
Towards Scalable Adaptive Learning with Graph Neural
Networks and Reinforcement Learning

Jean Vassoyan
Université Paris-Saclay,

CNRS, ENS Paris-Saclay,
Centre Borelli

Gif-sur-Yvette, France
onepoint

Paris, France
jean.vassoyan@ens-

paris-saclay.fr

Jill-Jênn Vie
Inria Saclay – SODA

Palaiseau, France
jill-jenn.vie@inria.fr

Pirmin Lemberger
onepoint

Paris, France
p.lemberger@groupeonepoint.com

ABSTRACT
Adaptive learning is an area of educational technology that
consists in delivering personalized learning experiences to
address the unique needs of each learner. An important sub-
field of adaptive learning is learning path personalization:
it aims at designing systems that recommend sequences of
educational activities to maximize students’ learning out-
comes. Many machine learning approaches have already
demonstrated significant results in a variety of contexts re-
lated to learning path personalization. However, most of
them were designed for very specific settings and are not
very reusable. This is accentuated by the fact that they
often rely on non-scalable models, which are unable to in-
tegrate new elements after being trained on a specific set of
educational resources. In this paper, we introduce a flexi-
ble and scalable approach towards the problem of learning
path personalization, which we formalize as a reinforcement
learning problem. Our model is a sequential recommender
system based on a graph neural network, which we evaluate
on a population of simulated learners. Our results demon-
strate that it can learn to make good recommendations in
the small-data regime.

Keywords
adaptive learning, learning path personalization, graph neu-
ral networks, reinforcement learning, recommender system

1. INTRODUCTION
Adaptive learning is an area of educational technology that
focuses on addressing the unique needs, abilities, and inte-
rests of each individual student. This field emerged in the
1980s with the introduction of the first Intelligent Tutor-
ing Systems (ITS) and experienced major expansion in the
1990s. As described by T. Murray in [20], an ITS usually

consists of four components: a domain model, a student
model, an instructional model and a user interface model.
As we address the problem from an algorithmic point of
view, we only focus on the first three models. The domain
model is a representation of the knowledge to be taught; it
often serves as a basis for the student model. The student
model provides a characterization of each learner that allows
to assess their knowledge and skills and anticipate their be-
havior. The instructional model takes the domain and stu-
dent models as input to select strategies that will help each
user achieve their learning objectives. This general structure
allows ITSs to achieve many purposes (recommending ex-
ercises, providing feedback, facilitating memorization, etc.)
while optimizing a variety of metrics (learning gains, engage-
ment, speed of learning, etc.).

In this paper, we address the problem of learning path per-
sonalization with optimization of learning gains. This means
that we look for a sequential recommender system that can
provide each student with the right content at the right time
(according to their past activity), in order to maximize their
overall learning gains.

Towards this goal, “standard” approaches often require sig-
nificant structuring of the domain model. This step is usu-
ally assisted by experts: they may be mobilized to tag ed-
ucational resources, set up prerequisite relationships, draw
up skill tables, etc. One example of such structuring is the
Q-matrix [2] which maps knowledge components (KC) to ex-
ercises. These expert-based approaches present some serious
practical limitations. First, they make it quite cumbersome
to create resource sets, since each resource has to be properly
tagged (sometimes with an extensive set of metadata). They
also lead to poorly reusable recommender systems, since pre-
requisite relationships and skills maps are usually tailored to
specific resource sets. This low reusability problem is often
exacerbated by the modeling of resources/skills/KC as one-
hot encodings [3, 21] which tie the model to a maximum
number of resources/skills/KC it can handle. As a result,
these approaches produce models that are not suitable for
transfer learning. Our approach, on the other hand, is based
on a graph neural network, which structure makes it possible
to process data in a much more flexible way.

J. Vassoyan, J.-J. Vie, and P. Lemberger. Towards scalable adaptive
learning with graph neural networks and reinforcement learning. In
M. Feng, T. Käser, and P. Talukdar, editors, Proceedings of the 16th
International Conference on Educational Data Mining, pages 351–
361, Bengaluru, India, July 2023. International Educational Data
Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115663

https://doi.org/10.5281/zenodo.8115663


Our contributions in this paper are threefold. First, we
introduce a new setting for learning path personalization
and formalize it as a model-free reinforcement learning (RL)
problem. Second, we present a novel RL policy that can
leverage educational resource content and users’ feedback to
make recommendations that improve learning gains. The
proposed model has the advantage of being inherently scal-
able, reusable, and independent of any expert tagging. Third
we evaluate our model on 6 semi-synthetic environments
composed of real-world educational resources and simulated
learners. The results demonstrate that it can learn to make
good recommendations from few interactions with learners,
thereby significantly outperforming the uniform random pol-
icy.

The rest of the paper is organized as follows. In Section 2,
we relate our paper to prior research. In Section 3, we de-
scribe our setting, the assumptions we make and the problem
we attempt to solve, which we formalize as a reinforcement
learning problem. In Section 4, we present our novel RL
policy. In Section 5, we describe our experimental setting
and discuss our results. In Section 6 we address some limi-
tations of our model and propose a few directions for future
work. We finally conclude in Section 7.

2. RELATED WORK
In recent years, several works have used reinforcement learn-
ing to address the problem of learning path personalization.
Most of these RL approaches are model-based, as they rely
on a predefined student model to simulate student trajecto-
ries. However, no student model is completely accurate, and
the learned instructional policies may overfit to the student
model. Doroudi et al. [7] have attempted to learn policies
that provide a better reward no matter the student model
chosen (i.e. robust policies). Azhar et al. [1] proposed
a method to gradually refine the student model by adding
features that maximize the reward.

Reward functions usually involve learning gains. Subrama-
nian and Mostow [29] defined learning gains as average dif-
ference between posterior and prior latent knowledge. Lan
and Baraniuk [15] proposed to learn a policy for selecting
learning actions so that the grade on the next exam is maxi-
mized. Clement et al. [5] attempted to optimize an increase
in success rate in recent time steps, they used an ε-greedy
approach. Doroudi et al. [8] conducted a thorough review of
the different reward functions used in instructional policies.

The closest to our setting is probably the approach proposed
by Bassen et al. [3] which, like ours, does not rely on ex-
pert pre-labeling of educational resources. However, in the
absence of compensation for this lack of information, their
reinforcement learning algorithm requires a substantial num-
ber of learners to converge to an effective policy: about 1000
learners for a corpus of 12 educational resources. Moreover,
in their framework, educational activities were represented
as one-hot encodings and passed to the policy via a fixed-size
vector. Therefore, this approach does not allow to work with
an evolving corpus of educational resources (which is the
case for most e-learning platforms) nor to reuse the model
on another set, unless it is completely re-trained.

In contrast, our approach leverages information from re-

source keywords which allows to achieve convergence in a
relatively small number of episodes, while maintaining a
high level of flexibility. This keyword-based approach was
inspired by the work of Gasparetti et al. [12, 11]. Although
the authors did not directly address the problem of learn-
ing path personalization, they outlined a method of feature
extraction from textual resources that proved to be very
successful in predicting prerequisite relationships.

3. PROBLEM FORMULATION
3.1 Description of the setting
Consider an e-learning platform with a collection of educa-
tional resources which have been designed to cover a spe-
cific topic, for example “an introduction to machine learn-
ing”. Consider a population P of learners to be trained on
this topic. The goal of learning path personalization is to
be able to recommend a sequence of educational resources
to each learner so as to maximize his overall learning gains.
Therefore the resulting machine learning problem can be ex-
pressed in the following terms: given a large enough sample
U of users from P, how can we train a machine learning
model to make recommendations to users from U so as to
generalize to the whole population?

In this paper, we work at the scale of short learning paths
(∼ 1 hour), which means that each learning session only
consists of a few interactions between the learner and the
ITS. One advantage of this setting is that it reduces the
effects of memory loss: we assume that when a learner visits
a new resource, what he learned from the previous ones is
still in his working memory.

We first make a few assumptions about the learning sessions:

(a1) Each learner follows one learning path of equal length
(i.e. same number of resources). The purpose of this
assumption is primarily to simplify the notations as it
can be easily relaxed without making major modifica-
tions to the model.

(a2) There is no interaction between the learner and the
external world (no communication, no access to ex-
ternal resources). This makes it possible to work in
the closed system {learner + ITS}. While incorrect in
most cases, this assumption may be more reasonable
in our setting than in a multi-day learning context.

(a3) We assume the existence of a feedback signal that pro-
vides information about user understanding of each
resource. This signal can take three values:

– (f<): the user did not understand the resource

– (f>): the user understood, but found it too easy

– (f◦): the resource was at the right level.

In practice, such feedback can be obtained from self-
assessment or more sophisticated test, and should be
associated with an error margin to account for its im-
precision. Nevertheless, in this study, we assume that
each feedback is perfectly accurate.

A view of such a learning session is provided in Figure 1.



Figure 1: A view of a learning session. In this example, the
session length is T = 4. Actions a1,a2,a3,a4 are the recom-
mendations of the ITS. f1, f2, f3, f4 are the feedback signals
returned by the user.

To further simplify the problem, we also adopt a few simpli-
fying assumptions about the educational resources:

(a4) They are purely textual resources, written in natural
language. We indeed consider that most educational
formats can be easily transcribed into text (transcript
of a video, legend of a diagram, caption of an image
etc.).

(a5) They are self-contained, which means that they can
be considered independently. This implies for example
that they do not explicitly refer to each other. Al-
though quite strong, this assumption is essential to
prevent mandatory dependencies and foster diversity
of learning paths.

(a6) Each resource explains one or few concepts and has
equivalent“educational value”. This involves that each
resource carries the same “amount” of knowledge.

Some examples of educational resources that satisfy these
requirements are provided in Figure 4 of the Appendix.

Our goal with this work is to design a machine learning algo-
rithm that can leverage learners’ feedback to text-based edu-
cational resources to model their understanding of each con-
cept, anticipate their reactions, and recommend resources
that maximize their overall learning gains.

Since most e-learning platforms are in constant evolution,
our goal is not only to solve this problem but to do it in a
flexible and scalable way. This means that the model should
not require full retraining when new resources are added to
(or removed from) the platform. Actually, it should be able
to extrapolate to new resources what it learned from pre-
vious interactions. This suggests that the number of pa-
rameters of our model should not depend on the size of the
corpus.

3.2 Formalization
In this section, we formalize the problem described above as
a reinforcement learning problem. We use the terms “user”
and“learner” interchangeably to refer to any individual from
the sample U . Similarly, we refer to an educational resource
with the terms “document” or “resource”.

In the following, we denote: T the length of each learning
session (identical for each user), D the corpus of documents,

d a document from D, u a user (or learner) from the sample
U , fd the feedback given by a learner on document d.

The sequential recommendation problem defined above can
be easily expressed as a reinforcement learning problem
where: the agent is the recommender system, the environ-
ment is the population P of students and each episode is a
learning path. This problem can be formulated as a partial-
ly observable Markov decision process (S, A, O, T , R, Z)
where S is the state space, A is the action space, O is the
observation space, T : S ×A× S → [0, 1] defines the condi-
tional transition probabilities, R : S ×A → R is the reward
function and Z : S × A × O → [0, 1] is the observation
function. More precisely, in our setting:

• st ∈ S is the (unknown) knowledge state of the learner
at step t;

• at ∈ A is the document selected by the recommender
system at step t; we can write at = dt;

• ot ∈ O is the observation made at step t, which is a
tuple of the selected document and the returned feed-
back: ot = (dt, ft);

• T (s,a, s′) = P(st+1 = s′ | st = s,at = a) is unknown,
as it represents the impact of selecting document a on
learner’s state st;

• Z(s,a,o) = P(ot+1 = o | st+1 = s,at = a) is also
unknown and represents the probability of observing
o in state s after choosing document a;

• R(st,at) is the learning gain of the user at step t, which
we define as follows:

R(st,at) = 1{ft=f◦}. (1)

We indeed consider that only feedback f◦ corresponds
to an effective learning gain. We denote R(st,at) = rt
in the following.

To solve this problem, we need to find a policy π : O → A
that maximizes the expected return over each episode η:

π∗ = argmax
π

Eη∼π

[
T∑

t=1

rt

]
. (2)

4. OUR RL MODEL
A common approach to solve partially observable Markov
decision processes (POMDP) is to leverage information from
past observations o1, . . . ,ot to build an estimation of st
which is then used to select the next action (illustrated in
Figure 2). This boils down to encoding these observations
into a latent space S. In our setting, this latent space con-
tains all possible knowledge states for the learner, which is
why we call it knowledge space in the following.

4.1 Knowledge space
While more compact than the observation space, the knowl-
edge space should be informative enough to convey a rele-
vant approximation of learner’s knowledge.

We decided to structure this representation with the key-
words of the corpus, denoted (w1, . . . , wM ). We define a



Figure 2: Up, a view of common policy architecture to solve
POMDP. Down, this architecture applied to our setting.

keyword as a word or group of words that refers to a techni-
cal concept closely related to the subject of the corpus. Some
examples of keywords extracted from educational resources
are provided in the Appendix. The keywords carry informa-
tion about the concepts addressed by the documents and are
therefore a good approximation of their pedagogical content.
That is why we modeled the knowledge state of each learner
as a collection of vectors (w1, . . . ,wM ) which represents his
“understanding” of each keyword. We indeed consider that
a keyword can be understood in multiple ways depending
on the context in which it occurs, and a multidimensional
vector can be a convenient way to capture this plurality.
This is illustrated in Figure 2. From this perspective, the
knowledge space S can be defined as S := RK × · · · × RK︸ ︷︷ ︸

M

.

Note that we do not consider keyword extraction as a task
requiring expert knowledge since it can be done by any cre-
ator of educational content and involves fewer skills than
defining the knowledge components of a course. Moreover,
it is mainly a pattern-matching task that can be automated
through a keyword extraction algorithm [9, 22, 4].

4.2 Policy
Following the previous considerations, the policy πθ should
take a collection of observations o1, . . . ,ot as input, encode
it into the latent space S and return a recommendation for
the next document dt. We emphasize that this function
should also meet the aforementioned flexibility and scalabil-
ity requirements.

A natural way to model the relationship between documents
and keywords is to build a bipartite graph G = (VD,VW , E),
where VD is the set of document nodes, VW is the set of
keyword nodes and E is the set of edges, with (vd, vw) ∈ E if
the document d contains the word w.

We chose to use a graph neural network (GNN) as a policy.
GNNs are quite convenient for this task as they allow to
enrich node features with information about their extensive
neighborhood, through message-passing. Therefore, docu-
ments (respectively keywords) that share a large number
of keywords (respectively documents) will also have similar
embeddings. This allows to build keyword embeddings that
contain information about feedback from neighboring docu-

ments (o1, . . . ,ot → ŝt). Message-passing can also be used
the other way around, from keywords to documents, to build
embeddings that inform about the relevance of each docu-
ment according to the estimated knowledge state (ŝt → at).
Another significant advantage of GNNs is that their number
of parameters does not depend on the size and structure of
the graph, which makes them highly flexible and scalable.

Multiple options are possible for the initial node features.
For keyword nodes, pre-trained word embeddings are a nat-
ural choice. As for the document nodes, a simple null vector
is sufficient. However one may choose to include extra infor-
mation about the documents if it is available (type of doc-
ument, format, length etc.). We denote as (xw)w∈VW

and

(xd)d∈VD the initial feature vectors of keyword and docu-
ment nodes.

In our model, we adapted a version of GAT (graph attention
networks) [32] to the heterogeneity of our bipartite graph:

∀d ∈ VD, h
(ℓ+1)
d = σ

 ∑
w∈N (d)

α
(ℓ)
dwW

(ℓ)
D h(ℓ)

w +B
(ℓ)
D

 (3)

∀w ∈ VW ,h(ℓ+1)
w = σ

 ∑
d∈N (w)

α
(ℓ)
wdW

(ℓ)
W h

(ℓ+1)
d +B

(ℓ)
W

 (4)

h
(ℓ)
d ∈ RK is the embedding of node d at ℓth layer, with

h
(0)
d = xd. N (d) is the set of neighbors of node d in the

graph. α
(ℓ)
dw is a self-attention coefficient, detailed in the

Appendix. σ(·) is the ReLU activation function (rectified

linear unit). W
(ℓ)
W , W

(ℓ)
D , B

(ℓ)
W and B

(ℓ)
D are trainable pa-

rameters. This back-and-forth mechanism between docu-
ments and keywords allows to learn distinct filters for each
node type (document or keyword), effectively addressing the
graph’s heterogeneity. In the following, we refer to equa-
tions (3) and (4) as bipartite GAT layers and denote them

(KW
(3)−→ DOC) and (DOC

(4)−→ KW). Note that they can
be chained one after the other.

We define our first block of bipartite GAT layers as follows:

BLOCK1 = KW
(3)−→ DOC

(4)−→ KW
(3)−→ DOC. (5)

After this block, document embeddings (h
(2)
d )d∈VD contain

information about keywords from their extended neighbor-
hood. Using a Hadamard product, we enrich these embed-
dings with user feedback:

h
(φ)
d = h

(2)
d ⊙MLPKd→K(fd) (6)

h
(2)
d and h

(φ)
d are the embeddings of document d before and

after adding the feedback. fd is an encoding of user’s feed-
back on document d, which is passed through a multilayer
perceptron (MLP). We use a “not visited” feedback for the
documents that the learner has not yet visited.

After doing this operation on each document node, we apply
another block of bipartite GAT layers:

BLOCK2 = DOC
(4)−→ KW

(3)−→ DOC. (7)

Operation (4) allows to enrich keyword embeddings with
feedback from neighboring documents, which carry informa-



Figure 3: The architecture of our policy network on a 3-document corpus

tion about user’s understanding. We consider these embed-
dings as a good approximation of learner’s knowledge state,

which is why we define ŝt := (h
(2)
w )w∈VW . The final GAT

layer (3) maps ŝt to documents for the next recommenda-
tion.

Before assigning probabilities to each document in the final
step, we enrich document embeddings by incorporating in-
formation about the remaining time in the session, which,
as we observed, slightly improved the performance of the
model:

h
(τ)
d = h

(3)
d ⊙MLPKτ→K(∆t) (8)

h
(3)
d and h

(τ)
d are the embeddings of document d before and

after adding the remaining time. ∆t = T − t is an encoding
of the remaining time (or remaining steps) at step t.

Eventually, the embeddings h
(τ)
d are passed through an MLP

to assign a score to each document. These scores are con-
verted into probabilities via a softmax over all document
nodes (further details in the Appendix):

πθ (d | o1, . . . ,ot) = softmax
VD

(
MLPK→1(h

(τ)
d )

)
. (9)

The full architecture of the policy is illustrated in Figure 3.

4.3 RL Algorithm
As our policy selects the next action directly from observa-
tions, it belongs to the policy-based reinforcement learning
paradigm, especially the policy gradient methods. The lat-
ter make it possible to maximize the expected return by
optimizing directly the parameters of πθ through gradient
descent. We chose the REINFORCE algorithm [31] for its sim-
plicity. At the end of each episode, πθ is updated as follows:

∀t ∈ [1, T ], θ ← θ + λ∇θ log πθ (st, at) vt (10)

with λ the learning rate and vt =
∑T

t′=t γ
t′−trt′ the return

of the episode from step t.

Note that we could learn our policy using more sophisticated
RL algorithms like actor-critic, which usually has lower vari-
ance. However, it is likely that the current architecture
would provide a poor state value function as it only op-
erates at the scale of node neighborhoods and does not have
a “global” view of the graph. Some changes in this architec-
ture might nevertheless be done to process information at a
larger scale, as discussed in Section 6.

Table 1: Key statistics of each corpus

corpus # doc # kw # edges diameter

Corpus 1 33 68 154 10
Corpus 2 11 31 62 6
Corpus 3 19 39 83 8
Corpus 4 28 55 113 8
Corpus 5 18 41 66 ∞
Corpus 6 20 45 143 6

5. EXPERIMENTS
Given the complexity of conducting mass experiments on
real learners, we chose to evaluate our model in an environ-
ment made up of semi-synthetic data. Our implementation
is written in Python and is available on GitHub1. We also
provided the hyperparameters of our model in Table 4 of the
Appendix.

5.1 Experimental setting
Linear corpus
We introduce what we call a “linear” corpus. Starting from
a regular course divided into sections and subsections, we
treat each subsection as one document. The corpus resulting
from this decomposition is “linear”, in the sense that it was
designed to be followed in a single, pre-defined order, which
is identical for each learner. Therefore, it leaves practically
no room for personalization. Six corpora were constructed
this way: three about data science (1-3) and three about
programming (4-6). They were all built from courses taken
from a popular e-learning platform.

For the purpose of our experiments, we have chosen to tag
keywords “by hand” to avoid introducing any noise in the
results. Our methodology was quite simple: for each docu-
ment, we collected keywords referring to technical concepts
related to the topic of the course. Table 1 presents some key
statistics about each corpus and their associated bipartite
graphs. Note that the graph of corpus 5 is disconnected:
indeed, one of its documents only contains keywords that
do not appear in any other document. Despite significantly
complicating the task for a diffusion model like ours, we have
chosen to keep this corpus for our experiments.

1https://github.com/jvasso/graph-rl4adaptive-learning

https://github.com/jvasso/graph-rl4adaptive-learning


Simulated learners
Since each corpus has been designed to be explored in a
single pre-defined order, we assume that the only way to
understand it is to follow this order scrupulously. There-
fore we have decided to simulate the behavior of learners
in this very simple way: as long as the policy recommends
documents in the right order, the learner returns the feed-
back (f◦). Conversely, each time the algorithm recommends
a document too early or too late, the learner returns the
feedback (f<) or (f>). A detailed example is given in the
Appendix.

Since our simulated learners have a straightforward behav-
ior, the purpose of this experiment is not to evaluate the
personalization or generalization capabilities of our model,
but to assess its ability to grasp the structure of a corpus, by
finding its original order in a reasonable number of episodes
(i.e. a few learners). While trivial at first glance, this task
can be quite difficult for an RL agent in the small-data
regime. Besides, each corpus contains some parts that are
independent of each other which suggests that in practice,
multiple learning trajectories might be understandable to
real learners. From this perspective, the “strict” feedback of
our simulated learners can distort the real nature of the rela-
tionships between resources and make the task more difficult
for our recommender system.

Policy
In our experiments, we compared 3 different policies. The
first one is the uniform random policy. The second one is
our policy with one-hot-encodings as keyword features. The
third one is our policy with Wikipedia2Vec embeddings [34]
as keyword features. Wikipedia2Vec embeddings are quite
suitable for our task as they contain encyclopedic infor-
mation about the relationship between words and entities.
They were derived from a skip-gram model trained on a
triple objective, which is detailed in the Appendix. We used
null vectors as document features for each policy.

Training
In each experiment, the maximum achievable return is equal
to the size of the corpus. We set the horizon T to the size
of the corpus to make sure that only an optimal policy (i.e.
one that makes no “mistake”) can reach this return. In this
setting, the return of the random policy follows a binomial
distribution with parameters (T , 1

T
). Therefore its expected

return is 1 for each episode. We also set the discount factor
γ = 0 during training because in this very specific setting,
the best action at each step t can be learned from immediate
reward. We trained our model from scratch over 50 episodes
(∼ 50 students) for each corpus, with a constant learning
rate.

5.2 Results
Since the REINFORCE algorithm has quite a high variance,
we averaged each episodic return over 25 random seeds.
The resulting learning curves are shown in Figure 6 of the
Appendix and the last episodic returns (measured at 50th

episode) are reported in Table 2.

From these curves, one can notice that despite the small-
data regime and the choice of a sub-optimal RL algorithm

(the REINFORCE algorithm is known to be quite unstable and
sample-inefficient), our agent succeeded in recovering a sig-
nificant part of the original order of each corpus. Most of the
time, it achieved average return over 10 whereas the random
policy was stuck in an expected return of 1.

Best performance was achieved on Corpus 2. Indeed, it is
the only one for which our model managed to reach the
maximum achievable return most of the time. This may be
partly due to the small number of documents in this corpus.
However, we stress that the number of documents alone is
not a sufficient feature to account for the variability of the
results. For instance, corpora 3 and 6 have a nearly similar
number of documents, but our model performed very dif-
ferently on these two corpora. Moreover, in the case of the
Wikipedia2Vec approach, it is not guaranteed that a large
corpus should be more difficult than a small one, since the
episodes are shorter for small corpora and therefore the al-
gorithm has fewer steps to grasp the geometrical structures
in the distribution of Wikipedia2Vec embeddings.

The diameter of the graph may also impact the performance
of the model. Indeed, Corpus 2 is again the one with the
smallest diameter, which may have helped the model to de-
termine the relationships between documents and keywords
more quickly. However, this must be balanced with the re-
sults on Corpus 6, on which our model performed far worse
(in terms of normalized return) despite equal diameter.

Another noticeable result is the one of Corpus 5. We re-
mind that this corpus was the only one to be disconnected.
Actually, it was disconnected at the 11th document, which
is consistent with the performance of the model: indeed,
episodic return lower than 10 indicates that it failed to make
recommendations beyond the 10th document. This can be
explained quite simply: since this document is disconnected
from the rest of the graph, it does not benefit from message-
passing and therefore receives no information about other
documents feedback.

Eventually, one cannot ignore the extremely high variance
of the episodic return for almost all corpora (except for Cor-
pus 2). This is partly due to the choice of the REINFORCE

algorithm, which is known for its high instability.

Ablation study
We conducted an ablation study to analyse the contribu-
tion of Wikipedia2Vec embeddings compared to simple one-
hot encodings. Even though the approach with embeddings

Table 2: Comparison between episodic returns when using
Wikipedia2Vec and one-hot encodings as keyword features

Corpus Wikipedia2Vec One-hot encodings

Corpus 1 16.48± 2.66 13.36± 1.74
Corpus 2 10.84± 0.14 10.28± 0.37
Corpus 3 14.40± 1.31 11.68± 1.13
Corpus 4 15.16± 0.90 12.52± 0.98
Corpus 5 9.80± 2.13 7.56± 1.83
Corpus 6 11.24± 1.52 8.24± 0.84



performed significantly better on each corpus, the high error
margins and the similarity between trends suggest that our
model was not truly able to leverage high level information
about the relationships between Wikipedia entities. Instead,
it is more likely that it simply “overfit” to each corpus. This
lack of generalization is not a problem in the setting of our
experiment but can be a serious issue in transfer learning
scenarios and therefore needs to be addressed.

6. LIMITATIONS AND FUTURE WORK
6.1 Size and structure of the graph
All of our experiments have been conducted on small graphs
(less than ∼ 100 nodes). However, it is likely that our model
would struggle a little more on larger graphs as the recep-
tive field of each node accounts for a smaller fraction of the
graph in such case. Besides, it is not possible to increase the
depth of a GNN indefinitely because of the over-smoothing
problem [14, 33, 16]. Therefore, it is likely that these em-
beddings alone would not be sufficiently informative to allow
for long-term planning. This limitation can be addressed
with down- and upsampling methods such as pooling and
unpooling operations on graphs, which make it possible to
process information at multiple scales [6, 28, 35]. It can also
be addressed with planning techniques such as Monte Carlo
Tree Search, which has demonstrated great performance in
combination with deep RL techniques [23, 26, 27].

As we saw in subsection 5.2, there is also an issue with dis-
connected graphs since our model failed to make predictions
beyond the disconnected document node in Corpus 5. One
possible solution could be to slightly modify the structure
of the graph, for example through link prediction based on
keyword embeddings.

Eventually, it is important to note that we tested our ap-
proach on corpora related to engineering topics — machine
learning and programming — which keyword distributions
might be quite similar (cf. Figure 5 in the Appendix). Yet,
corpora related to different topics may have completely dif-
ferent keyword distributions. Therefore, it would be worth
comparing the performance of the model on a wider range
of subjects in the future.

6.2 Variance and sample efficiency
As stated in Section 5, our approach suffers from high vari-
ance, partly due to the choice of the REINFORCE algorithm.
Some other on-policy methods have demonstrated great suc-
cess in reducing variance [24, 25, 18]. Nevertheless, these
approaches remain generally not very sample-efficient. To
improve sample-efficiency, it is quite common to use off-
policy algorithms as they allow to reuse past experience [19,
17, 13]. However, as stated in Section 4, the implementa-
tion of an approximate Q-value function with a GNN is not
trivial as it requires to leverage information at the scale of
the entire graph, which involves modifications in the model.
Another alternative is to use a model-based reinforcement
learning algorithm (MBRL) [30, 23]. As they allow to learn
a model of the environment (i.e. a model that predicts the
next observations and rewards), MBRL techniques enable
to reuse past experience and learn from a richer signal than
the reward signal alone. Therefore, they are usually much
more sample-efficient than model-free RL techniques. These

approaches might be more appropriate in our case, as a lo-
cal model like a GNN may more easily predict immediate
feedback than the (long-term) value of a state-action pair.

6.3 Interpretability
One of the main limitations of our approach is its lack of
interpretability. Ideally, an ITS would not only provide a
personalized learning experience but also inform the learner
about their progress and level of understanding, in order to
encourage self-awareness and self-regulation. This is usually
done with an open learner model. However, like most deep
learning approaches, our recommender system is a black-box
model and does not allow for easy interpretation. Yet, we
hypothesize that the estimated knowledge state ŝt does not
only contain semantic information about keywords but also
about the way they were understood by the learner. There-
fore, future work may consist in projecting these keyword
embeddings into lower dimensional space to visualize their
evolution throughout learning sessions.

6.4 Reusability
We designed a model that is flexible enough to be theoreti-
cally capable of transferring its knowledge from one corpus
to another. However, this is only possible if the model has
managed to capture high-level information that is common
to all corpora. Unfortunately, our experiments do not allow
to truly evaluate the transfer learning capabilities of our
model. However, since it seems to overfit to the structure of
each corpus, it might not have learned that much about the
high-level relationships in the distribution of Wikipedia2Vec
embeddings. Therefore, transfer learning might not be very
effective in this case. Future directions to reduce overfit-
ting may consist in applying regularization techniques to
GNN (such as node dropout), or using training techniques
that push the model to learn higher-level knowledge, such
as meta-learning for RL [10].

7. CONCLUSION
In this paper, we presented a new model for learning path
personalization, designed to be reusable and independent of
any expert labeling. We demonstrated its ability to learn
to make recommendations in 6 semi-synthetic environments
made-up of real-world educational resources and simulated
learners. Since this model is theoretically capable of trans-
ferring its knowledge from one corpus to another, it is a first
step towards an approach that could considerably reduce
the cold-start problem. Future work will investigate its per-
formance in the context of transfer learning and with real
students.

8. ACKNOWLEDGMENTS
We would like to warmly thank Vincent François-Lavet from
VU Amsterdam who gave us some great advice on the for-
malization of the reinforcement learning problem. We would
also like to thank Nicolas Vayatis, Argyris Kalogeratos (Cen-
tre Borelli), Nathanaël Beau and Antoine Saillenfest (one-
point) for their insightful reviews of the paper.

9. REFERENCES
[1] A. Z. Azhar, A. Segal, and K. Gal. Optimizing

representations and policies for question sequencing
using reinforcement learning. In A. Mitrovic and



N. Bosch, editors, Proceedings of the 15th
International Conference on Educational Data Mining,
pages 39–49, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.

[2] T. Barnes. The q-matrix method: Mining student
response data for knowledge. In American Association
for Artificial Intelligence 2005 Educational Data
Mining Workshop, pages 39–46. AAAI Press,
Pittsburgh, PA, USA, 2005.

[3] J. Bassen, B. Balaji, M. Schaarschmidt, C. Thille,
J. Painter, D. Zimmaro, A. Games, E. Fast, and J. C.
Mitchell. Reinforcement learning for the adaptive
scheduling of educational activities. In R. Bernhaupt,
F. F. Mueller, D. Verweij, J. Andres, J. McGrenere,
A. Cockburn, I. Avellino, A. Goguey, P. Bjøn, S. Zhao,
B. P. Samson, and R. Kocielnik, editors, CHI ’20:
CHI Conference on Human Factors in Computing
Systems, Honolulu, HI, USA, April 25-30, 2020, pages
1–12. ACM, 2020.

[4] R. Campos, V. Mangaravite, A. Pasquali, A. Jorge,
C. Nunes, and A. Jatowt. YAKE! Keyword extraction
from single documents using multiple local features.
Information Sciences, 509:257–289, 2020.

[5] B. Clément, D. Roy, P.-Y. Oudeyer, and M. Lopes.
Multi-armed bandits for intelligent tutoring systems.
Journal of Educational Data Mining, 7(2):20–48, 2015.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst.
Convolutional neural networks on graphs with fast
localized spectral filtering. In D. D. Lee, M. Sugiyama,
U. von Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 3837–3845, 2016.

[7] S. Doroudi, V. Aleven, and E. Brunskill. Robust
evaluation matrix: Towards a more principled offline
exploration of instructional policies. In C. Urrea,
J. Reich, and C. Thille, editors, Proceedings of the
Fourth ACM Conference on Learning @ Scale, L@S
2017, Cambridge, MA, USA, April 20-21, 2017, pages
3–12. ACM, 2017.

[8] S. Doroudi, V. Aleven, and E. Brunskill. Where’s the
reward? A Review of Reinforcement Learning for
Instructional Sequencing. International Journal of
Artificial Intelligence in Education, 29(4):568–620,
2019.

[9] P. Ferragina and U. Scaiella. TAGME: on-the-fly
annotation of short text fragments (by Wikipedia
entities). In J. Huang, N. Koudas, G. J. F. Jones,
X. Wu, K. Collins-Thompson, and A. An, editors,
Proceedings of the 19th ACM Conference on
Information and Knowledge Management, CIKM
2010, Toronto, Ontario, Canada, October 26-30, 2010,
pages 1625–1628. ACM, 2010.

[10] C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In
D. Precup and Y. W. Teh, editors, Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning
Research, pages 1126–1135. PMLR, 2017.

[11] F. Gasparetti, C. De Medio, C. Limongelli,

F. Sciarrone, and M. Temperini. Prerequisites between
learning objects: Automatic extraction based on a
machine learning approach. Telematics and
Informatics, 35(3):595–610, 2018.

[12] F. Gasparetti, C. Limongelli, and F. Sciarrone.
Exploiting Wikipedia for discovering prerequisite
relationships among learning objects. In 2015
International Conference on Information Technology
Based Higher Education and Training, ITHET 2015,
Lisbon, Portugal, June 11-13, 2015, pages 1–6. IEEE,
2015.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft
actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In
J. G. Dy and A. Krause, editors, Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 1856–1865. PMLR, 2018.

[14] T. N. Kipf and M. Welling. Semi-supervised
classification with graph convolutional networks. In
5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[15] A. S. Lan and R. G. Baraniuk. A contextual bandits
framework for personalized learning action selection.
In T. Barnes, M. Chi, and M. Feng, editors,
Proceedings of the 9th International Conference on
Educational Data Mining, EDM 2016, Raleigh, North
Carolina, USA, June 29 - July 2, 2016, pages
424–429. International Educational Data Mining
Society (IEDMS), 2016.

[16] Q. Li, Z. Han, and X. Wu. Deeper insights into graph
convolutional networks for semi-supervised learning.
In S. A. McIlraith and K. Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 3538–3545.
AAAI Press, 2018.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning.
In Y. Bengio and Y. LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P.
Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In M. Balcan and K. Q. Weinberger, editors,
Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages
1928–1937. JMLR.org, 2016.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level



control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[20] T. Murray. Authoring intelligent tutoring systems: An
analysis of the state of the art. International Journal
of Artificial Intelligence in Education (IJAIED),
10:98–129, 1999.

[21] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 505–513, 2015.

[22] S. Rose, D. Engel, N. Cramer, and W. Cowley.
Automatic keyword extraction from individual
documents. In Text mining: applications and theory,
pages 1–20. Wiley Online Library, 2010.

[23] J. Schrittwieser, I. Antonoglou, T. Hubert,
K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et al. Mastering
Atari, Go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

[24] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and
P. Moritz. Trust region policy optimization. In F. R.
Bach and D. M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages
1889–1897. JMLR.org, 2015.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
arXiv, abs/1707.06347, 2017.

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[27] D. Silver and J. Veness. Monte-Carlo Planning in
Large POMDPs. In J. D. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems
23: 24th Annual Conference on Neural Information
Processing Systems 2010. Proceedings of a meeting
held 6-9 December 2010, Vancouver, British Columbia,
Canada, pages 2164–2172. Curran Associates, Inc.,
2010.

[28] M. Simonovsky and N. Komodakis. Dynamic
edge-conditioned filters in convolutional neural
networks on graphs. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
29–38. IEEE Computer Society, 2017.

[29] J. Subramanian and J. Mostow. Deep reinforcement
learning to simulate, train, and evaluate instructional
sequencing policies. Spotlight presentation at
Reinforcement Learning for Education workshop at
Educational Data Mining 2021 conference, 2021.

[30] R. S. Sutton. Integrated architectures for learning,
planning, and reacting based on approximating
dynamic programming. In Machine learning
proceedings 1990, pages 216–224. Elsevier, 1990.

[31] R. S. Sutton, D. A. McAllester, S. Singh, and
Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation.
In S. A. Solla, T. K. Leen, and K. Müller, editors,
Advances in Neural Information Processing Systems
12, NIPS Conference, Denver, Colorado, USA,
November 29 - December 4, 1999, pages 1057–1063.
The MIT Press, 1999.

[32] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio. Graph attention networks. In
6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

[33] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y.
Philip. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[34] I. Yamada, A. Asai, J. Sakuma, H. Shindo, H. Takeda,
Y. Takefuji, and Y. Matsumoto. Wikipedia2Vec: An
efficient toolkit for learning and visualizing the
embeddings of words and entities from Wikipedia. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 23–30, Online, 2020.
Association for Computational Linguistics.

[35] Z. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton,
and J. Leskovec. Hierarchical graph representation
learning with differentiable pooling. In S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 4805–4815, 2018.



APPENDIX

Corpus and keywords. Some examples of educational re-
sources that satisfy the assumptions (a4), (a5) and (a6) de-
scribed in Section 3.1 are provided in Figure 4. In the doc-
ument 1, an appropriate collection of keywords would be:
{supervised learning, classification, regression}.

Figure 4: Three examples of self-contained educational re-
sources taken from a corpus dealing with machine learning
basics

Linear corpus. In our experiments, we used 6 corpora
based on courses taken from a popular e-learning platform.
Figure 5 shows the evolution of the total number of keywords
throughout each course. Note that although they all cover
different topics and were designed by different educators,
they always introduce new keywords in a “linear” way. This
supports the idea that the distribution of keywords can be
a good indicator of pre-requisite relationships between doc-
uments.

Figure 5: Evolution of the total number keywords in each
course

Simulated learners. In the following we present a step by
step example of a learning path followed by a simulated
learner (also detailed in Table 3).

Consider a corpus of three documents {d1, d2, d3}, designed
to be explored in the order of indices: d1 is a prerequisite
for d2 and d2 is a prerequisite for d3. A simulated student
can understand a document only if they have understood its
prerequisites. Throughout the learning path, we maintain

Table 3: Example of a sequence of interactions (learning path)
between a simulated student and our policy

step action at feedback ft reward rt D◦

1 d2 f< 0 {}
2 d1 f◦ 1 {d1}
3 d3 f< 0 {d1}
4 d2 f◦ 1 {d1, d2}
5 d1 f> 0 {d1, d2}
6 d3 f◦ 1 {d1, d2, d3}

a set D◦ of understood documents, initialized as an empty
set: D◦ = {}.

At step 1, the policy recommends document d2 (with pre-
requisite d1). d1 /∈ D◦, therefore the student returns feed-
back (f<). At step 2, the policy recommends document d1.
This document has no prerequisite, therefore the student
returns feedback (f◦) and we add d1 to D◦. At step 3, the
policy recommends document d3. d2 /∈ D◦, therefore the
student returns feedback (f<). At step 4, the policy recom-
mends document d2. d1 ∈ D◦, therefore the student returns
feedback (f◦) and we add d2 to D◦. At step 5, the policy
recommends document d1. d1 ∈ D◦, therefore the student
returns feedback (f>). Finally at step 6, the policy recom-
mends document d3. d2 ∈ D◦, therefore the student returns
feedback (f◦) and we add d3 to D◦.

Note that in this example, we fixed T = 6 to display a
greater number of situations. Conversely, in our experi-
ments, T was always equal to the size of the corpus.

Self-attention. The self-attention coefficient αwd used in
Equations (3) and (4) is defined as follows. For any nodes
w, d:

α
(ℓ)
wd = softmax

N (w)

(
a
(
W (ℓ)h

(ℓ)
d ,W (ℓ)h(ℓ)

w

))
(11)

where W (ℓ) ∈ RK×K refers to the weights of ℓth layer and
a : RK × RK → R is the additive attention mechanism. The
softmax function is taken over all neighbors of node w (fur-
ther details below).

Multilayer perceptron. Each MLPK1→K2(·) operator used
in Section 4 is a multilayer perceptron with one hidden layer.
For any input vector x, this operation boils down to:

x′ = A(2)σ
(
A(1)x+B(1)

)
+B(2) (12)

where σ(·) is the ReLU activation function, A(1) ∈ RK1×K ,

A(2) ∈ RK×K2 , B(1) ∈ RK and B(2) ∈ RK2 are trainable
parameters.

Softmax operator. The softmax operator over a finite col-
lection E of real numbers is defined as follows:

∀x ∈ E, softmax
E

(x) =
expx∑

y∈E exp y
. (13)



Figure 6: Evolution of the episodic return on 50 simulated learners for 6 corpora

Wikipedia2Vec. The pretrainedWikipedia2Vec embeddings
leveraged as keyword features in our experiment were de-
rived from a skip-gram model trained on a triple objec-
tive: (1) predicting neighboring entities in the link graph
of Wikipedia, (2) predicting neighboring words given each
word in a text contained on a Wikipedia page, and (3) pre-
dicting neighboring words given a target entity using anchors
and their context words in Wikipedia [34]. We hypothe-
size that in addition to modeling the semantic information
carried by each keyword, these embeddings allow to cap-
ture prerequisite relationships between concepts, especially
through task (1).

Experimental results. The learning curves of our experi-
ments are reported in Figure 6. For reproducibility, we also
reported the hyperparameters of our model in Table 4.

Table 4: Hyperparameters used in our policy model

Name Value

Learning rate 0.0005
Hidden dimension 32
Activation function ReLU

Attention type additive
Number of attention heads 2

Wikipedia2Vec embedding size 100
Documents encoding vector of zero
Feedback encoding one-hot-encoding

Remaining time encoding counter
Batch size 16

Repeat per collect 15
Episodes per collect 1


