ABSTRACT
In adaptive learning systems, various models are employed to obtain the optimal learning schedule and review for a specific learner. Models of learning are used to estimate the learner’s current recall probability by incorporating features or predictors proposed by psychological theory or empirically relevant to learners’ performance. Logistic regression for knowledge tracing has been widely used in modern learner performance modeling. Notably, the learning history included in such models is typically confined to learners’ prior accuracy performance without paying attention to learners’ response time (RT), such as the performance factors analysis (PFA) model. However, RT and accuracy may give us a more comprehensive picture of a learner’s learning trajectory. For example, without considering RT, we cannot estimate whether the learner’s performance has reached the automatic or fluent level since these criteria are not accuracy based. Therefore, in the current research, we propose and test new RT-related features to capture learners’ correct RT fluctuations around their estimated ideal fluent RT. Our results indicate that the predictiveness of the standard PFA model can be increased by up to 10% for our test data after incorporating RT-related features, but the complexity of the question format constrains the improvement during practice. If the question is of low complexity and the observed accuracy of the learner can be influenced by guessing, which results in the imprecision measured by accuracy, then the RT-related features provide additional predictive power. In other words, RT-related features are informative when accuracy alone does not completely reflect learners’ learning processes.

Keywords
Performance Factors Analysis, Response Time, Memory, Fact Learning, Logistic Regression

1. INTRODUCTION
As early as Atkinson [4], model-based adaptive scheduling has been explored extensively and deeply to improve learners’ learning efficiency and long-term retention. According to the theory of knowledge tracing [9], one general and important preceding step behind this sort of research is to build a learner model that can accurately estimate the learner’s probability of correctly answering questions they will encounter based on their prior behaviors [10]. One area of learner modeling methods is derived from Item Response Theory (IRT) framework, leveraging the Rasch model's logistic transformation [34]. Several different logistic regression learning models have been successfully built by considering different facets of learners’ learning history, such as the Additive Factors Model (AFM) [7], which uses the number of prior practices, the Performance Factors Analysis (PFA) [32] which uses the performance (correct or incorrect) on previously practiced items, the Instructional Factors Analysis (IFA) [8] which uses the previous instructional interventions the learner has received, in addition to many other predictors reviewed recently [30].

We noticed that the response time (RT), one commonly used indicator in cognitive domains, was not used in such adaptive models, despite its long history as a factor that traced learning [15]. However, when depicting a learner’s performance, accuracy is not enough to give us the whole picture of the learner’s learning trajectory. Accuracy is discrete and may not be precise enough when measuring learners’ learning. For example, the learner’s incorrect responses could be caused by slipping, and similarly, the learners’ correct responses could be caused by guessing [5]. Therefore, to measure learners’ learning and performance more precisely, we hypothesize that RT and accuracy during learning should be used jointly. For example, quicker correct responses indicate learners have stronger memory traces of materials [1, 43]. Furthermore, responding fluently or automatically is often seen as a criterion of learning and training in practical situations [25], such as foreign language, emergency medicine, and simple facts learning [14, 18, 42], so incorporating it as a predictor may increase the generalizability of such modeling.

Considering the connection between learners’ RT and their performance, some researchers have integrated information implied by RT in adaptive learner modeling [11, 37] and experimentally validated the effectiveness of such RT-based components in improving learners’ acquisition and retention [19, 20, 22, 23, 24, 25, 38, 39, 40, 41, 42]. For instance, Sense and van Rijn [42] incorporated the learner’s observed RT to adjust the model’s parameter controlling the decay rate of a specific item and showed that RT is informative and can significantly contribute to predicting recall. Their results showed that the scheduling algorithm incorporating the RT information results in higher retention than the random presentation schedule. Similarly, Mettler and colleagues [25] assumed that compared to slow correct RT, faster correct RT for a specific item reflects the learner has stronger learning strength of the item. Thus, in their adaptive response time-based sequencing system (ARTS), items that have been answered correctly and quickly would be repeated in a longer recurrence interval for the learner. Consequently, the ARTS system outperforms the Atkinson [4] method in learning efficiency [24]. However, Lindsey et al. [19, 20] pointed out that despite the predictiveness power of learners’ future performance provided by RT, it was redundant with information held in the accuracy. Thus, RT information of learners was not used in their later
adaptive scheduling system, DASH [22]. Table 1 briefly summarizes both adaptive scheduling systems incorporating RT information.

<table>
<thead>
<tr>
<th>System</th>
<th>Theoretical Assumption</th>
<th>Model Mechanic</th>
<th>RT-related features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense & van Rijn [42]</td>
<td>Strength theory: Correct response speed positively correlates to memory trace strength [27]</td>
<td>ACT-R declarative memory module [2, 33]</td>
<td>A parameter (α) represents the decay rate of memory traces</td>
</tr>
<tr>
<td>Mettler et al. [25]</td>
<td>Learning strength: A hypothetical construct related to probability of future successful recall</td>
<td>Adaptive Response Time-Based Sequencing (ARTS)</td>
<td>Priority Score for items that have been answered correctly</td>
</tr>
</tbody>
</table>

In summary, from a theoretical perspective, RT-related features are informative for capturing facets of individual differences, such as the memory strengths of items during practice. In practical applications, whether the prediction of learning models can be improved after incorporating RT-related features still needs further exploration due to the noisy nature of RT data in many applications. Therefore, in the current research, we investigated if the predictiveness of the standard PFA model can be improved by incorporating the learner’s correct RT history. Specifically, we focused on estimating the learner’s fluent RT after reaching the automatic response level, then compared the learner’s correct RT during learning with their estimated fluent RT to capture the strength changes of memory traces.

2. METHOD

2.1 Performance Factors Analysis

Performance factors analysis (PFA) is a logistic regression model using learners’ prior practice performance on knowledge components (KC) to estimate their future probability of a correction [32]. A KC is defined as a mental structure or process a learner uses alone or in combination with other KCs to solve problems [17] and can be operationalized as facts, concepts, or complex skills depending on the granularity of analyses. In PFA, the learner’s performance, correct and incorrect responses are selected as indicators of learners’ learning processes. The mathematical format for PFA is shown in Equation 1 and Equation 2. Equation 1 captures the strength values for KCs, where i represents an individual learner, j represents a specific KC, β represents the easiness of the KC, α represents the ability of the learner, s tracks the prior successes for the KC for the learner (y scales the effect of these prior successes count), and f tracks the prior failures for the KC for the learner (ρ scales the effect of these prior failures count). Equation 2 converts strength values to predictions of correctness probability according to the logistic distribution. Since the standard PFA does not integrate the information provided by learners’ RT, which is also probably a strong indicator of learners’ learning, we believed the modifications we conducted for the standard PFA described in the following sections would be helpful.

$$m(i, j \in KC_o, s, f) = \sum_{j \in KC} (y_i s_{ij} + \rho_i f_{ij} + \beta_j) + \alpha_i$$ (1)

$$p(m) = (1 - e^{-m})^{-1}$$ (2)

2.2 Variants of PFA with Correct-RT-Related Features

2.2.1 The Exponential Law of Practice

The “law of practice” function describes the relationship between RT and practice opportunities. Many researchers have shown that simple mathematical functions can fit this relationship [3, 13, 28]. Anderson [3] showed that RT is an exponential function of memory activation, and the intercept can capture a learner’s neural integration time and motor response time. Newell and Rosenbloom [28] showed that RT follows a power function of prior practice opportunities. Heathcote and colleagues [13] extensively compared the overall fitting of exponential functions and the power functions across 40 sets of data, and they found that for unaveraged data, such as data from individual learners which were commonly used in adaptive modeling, the exponential function fitted the data better than the power function. As it turns out, averaging exponential functions produces power functions, making these results sensible [3].

Thus, in the present research, to fit the individual learner’s RT as a function of the practice opportunity, we used the exponential function as shown in Equation 3, where $E (RT_{\theta})$ represents the expected value of RT on practice opportunity n, B represents the change in the expected value of RT from the beginning of learning ($n = 0$) to the end of learning (the x_{θ} practice opportunity when the learner reaches their fluent RT), A_i represents the expected value of RT after learning has been completed for the individual learner i, and α is the rate parameter and controls the amount of nonlinearity displayed by the exponential function.

$$E (RT_{\theta}) = A_i + B e^{-\alpha n}$$ (3)

Our main goal was to estimate the value of A_i for the individual learner i, which represents the RT needed for the learner to perform fluently (fluentRT). In other words, we assumed that if the learner truly mastered the materials, no retrieval time would be included in A_i implying an automatic response that captures a learner’s neural integration time and motor response time. The estimation was conducted using the optim function from the ‘stats’ R package [35].

2.2.2 Correct-RT-Related Features and PFA Variants

After having the estimated fluentRT value of each learner, we need other correct RT information from the learner’s practice history to calculate predictive components to examine whether incorporating such correct-RT-related features added to the standard PFA improves its predictiveness. We followed the method used by Eglington and Pavlik [10]. For each learner i, for each KC j, and each trial t, a median trial RT was calculated from the previous trials 1: $t - 1$ for which the learner was correctly answered. For the first trial for a specific learner, and all trials before a correct response had been produced, the value was set to zero (hereafter, this value was named median corr). A dummy variable (dummy) was also created and also added to the model. The dummy captures the performance difference between first trials and other consecutive wrong trials at the beginning of the practice session where calculating the median corr is impossible. For example, suppose the learner’s responses are (wrong, wrong, wrong, wrong, correct with
2.2.3 Logistic Knowledge Tracing (LKT) package in R

For logistic regression models, like PFA, the additive nature of features increases their flexibility, making it easy for researchers to add new or drop out old features and build their models. We used the ‘LKT’ package [30], which makes the logistic model-building and parameter-searching processes simpler by reducing high-level technical skills and knowledge demands for researchers. For example, the models in this paper were run with single calls to LKT following the data preparation for latency analysis. The LKT code has been publicly shared as an R package in GitHub, and examples with detailed notes are available for reference [31].

2.3 Datasets and Data Preprocessing

The model comparison was conducted across several datasets to examine the improvement from the addition of the correct RT-related features we mentioned above. For calculating the median_{corr} and the estimation of fluency_{corr}, the dataset needs to include a column identifying the time elapsed between the start of the presentation of the specific practice trial and the response reaction made by the individual learner. We used the time from the first seeing the question to the learner’s first action as our RT measurement by assuming that this time duration reflected the learner’s retrieval time. Specifically, for multiple-choice questions, the learners’ response was measured by the mouse click; for short-answer and cloze questions, the response duration was from the first keypress. Furthermore, for fitting logistic models in LKT, columns are required to identify the learners’ deidentified id, response accuracy (correct or incorrect), KC id, and the practice opportunity of each KC for the individual learner. We expected that the model predictiveness improvement after incorporating RT-related features should generalize across datasets with different learning materials and formats of practice trials.

The same data preprocessing criteria were applied to all datasets by adopting the procedure of Pavlik and colleagues [30]. Within each dataset, students with less than 25 observations were omitted. KCs with less than 300 observations overall were also omitted. Extreme correct RT outliers (>95th percentile) were Winsorized to equal the 95th percentile correct RT values. Missing RT values were imputed with the overall median trial duration for the student. Observations relevant to instructions, learning and review trials, or hints were omitted since we focused on RT values from learners’ practice attempts for this study. Furthermore, learners whose accuracy values during the practice session were less than the probability of a random guess were omitted (less than 25%). We used 25% as a general accuracy criterion to maintain consistency across all datasets.

2.3.1 Dataset 1. Chinese Vocabulary Pronunciation

Memory Multiple-Choice Questions

Dataset 1 was from an experiment designed to explore the best practice context and review spacing schedule for learners to remember the pronunciation of foreign vocabulary words. The learning materials were 27 aural Chinese words. The experiment was conducted by using an online Flashcard learning system. Participants were recruited from Amazon’s Mechanical Turk. The format of practice trials was multiple-choice. For each trial, learners were asked to select the correct meaning of the aural Chinese word they had just heard. Learners have 5 seconds to make their choice. Correct answers were provided for learners after their incorrect attempts, and they were encouraged to learn from the feedback within 5 seconds. The 5-second response threshold was chosen because for such a simple task it results in very little truncation of the latency distribution and prevents outlier data from being collected, preferring to mark such unlikely long-duration responses wrong [29]. One Chinese word pronunciation was seen as a unique KC. After data cleaning, 190 learners and a total of 39,282 observations, of which 23,981 correct observations were retained in dataset 1.

2.3.2 Dataset 2. Japanese-English Word Pairs Short Answer Questions

Dataset 2 was from an experiment in optimal learning [9], Experiment 2. The experiment was designed to investigate the effectiveness of an optimal difficulty threshold adaptive scheduling for improving learners’ memory retention. The learning materials were 30 Japanese-English word pairs. Participants were recruited from Amazon’s Mechanical Turk. All practice trials were short-answer questions, and learners were asked to type in English translations after seeing Japanese words. One unique Japanese-English word pair was seen as a unique KC. The initial dataset included 72,455 observations from 291 adult learners, after data cleaning, 262 learners and a total of 59,885 observations were retained in the dataset, of which 42,482 correct observations were retained.

2.3.3 Dataset 3. Statistics Content Cloze Questions

Dataset 3 from practice with cloze sentences about introductory statistics was downloaded from the Memphis Datashop repository (https://datashop.memphis.edu) [16]. The experiment was designed to explore the effect of spacing schedules and repetition of KCs on learners’ memory of simple statistical concepts. The learning materials were 36 sentences about different statistical concepts. Participants were recruited from Amazon’s Mechanical Turk. All practice trials were cloze items, and learners were asked to type in the missing word for each sentence. The initial dataset consisted of 58,316 observations from 478 learners. After data screening, 462 learners and a total of 53,277 observations were retained, of which 29,708 were correct observations.
3. RESULTS

3.1 The fluent_{RT} Estimation Results

Within each dataset, we used Equation 3 and the optim function from the 'stats' R package [35] to estimate the ideal fluent_{RT} value for each learner. We also calculated the correlation between the learners’ estimated fluent_{RT} and their average RT during the practice session (average_{RT}). Table 2 shows the descriptive statistics and correlation test results for all three datasets.

Table 2. Descriptive statistics for estimated fluent_{RT} and its correlation with average_{RT}

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Fluent<sub>RT</sub> M (SD)</th>
<th>Average<sub>RT</sub> M (SD)</th>
<th>Fluent<sub>RT</sub> and Average<sub>RT</sub> correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1381.717 (558.811)</td>
<td>1917.562 (655.858)</td>
<td>0.898***</td>
</tr>
<tr>
<td>2</td>
<td>2442.846 (855.596)</td>
<td>3231.382 (1132.548)</td>
<td>0.934***</td>
</tr>
<tr>
<td>3</td>
<td>3883.096 (956.854)</td>
<td>5910.799 (1215.972)</td>
<td>0.908***</td>
</tr>
</tbody>
</table>

Note. *** p < .001

First, we found a highly positive correlation between the learner’s estimated neural integration time (fluent_{RT}) and motor response time which is reasonable since the individual differences in neurons’ response speed. Second, individual differences in neural integration time and motor response time were observed from the fluent_{RT}. For instance, the estimated fluent_{RT} of two learners with different response speed tendencies from Dataset 1 (the multiple-choice dataset) was shown in Figure 1. It was clear that learner A tended to respond faster than learner B. Based on each learner’s correct RT history, the estimated neural integration time and motor response time for learner A was only 759.56 milliseconds, while for learner B, 1830.72 milliseconds corresponded to fluent responding.

Figure 1. Estimated fluent_{RT} as a function of the practice opportunity for two learners with different response speed from Dataset 1 (Multiple-Choice Dataset)

3.2 Model Fit and Comparison Results

Five models were fitted to the three datasets. Table 3 shows the features included in each model. The $ operator produces a unique coefficient for each learner and each KC. For example, the ‘intercept$learner’ feature fits a unique intercept for each learner. While for features without the $ operator, a single coefficient would be fit for the feature. All features shown in Table 3 represent independent variables in logistic regression. The third model (PFA_{dummy}) we built here was used as a baseline model to split the unique effects of RT-related features, median_{corRT} and fmedian_{corRT}, which we were most interested in.

Table 3. Features included in each model

```
<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_PFA</td>
<td>intercept$learner + intercept$KC + line$successKC + line$failureKC</td>
</tr>
<tr>
<td>2_PFA&lt;sub&gt;flu&lt;/sub&gt;RT</td>
<td>intercept$learner + intercept$SKC + line$succKC + line$failKC + fluent&lt;sub&gt;RT&lt;/sub&gt;$Slearner</td>
</tr>
<tr>
<td>3_PFA&lt;sub&gt;dummy&lt;/sub&gt;</td>
<td>intercept$learner + intercept$SKC + line$succKC + line$failKC + dummy</td>
</tr>
<tr>
<td>4_PFA&lt;sub&gt;medianCorRT&lt;/sub&gt;</td>
<td>intercept$learner + intercept$SKC + line$succKC + line$failKC + dummy + median&lt;sub&gt;RT&lt;/sub&gt;$Slearner</td>
</tr>
<tr>
<td>5_PFA&lt;sub&gt;medianCorRT&lt;/sub&gt;</td>
<td>intercept$learner + intercept$SKC + line$succKC + line$failKC + dummy + fmedian&lt;sub&gt;RT&lt;/sub&gt;$Slearner</td>
</tr>
</tbody>
</table>
```

Table 4 shows the model comparison and five-fold cross-validation results. According to McFadden’s R² and Akaike information criterion (AIC) values, we can examine whether the predictiveness of standard PFA is improved after incorporating RT-related features. By inspecting the averaged R² after 5-fold cross-validation, we want to ensure that the improvement is not caused by over-fitting.

Table 4. Model comparison and cross-validation results

```
<table>
<thead>
<tr>
<th>Model</th>
<th>R² (AIC)</th>
<th>Δ R² (Δ AIC)</th>
<th>CV R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple-Choice Dataset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>0.1082 (47273.57)</td>
<td>-</td>
<td>0.0984</td>
</tr>
<tr>
<td>PFA&lt;sub&gt;flu&lt;/sub&gt;RT</td>
<td>0.1082 (47275.56)</td>
<td>-</td>
<td>0.0984</td>
</tr>
<tr>
<td>PFA&lt;sub&gt;dummy&lt;/sub&gt;</td>
<td>0.1315 (46053.14)</td>
<td>0.0233 (-1220.43)</td>
<td>0.1215</td>
</tr>
<tr>
<td>PFA&lt;sub&gt;medianCorRT&lt;/sub&gt;</td>
<td>0.1417 (45516.02)</td>
<td>0.0102 (-537.11)</td>
<td>0.1318</td>
</tr>
<tr>
<td>PFA&lt;sub&gt;medianCorRT&lt;/sub&gt;</td>
<td>0.1438 (45409.95)</td>
<td>0.0123 (-643.18)</td>
<td>0.1338</td>
</tr>
<tr>
<td>Short-Answer Dataset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>0.1966 (58704.92)</td>
<td>-</td>
<td>0.1855</td>
</tr>
<tr>
<td>PFA&lt;sub&gt;flu&lt;/sub&gt;RT</td>
<td>0.1966 (58706.92)</td>
<td>-</td>
<td>0.1855</td>
</tr>
<tr>
<td>PFA&lt;sub&gt;dummy&lt;/sub&gt;</td>
<td>0.2133 (57503.39)</td>
<td>0.0166 (-1201.53)</td>
<td>0.2022</td>
</tr>
</tbody>
</table>
```
First, the model comparison results showed that adding the fluentRT feature did not improve the predictiveness of standard PFA much for all three datasets. This suggested that the learner’s overall processing speed contributed little to predicting their future performance. Second, after incorporating the mediancorrRT and the fluentRT features to model learning-correlated speedup, the predictiveness of the standard PFA was improved most in the Multiple-choice dataset (Dataset 1). At the same time, the improvement was not crucial for both the Short-answer dataset (Dataset 2) and the Cloze-question dataset (Dataset 3). Third, the dummy feature caused stable improvement for the standard PFA model across three datasets, indicating that incorrect trials before the first correct response of the learner, perhaps represented the learner’s encoding phase [44].

4. DISCUSSION

When predicting learners’ future performance, accuracy-based features have been used in various learner modelings, such as knowledge tracing [9, 12] and logistic regression [7, 8, 30, 32]. Recently, some researchers have argued that learners’ response time (RT) during practice is also informative for predicting their future performance [21, 23, 24, 25, 26, 41, 42]. The key theoretical rationale behind such assumptions is the strength theory [27] which emphasizes the positive correlation between the correct RT and the strength of memory traces. Quicker correct responses indicate more stable memory traces have been generated than slower correct responses.

Following the strength assumption, in the present research, we calculated two RT-related features, then investigated how much the predictiveness of the standard performance factor analysis model (PFA) can be improved after combining the learner’s RT history. The first feature, mediancorrRT, captures the sequential median correct RT for the specific KC of an individual learner. The second feature, fluentcorrRT, captures how the learner’s median correct RT fluctuates around their estimated ideal fluent RT (fluentRT). The fluentRT for each learner is estimated using the exponential law of practice function [13]. The intercept of the exponential function is seen as the fluentRT which represents the neural integration time and motor response time without retrieval time, in other words, the assumption here is that the intercept reflects the minimum RT needed for an individual learner to correctly answer a specific KC after reaching to the automatic level.

Our results show that the improvement of standard PFA by mediancorrRT and fluentcorrRT features on the learner’s future performance are constrained by the practice questions format. For multiple-choice questions, the observed accuracy perhaps cannot precisely reflect the learner’s latent learning processes since the correct responses might be caused by guessing. Thus, after incorporating RT-related features, such measurement imprecision of accuracy can be somewhat offset, resulting in improvements of predictiveness. While for short-answer and cloze questions, the lack of precision of the latency in representing strength limits the method’s effectiveness.

One exciting aspect of the research was the unexpected benefit of using the dummy variable we computed to differentiate trials before the first correct response from trials after a correct response. This improvement is not directly related to reaction time hypotheses we had, and indicates future work is needed to understand this result and its generality (though it was more broadly applicable than the RT terms themselves). We speculate that the dummy feature may trace the transition between stages of learning. Perhaps indicating the student is moving from an encoding to responding stage of learning similar to what has been proposed in cognitive theories of skill acquisition [36, 44]. Another possible underlying construct traced by the dummy feature may be relevant to the moment-to-moment learning proposed by Baker and colleagues for Bayesian knowledge tracing [6]. For instance, the dummy feature which detects the first correct response in a series of responses could indicate a learner’s state change between unlearned and learned at a coarse grain size.

Limitations of the present research should be noted here as future research directions. One limitation is the method we used to estimate the learner’s ideal fluentRT. In Equation 3, for simplifying calculations, B and α values were assumed as the same for all learners across all to-be-learned items to keep the parsimonious model. Consequently, the practice curves for different learners have the same shape and are only different in the vertical y-coordinate direction (see Figure 1). We also estimated the same A value for each learner across all items. These simplifications may constrain the implications of RT-related features since the same learner's fluent RT for different items is variable, and more difficult items typically require longer RT than easier items [15]. Thus, in future research, more precise estimated fluentRT values for each specific KC may be required before incorporating RT-related features in the real-time adaptive scheduling system. Another limitation in the current research is that our results are most relevant to simple-fact memory tasks. Thus, one further research direction is how to generalize the RT-related features to more complex tasks such as arithmetic. However, different from simple memory tasks, how to accurately decompose learners’ RT data to precisely reflect their cognitive processes involved in complex tasks requires more effort before generating the RT-related features.

5. ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation Learner Data Institute (NSF #1934745).
6. REFERENCES

