

(c) Generated explanation (d) Validation

Figure 1: Illustrative example showcasing PyFiXV on a buggy Python 2 program from TigerJython [9]. (a) Buggy program
(with string literals anonymized as sequences of ‘x’ in our dataset). (b, c) Fixed program and explanation generated by
PyFiXV. (d) PyFiXV’s validation mechanism successfully accepted the generated feedback as suitable for sharing.

1 for i in range(int(input()):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.appned(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

(a) Student’s buggy program

1 for i in range(int(input())):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.append(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

(b) Generated fixed program

In line 1, a closing parenthesis
is missing when calling function
‘range’. We should add a closing
parenthesis at the end of line 1,
before the colon, to fix this er-
ror. In line 6, the function ‘ap-
pend’ is misspelled. We should
replace ‘appned’ with ‘append’
to fix this error.

(c) Generated explanation (d) Validation

Figure 2: Similar to Figure 1, this example showcases PyFiXV on a buggy Python 3 program from Codeforces [13]. While
the misspelling of ‘append’ as ‘appned’ is not a syntax error (raising an AttributeError at runtime instead), PyFiXV typically
fixes such mistakes as well, showing the generalization value in LLMs-powered technique.

1 import math
2

3 def binary(num):
4 x=int(math.log2(num))+1
5 for i in range(x):
6 num=(num ^^(1<<i))
7 print(num)
8 for i in range(int ,input()):
9 n=int(input())

10 binary(n)

(a) Student’s buggy program

1 import math
2

3 def binary(num):
4 x=int(math.log2(num))+1
5 for i in range(x):
6 num=(num ^ (1<<i))
7 print(num)
8 for i in range(int(input())):
9 n=int(input())

10 binary(n)

(b) Generated fixed program

In line 6, the operator ‘ˆˆ’ is
not a valid operator in Python 3.
We should replace it with ‘ˆ’ to
fix this error. In line 8, a closing
parenthesis is missing when call-
ing function ‘range’. We should
add a closing parenthesis at the
end of line 8, before the colon,
to fix this error.

(c) Generated explanation (d) Validation

Figure 3: Similar to Figure 2, this example showcases PyFiXV on a buggy Python 3 program from Codeforces [13]. PyFiXV’s
validation mechanism successfully rejected the generated feedback (we marked text in (c) to highlight issues with explanation).

ming error message explanations and suggested fixes gener-
ated by LLMs are not yet ready for production use in in-
troductory programming classes...”. Our initial experiments
(Section 4) also highlight issues in generating high-precision
feedback. To this end, the main research question is:

Can we develop LLMs-based feedback generation techniques
with a tunable precision parameter, giving educators quality
control over the feedback that students receive?

1.1 Our Approach and Contributions
In this paper, we develop PyFiXV, our technique to gen-
erate high-precision feedback powered by Codex. Given a
student’s buggy program as input, PyFiXV decomposes the
overall process into (i) feedback generation (i.e., a fixed pro-
gram and a natural language explanation for errors/fixes);
and (ii) feedback validation (i.e., deciding whether the gen-
erated feedback is suitable for sharing with the student).
One of the key ideas in PyFiXV is to use a run-time feed-
back validation mechanism that decides whether the gener-
ated feedback is of good quality. This validation mechanism
uses Codex as a simulated student model – the intuition is
that a good quality explanation, when provided as Codex’s

prompt instruction, should increase Codex’s success in con-
verting the buggy program to the fixed program. Notably,
this validation also provides a tuneable precision knob to
educators to control the precision and coverage trade-off.
The illustrative examples in Figures 1, 2, and 3 showcase
PyFiXV on three different student’s buggy programs. Our
main contributions are:

(I) We formalize the problem of generating high-precision
feedback for programming syntax errors using LLMs,
where feedback comprises a fixed program and a nat-
ural language explanation. (Section 2)

(II) We develop a novel technique, PyFiXV, that gener-
ates feedback using Codex and has a run-time feedback
validation mechanism to decide whether the generated
feedback is suitable for sharing. (Section 3)

(III) We perform extensive evaluations using two real-world
datasets of Python programs with syntax errors and
showcase the efficacy of PyFiXV. We publicly release
the implementation of PyFiXV. (Section 4)1

1Github: https://github.com/machine-teaching-group/
edm2023_PyFiXV

https://github.com/machine-teaching-group/edm2023_PyFiXV
https://github.com/machine-teaching-group/edm2023_PyFiXV

1.2 Related Work
Feedback generation for programming errors. There has been
extensive work on feedback generation for syntactic/seman-
tic programming errors [14–18]; however, these works have
focused on fixing/repairing buggy programs without pro-
viding explanations. The work in [11] proposed a tech-
nique to generate explanations; however, it requires pre-
specified rules that map errors to explanations. Another line
of work, complementary to ours, has explored crowdsourcing
approaches to obtain explanations provided by other stu-
dents/tutors [19, 20]. There has also been extensive work
on improving the programming-error-messages by designing
customized environments [9, 10]. As discussed earlier, a re-
cent study used Codex to enhance these error messages [6];
however, our work is different as we focus on generating
high-precision feedback with a tuneable precision knob.

Validation of generated content. In recent work, [21] devel-
oped a technique to validate LLMs’ output in the context
of program synthesis. While similar in spirit, their valida-
tion mechanism is different and operates by asking LLMs
to generate predicates for testing the synthesized programs.
Another possible approach is to use back-translation mod-
els to validate the generated content [22, 23]; however, such
a back-translation model (that generates buggy programs
from explanations) is not readily available for our setting.
Another approach, complementary to ours, is to use human-
in-the-loop for validating low confidence outputs [24].

2. PROBLEM SETUP
Next, we introduce definitions and formalize our objective.

2.1 Preliminaries
Student’s buggy program. Consider a student working on
a programming assignment who has written a buggy pro-
gram with syntax errors, such as shown in Figures 1a, 2a,
and 3a. Formally, these syntax errors are defined by the
underlying parser of the programming language [14]; we will
use the Python programming language in our evaluation.
Henceforth, we denote such a buggy program as Pb, which
is provided as an input to feedback generation techniques.

Feedback style. Given Pb, we seek to generate feedback com-
prising a fixed program along with a natural language expla-
nation describing the errors and fixes. This feedback style is
inspired by how a human tutor would give feedback to novice
students in introductory programming education [5, 9]. We
denote a generated fixed program as Pf, a generated expla-
nation as X , and generated feedback as a tuple (Pf,X).

Feedback quality. We assess the quality of generated feed-
back (Pf,X) w.r.t. Pb along the following binary attributes:
(i) Pf is syntactically correct and is obtained by making a
small number of edits to fix Pb; (ii) X is complete, i.e., con-
tains information about all errors and required fixes; (iii)
X is correct, i.e., the provided information correctly ex-
plains errors and required fixes; (iv) X is comprehensible,
i.e., easy to understand, presented in a readable format, and
doesn’t contain redundant information. These attributes are
inspired by evaluation rubrics used in literature [6, 25–27].
In our evaluation, feedback quality is evaluated via ratings
by experts along these four attributes. We measure feedback
quality as binary by assigning the value of 1 (good quality)

Generating
fixed program

Generating
explanation

Validating
feedback𝒫" 𝒫# (𝒫#, 𝒳)

		𝔻*+,-

(𝒫#, 𝒳)

CompleteEdit Edit

Figure 4: Illustration of three different compoments/stages
in PyFiXV’s feedback generation process; see Section 3.

if it satisfies all the four quality attributes and otherwise 0
(bad quality).2

2.2 Performance Metrics and Objective
Performance metrics. Next, we describe the overall perfor-
mance metrics used to evaluate a feedback generation tech-
nique. For a buggy program Pb as input, we seek to design
techniques that generate feedback (Pf,X) and also decide
whether the generated feedback is suitable for sharing with
the student. We measure the performance of a technique
using two metrics: (i) Coverage measuring the percentage
number of times the feedback is generated and provided to
the student ; (ii) Precision measuring the percentage num-
ber of times the provided feedback is of good quality w.r.t.
the binary feedback quality criterion introduced above. In
our experiments, we will compute these metrics on a dataset
Dtest = {Pb} comprising a set of students’ buggy programs.3

Objective. Our goal is to design feedback generation tech-
niques with high precision, which is imperative before de-
ploying such techniques in classrooms. In particular, we
want to develop techniques with a tuneable precision pa-
rameter that could provide a knob to educators to control
the precision and coverage trade-off.

3. OUR TECHNIQUE PYFIXV
In this section, we present PyFiXV, our technique to gen-
erate high-precision feedback using LLMs. PyFiXV uses
OpenAPI’s Codex as LLMs [1] – Codex has shown com-
petitive performance on a variety of programming bench-
marks [1, 3, 17, 18], and is particularly suitable for PyFiXV
as we seek to generate both fixed programs and natural lan-
guage explanations. More specifically, PyFiXV uses two
access points of Codex provided by OpenAI through public
APIs: Codex-Edit [28] and Codex-Complete [29]. As illus-
trated in Figure 4, PyFiXV has the following three com-
ponents/stages: (1) generating a fixed program Pf by edit-
ing Pb using Codex-Edit; (2) generating natural language
explanation X using Codex-Complete; (3) validating feed-
back (Pf,X) using Codex-Edit to decide whether the gen-
erated feedback is suitable for sharing. The overall pipeline
of PyFiXV is modular and we will evaluate the utility of
different components in Section 4. Next, we provide details
for each of these stages.

2We note that the four attributes are independent. In partic-
ular, the attribute“complete”captures whether the explana-
tion contains information about all errors/fixes (even though
the information could be wrong), and the attribute “correct”
captures the correctness of the provided information.
3When a technique cannot generate feedback for an input
program Pb (e.g., the technique is unable to find a fixed pro-
gram), then we use a natural convention that no feedback is
provided to the student—this convention lowers the cover-
age metric but doesn’t directly affect the precision metric.

Input Program for Codex-Edit
1 for i in range(int(input()):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.appned(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

Instructions for Codex-Edit
Fix the syntax errors in this Python 3
code

(a) Stage-1 prompt for generating Pf

Prompt for Codex-Complete
1 # Python 3
2 # Give feedback for the syntax

error fixes below:
3
4 <few -shot example 1 >......
5 <few -shot example 2 >......
6 <few -shot example 3 >......
7

8 # [BUGGY PYTHON 3]
9 for i in range(int(input()):

10 l1=[]
11 for i in range(int(input())):
12 if i==0:
13 if i==0:
14 l1.appned(n)
15 elif(i==(n-1)):
16 l1.append (1)
17 else:
18 l1.append(i)
19 print(l1)
20
21

22 # [FIX]
23 1c1
24 < for i in range(int(input()):
25 ---
26 > for i in range(int(input())):
27 6c6
28 < l1.appned(n)
29 ---
30 > l1.append(n)
31
32

33 # [FEEDBACK] The syntax error in
this Python 3 code is:

(b) Stage-2 prompt for generating X

Input Program for Codex-Edit
1 for i in range(int(input()):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.appned(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

Instructions for Codex-Edit
The syntax error in this Python 3
code is: In line 1, a closing paren-
thesis is missing when calling func-
tion ‘range’. We should add a clos-
ing parenthesis at the end of line 1,
before the colon, to fix this error. In
line 6, the function ‘append’ is mis-
spelled. We should replace ‘appned’
with ‘append’ to fix this error.

(c) Stage-3 prompt for validating (Pf,X)

Figure 5: Illustration of prompts used by different stages of PyFiXV for buggy Python 3 program in Figure 2. In particular,
the “Instructions for Codex-Edit” in (c) is obtained by concatenating line33 of (b) and the generated X shown in Figure 2c.

3.1 Stage-1: Generating Fixed Program
Given a student’s buggy program Pb as input, PyFiXV’s
Stage-1 generates a fixed program Pf. We use Codex-Edit
for fixing/repairing the buggy program in this stage since it
has shown to be competitive in program repair benchmarks
in recent works [30]. Figure 5a shows a sample prompt used
by PyFiXV to query Codex-Edit for the buggy Python 3
program in Figure 2a. The process of generating Pf is de-
termined by two hyperparameters: (i) t1 ∈ [0.0, 1.0] is the
temperature value specified when querying Codex-Edit and
controls stochasticity/diversity in generated programs; (ii)
n1 controls the number of queries made to Codex-Edit.

More concretely, PyFiXV begins by making n1 queries to
Codex-Edit with temperature t1. Then, out of n1 gener-
ated programs, PyFiXV selects Pf as the program that is
syntactically correct and has the smallest edit-distance to
Pb. Here, edit-distance between two programs is measured
by first tokenizing programs using Pygments library [31]
and then computing Levenshtein edit-distance over token
strings.4 If Stage-1 is unable to generate a fixed program,
the process stops without generating any feedback; see Foot-
note 3. In our experiments, we set (t1 = 0.5, n1 = 10) and
obtained a high success rate of generating a fixed program
Pf with a small number of edits w.r.t. Pb.

3.2 Stage-2: Generating Explanation
Given Pb and Pf as inputs, PyFiXV’s Stage-2 generates a
natural language explanation X describing errors/fixes. We
use Codex-Complete in this stage as it is naturally suited
to generate text by completing a prompt [1, 5, 6]. A cru-

4Note that buggy programs are not parseable to Abstract
Syntax Tree (AST) representations and string-based dis-
tance is commonly used in such settings (e.g., see [17]).

cial ingredient of Stage-2 is the annotated dataset Dshot used
to select few-shot examples when querying Codex-Complete
(see Figure 4). Figure 5b shows a sample prompt used by
PyFiXV to query Codex-Complete for the scenario in Fig-
ure 2. In Figure 5b, line4–line6 indicate three few-shot ex-
amples (not shown for conciseness), line9–line19 provides
Pb, line23–line30 provides Pf in the form of line-diff w.r.t.
Pb, and line33 is the instruction to be completed by Codex-
Complete. Given a prompt, the process of generating X
is determined by two hyperparameters: (i) a temperature
value t2 (= 0) and (ii) the number of queries n2 (= 1). Next,
we discuss the role of Dshot in selecting few-shots examples.

When querying Codex-Complete, we use three few-shot ex-
amples selected from Dshot, an annotated dataset of exam-
ples comprising buggy programs and desired feedback ob-
tained by expert annotations (see Section 4.2). These anno-
tated examples essentially provide a context to LLMs and
have shown to play an important role in optimizing the gen-
erated output (e.g., see [1, 2, 17, 18, 32]). In our case, Dshot

provides contextualized training data, capturing the format
of how experts/tutors give explanations. Given Pb and Pf,
we use two main criteria to select few-shot examples. The
primary criterion is to pick examples where the error type
of buggy program in the example is same as that of Pb—
the underlying parser/compiler provides error types (e.g.,
‘InvalidSyntax’, ‘UnexpectedIndent’). The secondary crite-
rion (used to break ties in the selection process) is based on
the edit-distance between the diff of buggy/fixed program
in the example and diff of Pb/Pf. In Section 4, we conduct
ablations to showcase the importance of selecting few-shots.

3.3 Stage-3: Validating Feedback
Given Pb and (Pf,X) as inputs, PyFiXV’s Stage-3 vali-
dates the feedback quality and makes a binary decision of

Technique TigerJython Codeforces
Precision Coverage Precision Coverage

PyFi-PEM 05.0 (1.0) 92.5 (1.6) 35.0 (2.4) 98.8 (0.8)

PyFiXshot:None 00.9 (0.5) 92.5 (1.6) 03.0 (0.4) 98.8 (0.8)
PyFiXshot:Rand 21.6 (1.7) 92.5 (1.6) 48.5 (2.6) 98.8 (0.8)
PyFiXshot:Sel 38.9 (3.5) 92.5 (1.6) 55.2 (3.9) 98.8 (0.8)

PyFi||Xshot:Sel 15.8 (1.8) 92.5 (1.6) 15.6 (2.8) 98.8 (0.8)

PyFiX-RuleP≥70 48.6 (4.4) 30.8 (12.5) 61.6 (9.0) 38.3 (10.5)
PyFiXVP≥70 76.0 (4.0) 31.2 (4.0) 72.4 (6.2) 64.2 (6.3)
PyFiX-OptP≈VP≥70

76.1 (0.4) 47.1 (3.4) 72.8 (0.1) 75.0 (5.7)

(a) Results for different techniques, reported as mean (stderr)

0.4 0.6 0.8 1.0
Precision

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

TigerJython: PYFIX-OPT

TigerJython: PYFIXV
TigerJython: PYFIX-RULE

(b) TigerJython trade-off curve

0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

Codeforces: PYFIX-OPT

Codeforces: PYFIXV
Codeforces: PYFIX-RULE

(c) Codeforces trade-off curve

Figure 6: Experimental results on two real-world datasets of Python programs, namely TigerJython [9] and Codeforces [13].

“accept” (feedback is suitable for sharing) or “reject” (feed-
back is discarded). PyFiXV uses a novel run-time feedback
validation mechanism using Codex-Edit to decide whether
the feedback (Pf,X) w.r.t. Pb is of good quality. Here,
Codex-Edit is used in the flipped role of a simulated student
model – the intuition is that a good quality explanation X ,
when provided in Codex-Edit’s prompt instruction, should
increase Codex-Edit’s success in converting Pb to Pf. Fig-
ure 5c shows a sample prompt used by PyFiXV to query
Codex-Edit for the scenario in Figure 2—see the caption on
how“Instructions for Codex-Edit” in Figure 5c is obtained.5

The validation mechanism has three hyperparameters: (i)
t3 ∈ [0.0, 1.0] is the temperature value specified when query-
ing Codex-Edit; (ii) n3 controls the number of queries made
to Codex-Edit; (iii) h3 ∈ [1, n3] is the threshold used for
acceptance decision. More concretely, PyFiXV begins by
making n3 queries to Codex-Edit with temperature t3. Then,
out of n3 generated programs, PyFiXV counts the num-
ber of programs that don’t have syntax errors and have an
exact-match with Pf. Here, exact-match is checked by con-
verting programs to their Abstract Syntax Tree (AST)-based
normalized representations.6 Finally, the validation mecha-
nism accepts the feedback if the number of exact matches
is at least h3. These hyperparameters (t3, n3, h3) also pro-
vide a precision knob and are selected to obtain the desired
precision level, as discussed next.

3.4 Precision and Coverage Trade-Off
PyFiXV’s validation mechanism provides a precision knob
to control the precision and coverage trade-off (see perfor-
mance metrics in Section 2.2). Let P be the desired precision
level we want to achieve for PyFiXV. The idea is to choose
Stage-3 hyperparameters (t3, n3, h3) that achieve P precision
level. For this purpose, we use a calibration dataset Dcal for

5In our initial experiments, we tried using alternative signals
for validation, such as (a) Codex-Complete’s probabilities
associated with generated X ; (b) automatic scoring of X
w.r.t. explanations in few-shots using BLEU score [33]; (c)
filtering based on X ’s length. Section 4 reports results for (c)
as it had the highest performance among these alternatives.
6We check for AST-based exact match instead of checking
for Levenshtein edit-distance over token strings being 0 (see
Section 3.1). AST-based exact match is more relaxed than
edit-distance being 0 – AST-based representation ignores
certain differences between codes, e.g., based on extra spaces
and comments. We used the AST-based exact match in the
validation mechanism as it is more robust to such differences.

picking the hyperparameters. More concretely, in our ex-
periments, PyFiXV first computes performance metrics on
Dcal for the following range of values: (i) t3 ∈ {0.3, 0.5, 0.8};
(ii) n3 ∈ {10}; (iii) h3 ∈ {1, 2, . . . , 10}. Then, it chooses
(t3, n3, h3) that has at least P precision level and maximizes
coverage; when achieving the desired P is not possible, then
the next lower possible precision is considered. The cho-
sen values of hyperparameters are then used in PyFiXV’s
Stage-3 validation mechanism. We refer to PyFiXVP≥x as
the version of PyFiXV calibrated with P ≥ x.

4. EXPERIMENTAL EVALUATION
We perform evaluations using two real-world Python pro-
gramming datasets, namely TigerJython [9] and Codeforces
[13]. We picked Python because of its growing popularity as
an introductory programming language; notably, PyFiXV
can be used with other languages by appropriately changing
the prompts and tokenizers used. We use OpenAI’s public
APIs for Codex-Edit [28] (model=code-davinci-edit-001) and
Codex-Complete [29] (model=code-davinci-002). We begin
by describing different techniques used in the evaluation.

4.1 Baselines and Variants of PYFIXV
Default programming-error-messages without validation. As
our first baseline, PyFi-PEM uses PyFiXV’s Stage-1 to
generate Pf and uses programming-error-messages provided
by the programming environment as X . PyFi-PEM uses er-
ror messages provided by Python 2.7 environment for Tiger-
Jython and Python 3.12 environment for Codeforces. This
baseline is without validation (i.e., the generated feedback
is always accepted).

Variants of PyFiXV without validation. PyFiXshot:Sel is a
variant of PyFiXV without the validation mechanism (i.e.,
only uses Stage-1 and Stage-2). PyFiXshot:Rand is a vari-
ant of PyFiXshot:Sel where few-shot examples in Stage-2 are
picked randomly from Dshot. PyFiXshot:None is a variant of
PyFiXshot:Sel that doesn’t use few-shot examples in Stage-2.
PyFi||Xshot:Sel is a variant of PyFiXshot:Sel that runs Stage-
1 and Stage-2 in parallel; hence, Stage-2’s prompt doesn’t
make use of Pf. All these variants are without validation
(i.e., the generated feedback is always accepted).

Techniques with alternative validation mechanisms. We con-
sider two variants of PyFiXV, namely PyFiX-Rule and
PyFiX-Opt, that use different validation mechanisms (i.e.,
replace PyFiXV’s Stage-3 with an alternative validation).

1 import time
2
3 def cd(seconds):
4 while seconds > 0:
5 rem_m = seconds // 60
6 rem_s = seconds % 60
7 remaining_time = str(rem_m) + "

minutes " + str(rem_s) + " seconds"
8 print(remaining_time , end=’\r’)
9 seconds = seconds - 1

10 time.sleep (1)
11
12 print("Xxxxx xxxxX")
13

14 cd(60)

(a) Student’s buggy program Pb

1 from __future__ import print_function
2 import time
3
4 def cd(seconds):
5 while seconds > 0:
6 rem_m = seconds // 60
7 rem_s = seconds % 60
8 remaining_time = str(rem_m) + "

minutes " + str(rem_s) + " seconds"
9 print(remaining_time , end=’\r’)

10 seconds = seconds - 1
11 time.sleep (1)
12
13 print("Xxxxx xxxxX")
14
15 cd(60)

(b) Generated Pf

The student
wants to use the
print function
from Python 3.
To do so, the
correct way is to
add the line ‘from
future import

print function’ at
the beginning of
the code.

(c) Generated X (d) Validation

Figure 7: Similar to Figure 1, this illustrative example showcases PyFiXV on a buggy Python 2 program from TigerJython [9].

1 name = input("Xxx xx?")

2 num = input("Xxx xx xxxxxxx?")

3 print ("Xxxx " + name + "Xxx ")*,num

(a) Student’s buggy program Pb

1 name = input("Xxx xx?")

2 num = input("Xxx xx xxxxxxx?")

3 print ("Xxxx " + name + "Xxx ")*num

(b) Generated Pf

The student forgets to enclose
a string literal with quotes.
We can fix the error by enclos-
ing the string literal in line 3
with a pair of double quotes.

(c) Generated X (d) Validation

Figure 8: Similar to Figure 3, this example showcases PyFiXV on a buggy Python 2 program from TigerJython [9]. PyFiXV’s
validation mechanism successfully rejected the generated feedback (we marked text in (c) to highlight issues with explanation).

PyFiX-Rule validates (Pf,X) based on X ’s length, as noted
in Footnote 5. Given a hyperparameter hr, (Pf,X) is ac-
cepted if the number of tokens in X is at most hr, where to-
kenization is done by splitting on whitespaces/punctuations.
PyFiX-Rule’s hr is picked from the set {30, 40, 50, . . . , 200}
based on the desired precision level P, by following the cal-
ibration process in Section 3.4. PyFiX-Opt uses an oracle
validation that has access to expert’s ratings for the gener-
ated feedback (Pf,X). Then, for a desired P, PyFiX-Opt
performs optimal validation and highlights the maximum
coverage achievable on Dtest for the generated feedback.

4.2 Datasets and Evaluation Procedure
Datasets and annotations for few-shot examples. As our first
dataset, namely TigerJython, we have 240 distinct Python 2
programs written by students in TigerJython’s educational
programming environment [9]. We obtained a private and
anonymized version of the dataset used in [34], with string
literals in programs replaced with sequences of ‘x’ (e.g., see
Figure 1). As our second dataset, namely Codeforces, we
curated 240 distinct Python 3 programs from the Code-
forces website using their public APIs [13], inspired by simi-
lar works that curate Codeforces dataset [35, 36]. Programs
in both datasets have syntax errors and have token length
at most 500 (see Section 3.1 about program tokenization).
For the Codeforces dataset, we only include programs sub-
mitted to contests held from July 2021 onwards (after the
cut-off date for Codex’s training data [1]). Since a part of
these datasets will be used for few-shot examples (as Dshot in
PyFiXV’s Stage-2), we asked experts to annotate these 480
programs with feedback (i.e., a fixed program along with an
explanation). Three experts, with extensive experience in
Python programming and tutoring, provided annotations.

Evaluation procedure and feedback ratings. Given a dataset
D with 240 buggy programs, we can evaluate a technique by
splitting D as follows: (a) Dtest (25%) for reporting preci-
sion and coverage performance metrics; (b) Dshot (50%) for
few-shot examples; (c) Dcal (25%) for calibrating validation

mechanism. To report overall performance for techniques,
we perform a cross-validation procedure with four evalua-
tion rounds while ensuring that Dtest across four rounds are
non-overlapping. We then report aggregated results across
these rounds as average mean (stderr). As discussed in Sec-
tions 2.1 and 2.2, evaluating these performance metrics re-
quires feedback ratings by experts to assess the quality of the
feedback generated by each technique.7 For example, evalu-
ating metrics on TigerJython dataset for PyFiXV requires
480 feedback ratings (4×60 for Dtest and 4×60 for Dcal). To
begin, we did a smaller scale investigation to establish the
rating criteria, where two experts rated 100 generated feed-
back instances; we obtained Cohen’s kappa reliability value
0.72 indicating substantial agreement between experts [37].
Afterward, one expert (with experience in tutoring Python
programming classes) did these feedback ratings for the eval-
uation results.8

4.3 Results
Comparison of different techniques. Figure 6a provides a
comparison of different techniques on two datasets. All tech-
niques here use PyFiXV’s Stage-1 to obtain Pf. The cov-
erage numbers of 92.5 and 98.8 reported in Figure 6a corre-
spond to the success rate of obtaining Pf on these datasets
(the average edit-distance between Pb and Pf is about 10.4
and 7.5 tokens on these datasets, respectively). For our
baseline PyFi-PEM, we see a big jump in precision from 5.0
for TigerJython (Python 2) to 35.0 for Codeforces (Python

7We note that precision and coverage performance metrics
for different techniques are reported for the end-to-end pro-
cess associated with each technique, and not just for the
validation mechanism. Also, even if a technique doesn’t use
any validation mechanism, the coverage could be less than
100.0 as discussed in Footnote 3.
8We note that the experts were blinded to the condition
(technique) associated with each feedback instance when
providing ratings. Moreover, these generated feedback in-
stances were given to experts in randomized order across
conditions instead of grouping them per condition.

3), owing to enhanced error messages in recent Python ver-
sions [38–40]. Results for PyFiXVP≥70 in comparison with
results for PyFiXshot:Sel, PyFiXshot:Rand, PyFiXshot:None,
and PyFi||Xshot:Sel showcase the utility of different compo-
nents used in PyFiXV’s pipeline. Comparing PyFiXVP≥70

with PyFiX-RuleP≥70 shows that PyFiXV’s validation sub-
stantially outperforms PyFiX-Rule’s validation.9 Lastly,
results for PyFiX-OptP≈VP≥70

are obtained by setting the
desired precision level for PyFiX-Opt to match that of
PyFiXVP≥70 on Dtest – the coverage numbers (47.1 for
TigerJython and 75.0 for Codeforces) indicate the maxi-
mum possible achievable coverage. Notably, PyFiXVP≥70

achieves a competitive coverage of 64.2 on Codeforces.10

Precision and coverage trade-off curves. The curves in Fig-
ures 6b and 6c are obtained by picking different desired pre-
cision levels P and then computing precision/coverage val-
ues on Dtest w.r.t. P. The curves for PyFiX-Opt show the
maximum possible coverage achievable on Dtest for different
precision levels P using our generated feedback. To obtain
these curves for PyFiXV and PyFiX-Rule, we did calibra-
tion directly on Dtest instead of Dcal (i.e., doing ideal calibra-
tion for their validation mechanisms when comparing with
PyFiX-Opt’s curves). These curves highlight the precision
and coverage trade-off offered by PyFiXV in comparison to
a simple rule-based validation and the oracle validation.

Qualitative analysis. We have provided several illustrative
examples to demonstrate our technique PyFiXV. Figures 1,
2, and 7 show examples where PyFiXV’s Stage-1 and Stage-
2 generate good quality feedback and Stage-3 successfully
accepts the feedback. Figures 3 and 8 show examples where
PyFiXV’s Stage-1 and Stage-2 generate bad quality feed-
back and Stage-3 successfully rejects the feedback. Figure 7
highlights that PyFiXV can make non-trivial fixes in the
buggy program and correctly explain them in a comprehen-
sible way. Figure 3 shows an example where the overall feed-
back is bad quality and successfully rejected, though parts of
the generated explanation are correct; this could potentially
be useful for tutors in a human-in-the-loop approach.

5. CONCLUDING DISCUSSIONS
We investigated using LLMs to generate feedback for fixing
programming syntax errors. In particular, we considered
feedback in the form of a fixed program along with a nat-
ural language explanation. We focussed on the challenge
of generating high-precision feedback, which is crucial be-
fore deploying such technology in classrooms. Our proposed
technique, PyFiXV, ensures high precision through a novel
run-time validation mechanism and also provides a precision
knob to educators. We performed an extensive evaluation to

9When comparing PyFiXVP≥70 with these techniques in
Figure 6a, the results are significantly different w.r.t. χ2

tests [41] (p ≤ 0.0001); here, we use contingency tables with
two rows (techniques) and four columns (240 data points
mapped to four possible precision/coverage outcomes).

10Techniques PyFiXshot:Sel, PyFiX-Rule, PyFiXVP≥70,
and PyFiX-OptP≈VP≥70

differ only in terms of validation
mechanisms. We can compare the validation mechanisms
used in these techniques based on F1-score. The F1-scores
of these four techniques are as follows: 0.56, 0.39, 0.70, and
0.86 for TigerJython, respectively; 0.71, 0.47, 0.77, and 0.84
for Codeforces, respectively.

showcase the efficacy of PyFiXV on two real-world Python
programming datasets. There are several interesting direc-
tions for future work, including (a) improving PyFiXV’s
components to obtain better precision/coverage trade-off,
e.g., by adapting our technique to use recent LLMs such
as ChatGPT [42] and GPT-4 [43] instead of Codex; (b)
extending PyFiXV beyond syntax errors to provide feed-
back for programs with semantic errors or partial programs;
(c) incorporating additional signals in PyFiXV’s validation
mechanism; (d) conducting real-world studies in classrooms.

6. ACKNOWLEDGMENTS
Funded/Co-funded by the European Union (ERC, TOPS,
101039090). Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council.
Neither the European Union nor the granting authority can
be held responsible for them.

References
[1] Mark Chen and et al. Evaluating Large Language Mod-

els Trained on Code. CoRR, abs/2107.03374, 2021.

[2] Tom B. Brown and et al. Language Models are Few-
Shot Learners. In NeurIPS, 2020.

[3] James Finnie-Ansley, Paul Denny, Brett A. Becker, An-
drew Luxton-Reilly, and James Prather. The Robots
Are Coming: Exploring the Implications of OpenAI
Codex on Introductory Programming. In ACE, 2022.

[4] Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. Automatic Generation of Programming Ex-
ercises and Code Explanations Using Large Language
Models. In ICER, 2022.

[5] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne
Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and
Juho Leinonen. Experiences from Using Code Explana-
tions Generated by Large Language Models in a Web
Software Development E-Book. In SIGCSE, 2023.

[6] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent N.
Reeves, Paul Denny, James Prather, and Brett A.
Becker. Using Large Language Models to Enhance Pro-
gramming Error Messages. In SIGCSE, 2023.

[7] James Prather, Raymond Pettit, Kayla Holcomb Mc-
Murry, Alani L. Peters, John Homer, Nevan Simone,
and Maxine S. Cohen. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach.
In ICER, 2017.

[8] Brett A. Becker. An Effective Approach to Enhancing
Compiler Error Messages. In SIGCSE, 2016.

[9] Tobias Kohn and Bill Z. Manaris. Tell Me What’s
Wrong: A Python IDE with Error Messages. In
SIGCSE, 2020.

[10] Brett A. Becker. What Does Saying That ‘Program-
ming is Hard’ Really Say, and About Whom? Commu-
nications of ACM, 64(8):27–29, 2021.

[11] Rishabh Singh, Sumit Gulwani, and Armando Solar-
Lezama. Automated Feedback Generation for Intro-
ductory Programming Assignments. In PLDI, 2013.

[12] Samim Mirhosseini, Austin Z. Henley, and Chris
Parnin. What is Your Biggest Pain Point? An In-
vestigation of CS Instructor Obstacles, Workarounds,
and Desires. In SIGCSE, 2023.

[13] Mikhail Mirzayanov. Codeforces. https://

codeforces.com/.

[14] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. Au-
tomated Clustering and Program Repair for Introduc-
tory Programming Assignments. In PLDI, 2018.

[15] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh.
Neuro-Symbolic Program Corrector for Introductory
Programming Assignments. In ICSE, 2018.

[16] Rahul Gupta, Aditya Kanade, and Shirish K. Shevade.
Deep Reinforcement Learning for Syntactic Error Re-
pair in Student Programs. In AAAI, 2019.

[17] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le,
Ruzica Piskac, Gustavo Soares, and Gust Verbruggen.
Repairing Bugs in Python Assignments Using Large
Language Models. CoRR, abs/2209.14876, 2022.

[18] Harshit Joshi, José Pablo Cambronero Sánchez, Sumit
Gulwani, Vu Le, Ivan Radicek, and Gust Verbruggen.
Repair is Nearly Generation: Multilingual Program Re-
pair with LLMs. In AAAI, 2023.

[19] Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. What Would Other Programmers
Do: Suggesting Solutions to Error Messages. In CHI,
2010.

[20] Andrew Head, Elena L. Glassman, Gustavo Soares, Ryo
Suzuki, Lucas Figueredo, Loris D’Antoni, and Björn
Hartmann. Writing Reusable Code Feedback at Scale
with Mixed-Initiative Program Synthesis. In Learning
@ Scale, 2017.

[21] Darren Key, Wen-Ding Li, and Kevin Ellis. I Speak,
You Verify: Toward Trustworthy Neural Program Syn-
thesis. CoRR, abs/2210.00848, 2022.

[22] Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. Understanding Back-Translation at Scale. In
EMNLP, 2018.

[23] Yewen Pu, Kevin Ellis, Marta Kryven, Josh Tenen-
baum, and Armando Solar-Lezama. Program Synthesis
with Pragmatic Communication. In NeurIPS, 2020.

[24] Hiroaki Funayama, Tasuku Sato, Yuichiroh Matsub-
ayashi, Tomoya Mizumoto, Jun Suzuki, and Kentaro
Inui. Balancing Cost and Quality: An Exploration of
Human-in-the-Loop Frameworks for Automated Short
Answer Scoring. In AIED, 2022.

[25] Rui Zhi, Samiha Marwan, Yihuan Dong, Nicholas Ly-
tle, Thomas W. Price, and Tiffany Barnes. Toward
Data-Driven Example Feedback for Novice Program-
ming. In EDM, 2019.

[26] Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin,
and Adish Singla. Adaptive Scaffolding in Block-
Based Programming via Synthesizing New Tasks as
Pop Quizzes. In AIED, 2022.

[27] Anäıs Tack and Chris Piech. The AI Teacher Test:
Measuring the Pedagogical Ability of Blender and
GPT-3 in Educational Dialogues. In EDM, 2023.

[28] OpenAI. Codex-Edit. https://beta.

openai.com/playground?mode=edit&model=

code-davinci-edit-001, .

[29] OpenAI. Codex-Ccomplete. https://beta.

openai.com/playground?mode=complete&model=

code-davinci-002, .

[30] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury, and
Shin Hwei Tan. Automated Repair of Programs from
Large Language Models. In ICSE, 2022.

[31] Georg Brandl, Matthäus Chajdas, and Jean Abou-
Samra. Pygments. https://pygments.org/.

[32] Rohan Bavishi, Harshit Joshi, José Cambronero, Anna
Fariha, Sumit Gulwani, Vu Le, Ivan Radicek, and
Ashish Tiwari. Neurosymbolic Repair for Low-Code
Formula Languages. Proceedings ACM Programming
Languages, 6(OOPSLA2), 2022.

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. BLEU: A Method for Automatic Evaluation
of Machine Translation. In ACL, 2002.

[34] Tobias Kohn. The Error Behind The Message: Finding
the Cause of Error Messages in Python. In SIGCSE,
2019.

[35] Ethan Caballero and Ilya Sutskever. Description2Code
Dataset. https://github.com/ethancaballero/

description2code, 2016.

[36] Yujia Li and et al. Competition-Level Code Generation
with AlphaCode. 2022.

[37] Matthijs J Warrens. Five Ways to Look at Cohen’s
Kappa. Journal of Psychology & Psychotherapy, 5(4):
1, 2015.

[38] The Python Software Foundation. What’s New In
Python 3.10. https://docs.python.org/3/whatsnew/
3.10.html, .

[39] The Python Software Foundation. What’s New In
Python 3.11. https://docs.python.org/3/whatsnew/
3.11.html, .

[40] The Python Software Foundation. What’s New
In Python 3.12. https://docs.python.org/3.12/

whatsnew/3.12.html, .

[41] William G Cochran. The χ2 Test of Goodness of Fit.
The Annals of Mathematical Statistics, 1952.

[42] OpenAI. ChatGPT. https://openai.com/blog/

chatgpt, 2023.

[43] OpenAI. GPT-4 Technical Report. CoRR,
abs/2303.08774, 2023.

https://codeforces.com/
https://codeforces.com/
https://beta.openai.com/playground?mode=edit&model=code-davinci-edit-001
https://beta.openai.com/playground?mode=edit&model=code-davinci-edit-001
https://beta.openai.com/playground?mode=edit&model=code-davinci-edit-001
https://beta.openai.com/playground?mode=complete&model=code-davinci-002
https://beta.openai.com/playground?mode=complete&model=code-davinci-002
https://beta.openai.com/playground?mode=complete&model=code-davinci-002
https://pygments.org/
https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://docs.python.org/3/whatsnew/3.10.html
https://docs.python.org/3/whatsnew/3.10.html
https://docs.python.org/3/whatsnew/3.11.html
https://docs.python.org/3/whatsnew/3.11.html
https://docs.python.org/3.12/whatsnew/3.12.html
https://docs.python.org/3.12/whatsnew/3.12.html
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

