
Using Markov Matrix to Analyze Students’ Strategies for
Solving Parsons Puzzles

Amruth N. Kumar
Ramapo College of New Jersey

amruth@ramapo.edu

ABSTRACT
Is there a pattern in how students solve Parsons puzzles? Is there a
difference between the puzzle-solving strategies of C++ and Java
students? We used Markov transition matrix to answer these ques-
tions. We analyzed the solutions of introductory programming
students solving Parsons puzzles involving if-else statements
and while loops in C++ and Java from fall 2016 to fall 2020. We
present the results of our analysis qualitatively as heat maps and
quantitatively using descriptive statistics.

We found that most students solved the puzzles in the order in
which lines appeared in the correct solution. Counter-intuitively,
we found this pattern even in the solutions of the puzzles involving
nested if-else statements, multiple while loops and nested
while loops. Students who solved the puzzles with the fewest ac-
tions acted upon fewer lines out of order, i.e., not in the order in
which they appear in the final solution. Whenever we found a sta-
tistically significant difference between C++ and Java solutions,
C++ solutions involved fewer out-of-order and redundant actions
than Java solutions. We discuss the implications of these results for
the use of Parsons puzzles as a tool for teaching introductory pro-
gramming.

Keywords
Parsons puzzles, Puzzle-Solving Strategy, C++, Java, Markov ma-
trix.

1. INTRODUCTION
In a Parsons puzzle [21], first proposed as an engaging way to learn
programming, the student is given a program in scrambled order
and asked to reassemble it in its correct order. The puzzle may also
contain distracters, which are incorrect variants of lines in the puz-
zle that are meant to be discarded. Parsons puzzles have gained
popularity - scores on Parsons puzzles were found to correlate with
scores on code-writing exercises [2]. Solving Parsons puzzles was
found to take significantly less time than fixing errors in code or
writing equivalent code, but resulted in the same learning perfor-
mance and retention [6]. In electronic books, students preferred
solving Parsons puzzles to answering multiple choice questions or
writing code [5]. Researchers have placed Parsons puzzles in a hi-
erarchy of programming skills alongside code-tracing [19], and

have proposed using it to scaffold software design process [9]. Soft-
ware to administer Parsons puzzles have been developed for Turbo
Pascal [21], Python (e.g., [1,11,12]) and C++/Java/C# [15].

The focus in Parsons puzzles research lately has been on how stu-
dents solve them and what does/does not help students solve them
better, e.g., the patterns in how students solve the puzzles [10,14];
that subgoal labels help students solve puzzles better [20]; that
adaptive practice of Parsons puzzles is just as effective as writing
code [4, 7]; that students are twice as likely to complete adaptive
puzzles than non-adaptive ones [4]; but, motivational supports [16]
and the use of mnemonic variable names [13] do not help students
solve puzzles more efficiently. Yet, the effectiveness of Parsons
puzzles as a tool for learning programming remains unresolved due
to lack of replicated research [3] or contradictory results that found
no correlation between Parsons puzzles and code-tracing / code-
writing exercises [18].

Another focus of research has been on the strategies used by stu-
dents to solve Parsons puzzles. Each Parsons puzzle typically has
only one correct solution. So, the correct solution, i.e., the final re-
assembled program will be the same for all the students. But, the
order in which students go about assembling the lines of code will
vary among students. This order reflects their puzzle-solving strat-
egy.

One study found that novice students solved puzzles by focusing
on indentation of individual lines or their syntax [8] when lines
were presented with indentation. Another study [10] found that
some students used “linear” order, i.e., the order in which scram-
bled lines were provided. But, the study also observed backtracking
and looping behavior, which were unproductive. Experts were
found to use top-down strategy to solve Parsons puzzles in a study
[11]. Students were found to use statement-level semantics more
than control-flow semantics to solve puzzles in a recent study [22].
Another study reports that students found the final few steps of the
solution to be more challenging [24].

These studies have used various techniques to identify the puzzle-
solving strategy of students: think-aloud protocol [8, 11], a state-
transition diagram of puzzle-solving states and student transitions
[10], edit distance trails and k-means clustering [24] and applica-
tion of BNF grammar rules to student logs [17]. Think-aloud
protocols are gold standard for qualitative research, but they do not
scale with the number of participants. State transition diagrams can
grow intractable in size with combinatorially explosive number of
states in all but very small puzzles, making it hard to find puzzle-
solving patterns with the approach. Edit-distance trails [24] lose
line-specific information in the puzzles and are better suited for re-
vealing the rate at which students make progress towards the final
solution. BNF grammars are suitable for verifying whether a stu-
dent used a specific puzzle-solving strategy, not for finding the
student’s strategy.

Do not delete, move, or resize this block. If the paper is accepted, this block will
need to be filled in with reference information.

A. N. Kumar. Using markov matrix to analyze students’ strategies
for solving parsons puzzles. In M. Feng, T. Käser, and P. Talukdar,
editors, Proceedings of the 16th International Conference on Edu-
cational Data Mining, pages 342–350, Bengaluru, India, July 2023.
International Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115679

https://doi.org/10.5281/zenodo.8115679

In contrast, a first order Markov transition matrix (not to be mis-
taken for Hidden Markov Models) can be used to find patterns in
time-series data. The matrix has dimensions determined by the
number of lines in a puzzle, and not the number of states or stu-
dents. So, it is scalable with the number of students. We used it to
analyze the data collected from the puzzle-solving sessions of stu-
dents to find patterns or strategies. The research questions for our
analysis were:

1. RQ1: Is there a pattern in how students solve the puzzles? An-
swer to this question may help shed light on how to improve
them to promote learning.

2. RQ2: Is there a difference between the puzzle-solving strate-
gies of C++ and Java students? This question is of interest
because of the difference in the programming paradigm typi-
cally used in the two languages: imperative-first in C++ versus
objects-first in Java, even though both the languages support
object-oriented programming.

2. PARSONS PUZZLE INTERFACE
For this study, we used the data collected by epplets (epplets.org)
[15], a suite of tutors on Parsons puzzles. The user interface of the
tutors is shown in Figure 1. The problem statement is displayed in
the instruction panel (I). The code for the problem is presented in
the problem panel (P), both scrambled and unindented. The solu-
tion is assembled in the Solution panel (S). Distracters are deleted
when dragged into the Trash panel (T). Feedback is provided for
incorrect actions in the Feedback panel (F). The student has the fol-
lowing actions available for solving the puzzle:

 Insert: Drag a line of code from the Problem panel (P) or the
Trash panel (T) to the Solution panel (S) and drop it anywhere
in S;

 Delete: Drag a line of code from the Problem panel (P) or the
Solution panel (S) to the Trash panel (T);

 Reorder a line of code in the Solution panel (S) by moving it
up or down by one or more lines;

 Undo: Return a line from either the Solution panel (S) or the
Trash panel (T) back to the Problem panel (P) - the line is
placed back in its original scrambled order in the Problem
panel (P);

Figure 1. User Interface of Epplets [15]

In addition, students could indent/outdent lines of code in the Solu-
tion panel (S) to improve the readability of the program. But, these

actions were not counted in our analysis since indentation does not
affect the semantics of C++ and Java programs.

The tutors do not provide any feedback while the student is solving
the puzzle. If the student attempts to submit an incomplete solution
before moving all the lines out of the panel P, the tutors direct the
student to properly place all the lines before submitting their solu-
tion. Once a complete solution is submitted, the tutors repeatedly
highlight the next line in the solution that is not in its correct loca-
tion. The tutors either suggest how the line should be moved or
point out the line of code that should replace it. The tutors provide
such feedback until the solution is correct. The actions taken by the
student in response to the feedback become part of the student’s
solution sequence.

3. MARKOV TRANSITION MATRIX
The tutors report the order in which students solve a Parsons puzzle
as a sequence of <line, action> pairs, line referring to line
number in the correct solution of the code and action referring
to the action applied to that line of code. We will refer to this se-
quence of pairs as action sequence. From a student’s action
sequence, we can extract the order in which the student acted upon
the lines of the puzzle by considering only the first tuple in each
pair.

For example, consider a four-line Parsons puzzle with no distract-
ers. The four lines are provided scrambled in panel P (Figure 1).
We will refer to these lines by their location in the correct solution,
e.g., line 3 is the line that should appear third in the correct solution,
although it may be in any order in panel P. Suppose a student solves
the puzzle using the following actions:

1. Drags line 3 from panel P to S;
2. Drags line 1 from P to S and drops it after line 3;
3. Moves line 3 after line 1 in S;
4. Drags line 2 from P to S and drops it after line 3;
5. Drags line 4 from P to S and drops it after line 2; and
6. Moves line 2 up so that it appears between lines 1 and 2.

The corresponding action sequence is

1. <3, Insert>
2. <1, Insert>
3. <3, Reorder>
4. <2, Insert>
5. <4, Insert>
6. <2, Reorder>.

From this action sequence, we extract the order in which the student
acted upon the lines of the puzzle as 3-1-3-2-4-2. Finally, we use
this order of lines to build a Markov transition matrix [25].

In a Markov transition matrix, the rows and columns are line num-
bers in the program, followed by distracters in the puzzle. In
addition, the matrix contains a first row for the start state S before
attempting the puzzle and a last column for the end state E after
completely solving the puzzle. So, Markov matrix is an n X n ma-
trix where n = number of lines + number of distracters + 1.

We will use M as the abbreviation for Markov transition matrix and
Mi,j to denote the element of the matrix on row i and column j. Ini-
tially, all the elements Mi,j = 0. If a student applies an action to line
j after applying an action to line i, Mi,j is incremented by 1.

As an illustration, consider a puzzle containing 4 lines of code that
are provided to the student scrambled. The left side of Figure 2
shows the Markov transition matrix of a student who applies ac-
tions to lines in the following order: 4-1-2-1-3-4. Since the first line

acted on by the student is 4, MS,4 = 1. Thereafter, the matrix entries
that are set to 1 are M4,1, M1,2, M2,1, M1,3, M3,4 and finally, M4,E
since 4 is the last line to be acted upon. The right side of the figure
shows the matrix for a student who applies actions to lines in the
following order: 1-3-2-2-3-2-4-1. In particular, note that the student
acts upon line 2 after line 3 twice – hence, M3,2 = 2. The student
applies back-to-back actions to line 2, e.g., inserts line 2 into the
solution, and immediately reorders it in the solution – hence, M2,2
= 1. The last line acted upon is line 1 – hence, M1,E = 1.

For our analysis, we combined the Markov matrices of all the stu-
dent solutions into a single transition matrix, such that:

Mi,j = ∑ ai,j / s

∑ ai,j is the sum of all the actions on line j after line i in all the
student solutions;

s is the number of student solutions, i.e., the number of times stu-
dents solved the puzzle.

 1 2 3 4 E 1 2 3 4 E

S 1 S 1

1 1 1 1 1 1

2 1 2 1 1 1

3 1 3 2

4 1 1 4 1

Figure 2. Markov Transition Matrices for solution sequences 4-
1-2-1-3-4 and 1-3-2-2-3-2-4-1 for a puzzle containing 4 lines of
code

So, Mi,j is the number of actions on line j after line i per student
solution. If all the students applied exactly one action to each line
in each solution, 0 ≤ Mi,j ≤ 1.

Since the puzzles also included two distracters D1 and D2, we
added rows and columns in the matrix for D1 and D2 after those
for all the lines in the puzzle. Mi,D1 refers to students acting on the
first distracter D1 after line i. In the matrix:

 If each student applies exactly one action to each line of code,
the sum of all the entries in a row / column is 1. But, since a
student may apply more than one action to a line of code (e.g.,
insert into the solution, reorder within the solution), the sum
of each row / column is at least 1.

 The larger the value of Mi,j, the larger the number of times
students applied an action to line j after line i.

 A puzzle assembled in the correct order of lines, i.e., line 1 in
the solution is inserted first (MS,1), line 2 in the solution is in-
serted next (M1,2), and so on, will appear as entries in all the
diagonal elements of the matrix from top left to bottom right.

 When the solutions of all the students are combined in a ma-
trix, each widely used puzzle-solving strategy produces a
distinct pattern in the matrix: entries between frame elements
are large in frame-first strategy and most of the elements are
non-zero and small in a random strategy.

4. DATA COLLECTION AND ANALYSIS
For this study, we analyzed the data collected online by two Parsons
puzzle tutors called epplets (epplets.org) [15] on if-else state-
ments and while loops. The tutors were used by introductory
programming students as after-class assignments in high schools,
community colleges and baccalaureate institutions during fall 2016

– fall 2020 as shown in Table 1. Some schools used the tutors for
C++ and others for Java – so, the two sets of users were mutually
exclusive. C++ and Java versions of each puzzle were of exactly
the same size. This made it possible to compare the solutions in the
two languages. Since the tutor users were introductory program-
ming students, they had little prior programming experience. The
demographics of the students using the two tutors are shown in Ta-
ble 2. Not everyone reported their gender/race/major.

The tutors were set up to randomize the variable names and data
types used in the puzzles. They also randomly scrambled code in
the problem panel P. Research shows that novice programming stu-
dents are unduly influenced by the superficial differences resulting
from such randomization [31, 32, 33]. This randomization deterred
plagiarism since no student saw the same puzzle verbatim more
than once and no two students saw the same puzzle verbatim. It also
deterred solution-sharing plagiarism schemes that afflict program-
ming tutors [27].

Table 1. Usage of the tutors in fall 2016 – fall 2020

Fall 2016 – Fall 2020 if-else while loop
Type of Institution C++ Java C++ Java

High Schools 2 11 1 5
Community Colleges 3 1 2 2

Baccalaureate Institutions 4 13 3 11

For our analysis, we considered only those students who solved a
puzzle completely and correctly so that we could find patterns
among those who successfully solved the puzzle. Only students
who consented to their data being used for research purposes were
included in the study. Because of these two factors, the N reported
in Table 2 is not the same as those reported in subsequent tables.
Since the tutors were accessible over the web, students could use
the tutors as often as they pleased. If a student used a tutor more
than once, we picked the session in which the student had solved
the most number of puzzles. In case of a tie between two sessions,
we used the data from only the first session.

Table 2. Demographics of the users of the tutors

Fall 2016 – Fall 2020 if-else while loop
N 431 203

Gender Male 264 102
Female 100 38

Race Caucasian 194 78
Asian 91 33
Other 70 25

Major Computer Science 170 76
Engineering 77 25

Sciences 22 7
We analyzed the data of each puzzle using three-color heat maps
and descriptive statistics. A three-color heat map shows zero values
in red, maximal values (0.2 and up) in shades of green and interme-
diate values (0.1 – 0.2) in yellow. For the calculation of descriptive
statistics, we eliminated the last two rows and the penultimate two
columns in the matrix corresponding to the two distracters – they
were not part of the correct solution. The descriptive statistics in-
cluded:

1. the number of different lines acted upon first (F) by students,
i.e., the number of non-zero cells in the first row of the matrix;

2. the number of different lines acted upon last (L) by students,
i.e., the number of non-zero cells in the last column of the ma-
trix;

3. the percentage of matrix cells (C) that are non-diagonal and
non-zero; and

4. the sum of the values (V) of non-diagonal non-zero matrix
cells expressed as a percentage of the sum of the values of all
non-zero cells.

5. The mean of diagonal elements (µd).

Note that the greater the values of F and L, the more varied the
solutions. The larger the value of C, the more the lines that were
acted upon out of order, i.e., not in the order in which they appear
in the final solution. The larger the value V, the more the redundant
actions and hence, the less efficient the solutions.

A puzzle with n lines can be solved with n actions. For the purposes
of analysis, we considered as minimal solvers, students who solved
a puzzle with no more than 1.1n actions, i.e., with no more than
10% redundant actions. Minimal solvers were a subset of all the
solvers of a puzzle. We analyzed the data of each puzzle, both for
non-minimal and minimal solvers. We computed the statistical sig-
nificance of the difference between two groups (e.g., non-minimal
versus minimal solvers) by using paired sample t-test in which the
corresponding values Mi,j (the element of the Markov matrix on
row i and column j) of the two groups were paired.

5. RESULTS
5.1 if-else puzzles
The first puzzle solved by the students was on a program that read
two numbers and printed the smaller of the two numbers. The puz-
zle contained 14 lines of code and 2 distracters.

Figure 3 shows the heat map of C++ solutions: for non-minimal
solutions on the left and minimal solutions on the right. In the heat
maps, the last two rows and the penultimate two columns corre-
spond to distracters. Note the following in Figure 3:

1. A majority of both non-minimal and minimal solvers assem-
bled the puzzle in the order in which the lines appeared in the
correct program. So, the largest values are all along the diag-
onal – µd, the mean of diagonal elements, is 0.61 for non-
minimal and 0.81 for minimal solvers. This behavior was
much more pronounced among minimal solvers: the diagonal
is brighter green and far more non-diagonal cells are red
(zero). Paired sample t-test yielded a statistically significant
difference between the two groups (p < 0.001).

2. Students discarded distracters more often than not at the end
of the session – the cells in the last column for the last two
rows are green.

Minimal solvers solved the puzzles with no more than 10% unnec-
essary actions. But, this did not mean, they had to assemble the
puzzle in the order in which the lines appeared in the correct pro-
gram (corresponding to the diagonal from top left to bottom right
being green): they could have assembled the program in reverse or-
der, i.e., the last line first and the first line last (corresponding to the
diagonal elements from the bottom left to the top right being green)
or in random order (non-diagonal elements just as likely to be green
as diagonal elements). That a majority of both non-minimal and
minimal solvers solved the puzzles in the correct order of the lines
in the puzzle is a novel and interesting finding of this study.

Figure 4 shows the heat map of Java solutions: for non-minimal
solutions on the left and minimal solutions on the right. We observe
the same two patterns in Java as in C++. The difference between
non-minimal and minimal Java solutions was again statistically sig-
nificant (p < 0.001).

Figure 3. Heat Map of C++ solutions: non-minimal (N=118) on
the left and minimal (N=57) on the right

Figure 4. Heat Map of Java solutions: non-minimal (N=237) on
the left and minimal (N=66) on the right

Table 3 lists the descriptive statistics for C++ and Java solutions.
The table numerically confirms what is hinted at in the heat maps:
minimal solutions were less varied, with fewer first lines (F) and
last lines (L). In minimal solutions, students acted on fewer lines
out of order, e.g., among C++ solvers, non-zero non-diagonal cells
(C) were fewer - 24.3% for minimal versus 88.1% for non-minimal
C++ solutions. As could be expected, minimal solutions were more
efficient with fewer redundant actions, e.g., among Java solvers,
the sum of non-zero non-diagonal cells as a percentage of all the
non-zero cells (V) was smaller too - 26% for minimal versus 68.8%
for non-minimal Java solutions.

Table 3. Descriptive statistics for if-else puzzle 1

if-else
puzzle 1

C++ (Minimal?) Java (Minimal?)
No Yes No Yes

Sample (N) 118 57 237 66
First line (F) 10 2 12 6
Last line (L) 13 4 14 7

Cells (C) 88.1% 24.3% 96.7% 35.2%
Value (V) 64.4% 15.4% 68.8% 26.0%

Diagonal (µd) 0.61 0.81 0.63 0.7
In addition, it is evident from Table 3 that C++ solutions were less
varied, had fewer lines assembled out of order and were more effi-
cient than Java solutions. Paired samples t-test yielded a
statistically significant difference between non-minimal C++ and
Java solutions (p < 0.001), but not between minimal C++ and Java
solutions.

The second puzzle solved by students was on a program to read
numerical grade and print the corresponding letter grade. The pro-
gram contained four levels of nesting of if-else statements. The
puzzle contained 34 lines of code and 2 distracters.

The heat maps of C++ solutions are shown in Figure 5 – for non-
minimal solutions on the left and minimal solutions on the right.
Once again, note that a majority of the students solved the puzzle
in the order of the lines in the correct solution. This result is partic-
ularly counter-intuitive since the solution contained four levels of
nesting of if-else statements. Multiple copies of the same line
of code (e.g., else or braces) were treated as interchangeable by
the tutor. Yet, assembling nested if-else statements in the order
of the lines is no small feat. Balancing the braces of if-clause and
else-clause is in itself a difficult task for novice programmers. Yet,
a majority of the students chose to reassemble the program in the
order in which the lines appear in the correct solution. The differ-
ence between non-minimal and minimal C++ solutions was
statistically significant (p < 0.001).

Figure 5. Heat Map of C++ solutions: non-minimal (N=89) on
the left and minimal (N=42) on the right

Figure 6. Heat Map of Java solutions: non-minimal (N=154) on
the left and minimal (N=28) on the right

Table 4. Descriptive statistics for if-else puzzle 2

if-else
puzzle 2

C++ (Minimal?) Java (Minimal?)
No Yes No Yes

Sample (N) 89 42 154 28
First line (F) 9 2 9 4
Last line (L) 18 12 29 10

Cells (C) 67.4 19.0 78.2 17.4
Value (V) 64.3 38.5 70.4 37.5

Diagonal (µd) 0.57 0.62 0.46 0.62
Similarly, the heat maps of Java solutions are shown in Figure 6.
Once again, students attempted to solve the puzzle in the order of
the lines in the correct solution, minimal solvers much more so. The
difference between non-minimal and minimal Java solutions was
statistically significant (p < 0.001).

The descriptive statistics are shown in Table 4. The difference be-
tween C++ and Java was not statistically significant for non-
minimal or minimal solutions.

5.2 while loop puzzles
The first puzzle solved by students was on a program to read num-
bers till the same number appeared back to back. The program
printed the first number to appear twice back to back. The puzzle
contained 13 lines of code and 2 distracters.

Figure 7. Heat Map of C++ solutions: non-minimal (N=48) on
the left and minimal (N=44) on the right

Figure 8. Heat Map of Java solutions: non-minimal (N=78) on
the left and minimal (N=42) on the right

Table 5. Descriptive Statistics for while puzzle 1

while puzzle 1 C++ (Minimal?) Java (Minimal?)
No Yes No Yes

Sample (N) 48 44 78 42
First line (F) 5 2 5 2
Last line (L) 8 5 6 6

Cells (C) 73.1 32.4 80.8 29.1
Value (V) 62.5 33.1 62.9 23.0

Diagonal (µd) 0.56 0.6 0.62 0.7
The heat maps of C++ and Java solutions are shown in Figures 7
and 8 respectively. In both of the languages, students solved the
puzzle in the correct order of lines, minimal solvers much more so.
The difference between non-minimal and minimal solutions was
statistically significant for both C++ (p < 0.001) and Java (p <
0.001). The difference between non-minimal C++ and Java solu-
tions was statistically significant at p = 0.1 level, but not the
difference between minimal C++ and Java solutions. Table 5 lists
the descriptive statistics for all four cases.

The second puzzle solved by the students was on a program to input
the face of a card followed by cards in a deck. It prints the number
of cards into the deck where it finds the first card, and prints the
face of the subsequent card in the deck. The program contained two
back-to-back while loops. The puzzle contained 22 lines of code
and 2 distracters.

The tutors were set up to conduct a controlled experiment on
whether using mnemonic variable names affected how efficiently
students solved the puzzles [13]. Some schools received a version
of the puzzle with mnemonic variable names whereas others re-
ceived a version with single-character variable names. Since the
C++ sample size was larger for the single-character version of the
puzzle and Java sample size was larger for the mnemonic version
of the puzzle, we used data from those respective versions for com-
parison.

Figure 9. Heat Map of C++ solutions of the single-character
version of the puzzle: non-minimal (N=27) on the left and min-
imal (N=14) on the right

The pattern of students solving puzzles in the correct order of lines
is again evident from Figures 9 (of C++ solutions of single-charac-
ter version of the puzzle) and 10 (of Java solutions of mnemonic
version of the puzzle). Quite counter-intuitively, minimal solvers
rarely straggled back and forth between the two while loops, i.e.,
picked a line in the first loop followed by a line in the second loop
or vice versa. Descriptive statistics are listed in Table 6. The differ-
ence between non-minimal and minimal solutions was statistically
significant for both of the languages (p < 0.001).

Figure 10. Heat Map of Java solutions of the mnemonic version
of the puzzle: non-minimal (N=50) on the left and minimal
(N=12) on the right

The third puzzle solved by the students was on a program to repeat-
edly read a positive number, read additional numbers till its
multiple is found, and print the number and its multiple. It did this
until 0 or a negative value was input for the first number. The pro-
gram contained nested while loops. The puzzle contained 17 lines
of code and 2 distracters.

Figures 11 (C++) and 12 (Java) once again show that a majority of
the students solved the puzzles in the correct order of the lines in
the solution, even though the puzzle involved nested while loops.
Nested while loops are particularly hard for novice programmers

to read or write. So, it is counter-intuitive that students would as-
semble the lines in the order in which they appear in the correct
solution.

Table 6. Descriptive statistics for while puzzle 2

while
puzzle 2

C++ - single-char
(Minimal?)

Java – mnemonic
(Minimal?)

No Yes No Yes
Sample (N) 27 14 50 12
First line (F) 5 3 7 2
Last line (L) 5 5 7 3

Cells (C) 55.9 11.3 66.4 9.9
Value (V) 68.1 26.3 69.4 25.4

Diagonal (µd) 0.58 0.7 0.55 0.71

Figure 11. Heat Map of C++ solutions: non-minimal (N=44) on
the left and minimal (N=12) on the right

Figure 12. Heat Map of Java solutions: non-minimal (N=48) on
the left and minimal (N=11) on the right

The descriptive statistics are shown in Table 7. The difference be-
tween non-minimal and minimal solutions was statistically
significant for both C++ and Java (p < 0.001). The difference be-
tween C++ and Java was not statistically significant in either case:
non-minimal or minimal solutions. A confounding factor of this
comparison is that the number of minimal solvers is small for both
C++ and Java.

Table 7. Descriptive statistics for while puzzle 3

while puzzle 3 C++ (Minimal?) Java (Minimal?)
No Yes No Yes

Sample (N) 44 12 48 11
First line (F) 8 2 2 1
Last line (L) 6 4 6 2

Cells (C) 67.0 11.4 71.6 4.3
Value (V) 67.8 27.9 66.7 7.7

while puzzle 3 C++ (Minimal?) Java (Minimal?)
No Yes No Yes

Diagonal (µd) 0.58 0.66 0.57 0.85

6. DISCUSSION
We presented the results of analyzing the data of five different puz-
zles – involving a single if-else statement, nested if-else
statements, a single while loop, multiple while loops and nested
while loops. The answer to our research question RQ1 is that in
every case, a majority of the students solved the puzzle in the order
of the lines of code in the correct solution, as illustrated by the di-
agonals in heat maps. Students who solved the puzzles with the
fewest actions did so by acting upon fewer lines out of order and
less often.

An earlier study had used think-aloud protocols to find that experts
solved Parsons puzzles [11] by first assembling the majority of the
control flow, followed by initialization of variables and handling of
corner cases. This was referred to as top-down strategy. In a similar
vein, when writing control statements, novices are advised to write
the frame of the control statement first and then, proceed to fill in
the details [26]. We had hoped to find that at least minimal solvers
used such strategies.

Instead, at each step, students seem to have asked themselves
“where in the scrambled code can I find the next line of the solu-
tion?” instead of “where should the next scrambled line be placed
in the solution?” or “how would I write this solution based on top-
down thinking and frame-first coding?” They assembled code in
the order in which it appears in the program, not the order in which
it is written by a programmer who follows top-down decomposition
of the problem. This is the difference between the product and the
process. The order in which code segments are written in a program
is dictated by the process of programming and is not necessarily the
order in which the code segments eventually appear in the program,
i.e., the product of programming. The process is influenced by both
semantics (top-down design [11]) and syntax (frame-first program-
ming [26]). Educators want novices to learn the process of
programming, not the product, since the product, i.e., the program
for a given problem is not unique. Researchers have found that the
process used by novices for programming is a better predictor of
their course grade than the actual programs written by them [29].
Besides, product follows process – the more disciplined the pro-
cess, the better the programming product. So, for a novice learning
to write programs, the focus should be on the process of program-
ming and not the product. Unfortunately, in programming, one
cannot learn the process by looking at the product – all the process
information is lost by the time a program is completed [30]. So, the
fact that a majority of the students solve Parsons puzzles by focus-
ing on the product rather than reconstructing the process of
programming does not bode well for Parsons puzzles as a tool for
learning programming. Parsons puzzle tutors designed to help stu-
dents learn programming must actively prompt and scaffold
novices to reconstruct the process of programming when solving
the puzzles.

Yet, scores on Parsons puzzles were found to correlate with scores
on code-writing exercises [2]. An explanation for this correlation is
that just as they assemble Parsons puzzles, students write programs
line by line in the order in which the lines appear in the program,
i.e., their process mirrors the product. Writing a program line by
line in this manner is difficult because it entails significant cogni-
tive load, e.g., when writing the statements in a nested loop, the
programmer must actively keep track of the nested loop, the nesting
loop and any variables previously declared in the program. Experts

seldom write code in this manner, instead resorting to top-down and
frame-first strategies. This naïve approach to writing code may ex-
plain why attrition in introductory programming courses remains
unacceptably high [34, 35]. Configuring Parsons puzzle tutors to
proactively enforce top-down and frame-first coding maybe one
way to use Parsons puzzles to help students learn effective pro-
cesses of programming rather than developing their own ineffective
processes.

Earlier researchers have reported that C++ students used semantics
more than Java students while solving Parsons puzzles [23] and that
the learning curve associated with learning object-oriented pro-
graming in Java is steeper compared to learning imperative
programming in C++ [22]. This may be why we found significant
difference between non-minimal C++ and Java solutions on the
first problems in both the tutors (our research question RQ2), In
both the cases, Java students used more out-of-order and redundant
actions to solve Parsons puzzles than C++ students. This finding
would benefit from replication in a more controlled environment.

One confounding factor of our study is that the algorithm was pro-
vided as comments in the solution panel S (Figure 1) for each
program. Students may have followed these comments from top
down to assemble the program from the first to the last line. Then
again, the presence of comments should have freed students to as-
semble the different commented sections of the program in an
opportunistic manner, not necessarily from the first to the last sec-
tion. Other researchers have noted that such subgoal labels make it
easier for students to solve Parsons puzzles [20], but do not address
the influence of comments on how students go about solving Par-
sons puzzles.

In our analysis, we considered only line numbers in action se-
quence, the sequence of <line, action> pairs. We ignored the
information about the action applied to each line, thereby losing
some richness of data. For example, Mi,i represents back-to-back
actions applied to line i. These could be actions that cancel each
other out, such as deleting a line followed by undeleting it. In such
a case, the two actions could be ignored. Considering the nature of
action while creating Markov transition matrix may lead to better
results.

In our analysis, we considered only complete and correct solutions.
Analyzing incomplete and incorrect solutions may yield patterns in
puzzle-solving behavior that unearth common misconceptions
among programming students.

We presented Markov matrices as a technique for finding patterns
in Parsons puzzle solutions and used heat maps to visualize the re-
sults. An added benefit of using Markov matrix is that we can use
higher order matrices (obtained by multiplying a Markov matrix by
itself) to answer questions such as how quickly after assembling an
open brace do students get around to assembling its matching clos-
ing brace in a program, a question of interest in frame-first [26]
coding.

Knowing how students solve Parsons puzzles can help us under-
stand how they can be improved for that purpose. We hope our
discussion in this section contributes towards these efforts. We plan
to continue to collect data from additional tutors and analyze the
problem-solving patterns used by students in those tutors to see if
the same patterns are repeated.

7. ACKNOWLEDGMENTS
Partial support for this work was provided by the National Science
Foundation under grants DUE-1502564 and DUE-2142648.

8. REFERENCES
[1] Nick Cheng and Brian Harrington. 2017. The Code Mangler:

Evaluating Coding Ability Without Writing any Code. In
Proceedings of the 2017 ACM SIGCSE Technical Sympo-
sium on Computer Science Education (SIGCSE '17). ACM,
New York, NY, USA, 123-128. DOI:
https://doi.org/10.1145/3017680.3017704.

[2] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008.
Evaluating a new Exam Question: Parsons Problems. In Pro-
ceedings of the Fourth International Workshop on
Computing Education Research (ICER '08). ACM, New
York, NY, USA, 113-124.
DOI=http://dx.doi.org/10.1145/1404520.1404532.

[3] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020.
A Review of Research on Parsons Problems. In Proceedings
of the Twenty-Second Australasian Computing Education
Conference (ACE'20). Association for Computing Machin-
ery, New York, NY, USA, 195–202.
DOI:https://doi.org/10.1145/3373165.3373187

[4] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018.
Evaluating the Efficiency and Effectiveness of Adaptive Par-
sons Problems. In Proceedings of the 2018 ACM Conference
on International Computing Education Research (ICER '18).
ACM, New York, NY, USA, 60-68. DOI:
https://doi.org/10.1145/3230977.3231000

[5] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison.
2015. Analysis of Interactive Features Designed to Enhance
Learning in an Ebook. In Proceedings of the eleventh annual
International Conference on International Computing Educa-
tion Research (ICER '15). ACM, New York, NY, USA, 169-
178. DOI: https://doi.org/10.1145/2787622.2787731.

[6] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick.
2017. Solving Parsons Problems Versus Fixing and Writing
Code. In Proceedings of the 17th Koli Calling International
Conference on Computing Education Research (Koli Calling
'17). ACM, New York, NY, USA, 20-29. DOI:
https://doi.org/10.1145/3141880.3141895.

[7] Barbara Ericson, Austin McCall, and Kathryn Cunningham.
2019. Investigating the Affect and Effect of Adaptive Par-
sons Problems. In Proceedings of the 19th Koli Calling
International Conference on Computing Education Research
(Koli Calling '19). Association for Computing Machinery,
New York, NY, USA, Article 6, 1–10.
DOI:https://doi.org/10.1145/3364510.3364524

[8] Geela Fabic, Antonija Mitrovic, Kourosh Neshatian. To-
wards a Mobile Python Tutor: Understanding Differences in
Strategies used by Novices and Experts. In: Proceedings of
the 13th International Conference on Intelligent Tutoring
Systems, LNCS, vol. 9684, pp. 447–448. Springer Heidel-
berg (2016)

[9] Rita Garcia, Katrina Falkner, and Rebecca Vivian. 2018.
Scaffolding the Design Process using Parsons Problems. In
Proceedings of the 18th Koli Calling International Confer-
ence on Computing Education Research (Koli Calling '18).
Association for Computing Machinery, New York, NY,
USA, Article 26, 1–2.
DOI:https://doi.org/10.1145/3279720.3279746

[10] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri
Malmi. 2012. How do Students Solve Parsons Programming

Problems?: An Analysis of Interaction Traces. In Proceed-
ings of the ninth annual international conference on
International computing education research (ICER '12).
ACM, New York, NY, USA, 119-126. DOI:
https://doi.org/10.1145/2361276.2361300.

[11] Petri Ihantola and Ville Karavirta. 2011. Two-dimensional
Parson’s Puzzles: The Concept, Tools, and First Observa-
tions. Journal of Information Technology Education. 10
(2011), 119–132.

[12] Petri Ihantola and Ville Karavirta. 2010. Open Source
Widget for Parson's Puzzles. In Proceedings of the fifteenth
annual conference on Innovation and technology in computer
science education (ITiCSE '10). ACM, New York, NY, USA,
302-302. DOI: https://doi.org/10.1145/1822090.1822178

[13] Amruth N. Kumar. 2019. Mnemonic Variable Names in Par-
sons Puzzles. In Proceedings of the ACM Conference on
Global Computing Education (CompEd '19). ACM, New
York, NY, USA, 120-126. DOI:
https://doi.org/10.1145/3300115.3309509

[14] Amruth N. Kumar. 2019. Helping Students Solve Parsons
Puzzles Better. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Educa-
tion (ITiCSE '19). ACM, New York, NY, USA, 65-70. DOI:
https://doi.org/10.1145/3304221.3319735

[15] Amruth N. Kumar. 2018. Epplets: A Tool for Solving Par-
sons Puzzles. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE '18).
ACM, New York, NY, USA, 527-532. DOI:
https://doi.org/10.1145/3159450.3159576.

[16] Amruth N. Kumar. 2017. The Effect of Providing Motiva-
tional Support in Parsons Puzzle Tutors. In Proceedings of
Artificial Intelligence in Education. (AI-ED 2017), Wuhan,
China, June 2017, 528-531. DOI=
https://doi.org/10.1007/978-3-319-61425-0_56

[17] Amruth N. Kumar. 2019. Representing and Evaluating Strat-
egies for Solving Parsons Puzzles. In Proceedings of
Intelligent Tutoring Systems (ITS 2019), Kingston, Jamaica.
Springer LNCS 11528, 193-203

[18] Raymond Lister, Tony Clear, Simon, Dennis J Bouvier, Paul
Carter, Anna Eckerdal, Jana Jacková, Mike Lopez, Robert
McCartney, Phil Robbins, Otto Seppälä, and Errol Thomp-
son. 2010. Naturally Occurring Data as Research Instrument:
Analyzing Examination Responses to Study the Novice Pro-
grammer. ACM SIGCSE Bulletin 41, 4 (2010), 156–173

[19] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Ray-
mond Lister. 2008. Relationships Between Reading, Tracing
and Writing Skills in Introductory Programming. In Proceed-
ings of the Fourth International Workshop on Computing
Education Research (ICER '08). ACM, New York, NY,
USA, 101-112.
DOI=http://dx.doi.org/10.1145/1404520.1404531.

[20] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson,
and Mark Guzdial. 2016. Subgoals Help Students Solve Par-
sons Problems. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE '16).
ACM, New York, NY, USA, 42-47. DOI:
https://doi.org/10.1145/2839509.2844617.

[21] Dale Parsons and Patricia Haden. 2006. Parson's Program-
ming Puzzles: A fun and Effective Learning Tool for First

Programming Courses. In Proceedings of the 8th Australa-
sian Conference on Computing Education - Volume 52 (ACE
'06), Denise Tolhurst and Samuel Mann (Eds.), Vol. 52. Aus-
tralian Computer Society, Inc., Darlinghurst, Australia,
Australia, 157-163.

[22] Susan Wiedenbeck, Vennila Ramalingam, Suseela
Sarasamma, Cynthia L. Corritore. A Comparison of the
Comprehension of Object-oriented and Procedural Programs
by Novice Programmers. Interacting with Computers, 11 (3).
January 1999, Pages 255–282,
https://doi.org/10.1016/S0953-5438(98)00029-0

[23] Amruth N. Kumar, Do Students use Semantics When Solv-
ing Parsons Puzzes? – A Log-Based Investigation.
Proceedings of Intelligent Tutoring Systems (ITS 2021).
LNCS 12677. June 2021. 444-450.

[24] Salil Maharjan and Amruth N. Kumar. Using Edit Distance
Trails to Analyze Path Solutions of Parsons Puzzles'', Pro-
ceedings of the 13th International Conference on Educational
Data Mining (EDM 2020). July 2020, 638-642.

[25] Amruth N. Kumar. Using Markov Transition Matrix to Ana-
lyze Parsons Puzzle Solutions. Proceedings of the
Educational Data Mining (EDM 2021) Workshop on Process
Analysis Methods for Educational Data, Online, June 2021.

[26] Michael Kölling, Neil C. C. Brown, and Amjad Altadmri.
2015. Frame-Based Editing: Easing the Transition from
Blocks to Text-Based Programming. In Proceedings of the
Workshop in Primary and Secondary Computing Education
(WiPSCE '15). ACM, New York, NY, USA, 29-38. DOI:
https://doi.org/10.1145/2818314.2818331

[27] Valerie Barr and Deborah Trytten. 2016. Using Turing’s
craft Codelab to support CS1 students as they learn to pro-
gram. ACM Inroads 7, 2 (May 2016), 67–75

[28] Robert S. Rist. (1989). Schema creation in programming.
Cognitive Science, 13(3), 389-414.

[29] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper,
and Paulo Blikstein. 2012. Modeling how students learn to
program. In Proceedings of the 43rd ACM technical sympo-
sium on Computer Science Education (SIGCSE '12). ACM,
New York, NY, USA, 153-160.

[30] Robert S. Rist. (1991). Knowledge creation and retrieval in
program design: A comparison of novice and intermediate
student programmers. Human-Computer Interaction, 6(1), 1-
46.

[31] Bassok, M., Chase, V.M., and Martin, S.A. (1998). Adding
apples and oranges: Alignment of semantic and formal
knowledge. Cognitive Psychology, 35(2), 99-134.

[32] Bassok, M., and Olseth, K.L. (1995). Object-based represen-
tations: Transfer between cases of continuous and discrete
models of change. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 21(6), 1522-1538.

[33] Martin, S.A., and Bassok, M. (2005). Effects of semantic
cues on mathematical modeling: Evidence from word-prob-
lem solving and equation construction tasks. Memory and
Cognition, 33(3), 471-478.

[34] Christopher Watson and Frederick W.B. Li. 2014. Failure
rates in introductory programming revisited. In Proceedings
of the 2014 conference on Innovation & technology in com-
puter science education (ITiCSE '14). ACM, New York, NY,
USA, 39-44.
DOI=http://doi.acm.org/10.1145/2591708.2591749

[35] Jens Bennedsen and Michael E. Caspersen. 2007. Failure
rates in introductory programming. SIGCSE Bull. 39, 2 (June
2007), 32-36. DOI: https://doi.org/10.1145/1272848.1272879

