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ABSTRACT 
In adaptive learning systems, various models are employed to ob-

tain the optimal learning schedule and review for a specific learner. 

Models of learning are used to estimate the learner’s current recall 

probability by incorporating features or predictors proposed by psy-

chological theory or empirically relevant to learners’ performance. 

Logistic regression for knowledge tracing has been used widely in 

modern learner performance modeling. Notably, the learning his-

tory included in such models is typically confined to learners' prior 

accuracy performance without paying attention to learners’ re-

sponse time (RT), such as the performance factors analysis (PFA) 

model. However, RT and accuracy may give us a more comprehen-

sive picture of a learner’s learning trajectory. For example, without 

considering RT, we cannot estimate whether the learner’s perfor-

mance has reached the automatic or fluent level since these criteria 

are not accuracy based. Therefore, in the current research, we pro-

pose and test new RT-related features to capture learners’ correct 

RT fluctuations around their estimated ideal fluent RT. Our results 

indicate that the predictiveness of the standard PFA model can be 

increased by up to 10% for our test data after incorporating RT-

related features, but the complexity of the question format con-

strains the improvement during practice. If the question is of low 

complexity and the observed accuracy of the learner can be influ-

enced by guessing, which results in the imprecision measured by 

accuracy, then the RT-related features provide additional predictive 

power. In other words, RT-related features are informative when 

accuracy alone does not completely reflect learners’ learning pro-

cesses. 
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1. INTRODUCTION 
As early as Atkinson [4], model-based adaptive scheduling has 

been explored extensively and deeply to improve learners’ learning 

efficiency and long-term retention. According to the theory of 

knowledge tracing [9], one general and important preceding step 

behind this sort of research is to build a learner model that can ac-

curately estimate the learner’s probability of correctly answering 

questions they will encounter based on their prior behaviors [10]. 

One area of learner modeling methods is derived from Item Re-

sponse Theory (IRT) framework, leveraging the Rasch model's 

logistic transformation [34]. Several different logistic regression 

learning models have been successfully built by considering differ-

ent facets of learners’ learning history, such as the Additive Factors 

Model (AFM) [7], which uses the number of prior practices, the 

Performance Factors Analysis (PFA) [32] which uses the perfor-

mance (correct or incorrect) on previously practiced items, the 

Instructional Factors Analysis (IFA) [8] which uses the previous 

instructional interventions the learner has received, in addition to 

many other predictors reviewed recently [30]. 

We noticed that the response time (RT), one commonly used indi-

cator in cognitive domains, was not used in such adaptive models, 

despite its long history as a factor that traced learning [15]. How-

ever, when depicting a learner’s performance, accuracy is not 

enough to give us the whole picture of the learner’s learning trajec-

tory. Accuracy is discrete and may not be precise enough when 

measuring learners’ learning. For example, the learner’s incorrect 

responses could be caused by slipping, and similarly, the learners’ 

correct responses could be caused by guessing [5]. Therefore, to 

measure learners’ learning and performance more precisely, we hy-

pothesize that RT and accuracy during learning should be used 

jointly. For example, quicker correct responses indicate learners 

have stronger memory traces of materials [1, 43]. Furthermore, re-

sponding fluently or automatically is often seen as a criterion of 

learning and training in practical situations [25], such as foreign 

language, emergency medicine, and simple facts learning [14, 18, 

42], so incorporating it as a predictor may increase the generaliza-

bility of such modeling. 

Considering the connection between learners’ RT and their perfor-

mance, some researchers have integrated information implied by 

RT in adaptive learner modeling [11, 37] and experimentally vali-

dated the effectiveness of such RT-based components in improving 

learners’ acquisition and retention [19, 20, 22, 23, 24, 25, 38, 39, 

40, 41, 42]. For instance, Sense and van Rijn [42] incorporated the 

learner’s observed RT to adjust the model’s parameter controlling 

the decay rate of a specific item and showed that RT is informative 

and can significantly contribute to predicting recall. Their results 

showed that the scheduling algorithm incorporating the RT infor-

mation results in higher retention than the random presentation 

schedule. Similarly, Mettler and colleagues [25] assumed that com-

pared to slow correct RT, faster correct RT for a specific item 

reflects the learner has stronger learning strength of the item. Thus, 

in their adaptive response time-based sequencing system (ARTS), 

items that have been answered correctly and quickly would be re-

peated in a longer recurrence interval for the learner. Consequently, 

the ARTS system outperforms the Atkinson [4] method in learning 

efficiency [24]. However, Lindsey et al. [19, 20] pointed out that 

despite the predictiveness power of learners’ future performance 

provided by RT, it was redundant with information held in the ac-

curacy. Thus, RT information of learners was not used in their later 
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adaptive scheduling system, DASH [22]. Table 1 briefly summa-

rizes both adaptive scheduling systems incorporating RT 

information. 

Table 1. Summary of RT-related features in different adaptive 

scheduling systems 

System 
Theoretical As-

sumption 

Model Me-

chanic 

RT-related 

features 

Sense 

& van 

Rijn 

[42] 

Strength theory: 

Correct response 

speed positively 

correlates to 

memory trace 

strength [27] 

ACT-R de-

clarative 

memory 

module [2, 

33] 

A parame-

ter (α) 

represents 

the decay 

rate of 

memory 

traces 

Mettler 

et al. 

[25] 

Learning strength: 

A hypothetical con-

struct related to 

probability of future 

successful recall 

Adaptive Re-

sponse Time-

Based Se-

quencing 

(ARTS) 

Priority 

Score for 

items that 

have been 

answered 

correctly 

In summary, from a theoretical perspective, RT-related features are 

informative for capturing facets of individual differences, such as 

the memory strengths of items during practice. In practical applica-

tions, whether the prediction of learning models can be improved 

after incorporating RT-related features still needs further explora-

tion due to the noisy nature of RT data in many applications. 

Therefore, in the current research, we investigated if the predictive-

ness of the standard PFA model can be improved by incorporating 

the learner’s correct RT history. Specifically, we focused on esti-

mating the learner’s fluent RT after reaching the automatic 

response level, then compared the learner’s correct RT during 

learning with their estimated fluent RT to capture the strength 

changes of memory traces.    

2. METHOD 

2.1 Performance Factors Analysis  
Performance factors analysis (PFA) is a logistic regression model 

using learners’ prior practice performance on knowledge compo-

nents (KC) to estimate their future probability of a correction [32]. 

A KC is defined as a mental structure or process a learner uses alone 

or in combination with other KCs to solve problems [17] and can 

be operationalized as facts, concepts, or complex skills depending 

on the granularity of analyses. In PFA, the learner’s performance, 

correct and incorrect responses are selected as indicators of learn-

ers’ learning processes. The mathematical format for PFA is shown 

in Equation 1 and Equation 2. Equation 1 captures the strength val-

ues for KCs, where 𝑖  represents an individual learner, 𝑗  represents 

a specific KC, 𝛽 represents the easiness of the KC, 𝛼  represents the 

ability of the learner, 𝑠  tracks the prior successes for the KC for the 

learner (𝛾  scales the effect of these prior successes count), and 𝑓  
tracks the prior failures for the KC for the learner (𝜌  scales the 

effect of these prior failures counts). Equation 2 converts strength 

values to predictions of correctness probability according to the lo-

gistic distribution. Since the standard PFA does not integrate the 

information provided by learners’ RT, which is also probably a 

strong indicator of learners’ learning, we believed the modifica-

tions we conducted for the standard PFA described in the following 

sections would be helpful. 

𝑚(𝑖,   𝑗  ∈  𝐾𝐶𝑠 ,  𝑠,  𝑓)  = ∑ (𝛾𝑗𝑠𝑖,𝑗   +  𝜌𝑗𝑓𝑖,𝑗   +  𝛽𝑗)
 
 𝑗 ∈ 𝐾𝐶𝑠

  +  𝛼𝑖     

(1) 

𝑝(𝑚) = (1 − 𝑒−𝑚)−1                  (2) 

2.2 Variants of PFA with Correct-RT-Related 

Features 

2.2.1 The Exponential Law of Practice 
The “law of practice” function describes the relationship between 

RT and practice opportunities. Many researchers have shown that 

simple mathematical functions can fit this relationship [3, 13, 28]. 

Anderson [3] showed that RT is an exponential function of memory 

activation, and the intercept can capture a learner’s neural integra-

tion time and motor response time. Newell and Rosenbloom [28] 

showed that RT follows a power function of prior practice oppor-

tunities. Heathcote and colleagues [13] extensively compared the 

overall fitting of exponential functions and the power functions 

across 40 sets of data, and they found that for unaveraged data, such 

as data from individual learners which were commonly used in 

adaptive modeling, the exponential function fitted the data better 

than the power function. As it turns out, averaging exponential 

functions produces power functions, making these results sensible 

[3]. 

Thus, in the present research, to fit the individual learner’s RT as a 

function of the practice opportunity, we used the exponential func-

tion as shown in Equation 3, where 𝐸 (𝑅𝑇𝑛) represents the expected 

value of RT on practice opportunity 𝑛 , 𝐵  represents the change in 

the expected value of RT from the beginning of learning (n = 0) to 

the end of learning (the xth practice opportunity when the learner 

reaches their fluent RT), 𝐴𝑖 represents the expected value of RT 

after learning has been completed for the individual learner 𝑖 , and 

𝛼  is the rate parameter and controls the amount of nonlinearity dis-

played by the exponential function.   

𝐸 (𝑅𝑇𝑛)  =  𝐴𝑖  +  𝐵𝑒−𝛼𝑛   (3) 

Our main goal was to estimate the value of 𝐴𝑖 for the individual 

learner 𝑖  , which represents the RT needed for the learner to per-

form fluently (fluentRT). In other words, we assumed that if the 

learner truly mastered the materials, no retrieval time would be in-

cluded in 𝐴𝑖 implying an automatic response that captures a 

learner’s neural integration time and motor response time. The es-

timation was conducted using the optim function from the ‘stats’ R 

package [35]. 

2.2.2 Correct-RT-Related Features and PFA Vari-

ants 
After having the estimated fluentRT value of each learner, we need 

other correct RT information from the learner’s practice history to 

calculate predictive components to examine whether incorporating 

such correct-RT-related features added to the standard PFA im-

proves its predictiveness. We followed the method used by 

Eglington and Pavlik [10]. For each learner 𝑖 , for each KC 𝑗 , and 

each trial 𝑡 , a median trial RT was calculated from the previous 

trials 1:  𝑡 − 1  for which the learner was correctly answered. For 

the first trial for a specific learner, and all trials before a correct 

response had been produced, the value was set to zero (hereafter, 

this value was named mediancorRT). A dummy variable (dummy) 

was also created and also added to the model. The dummy captures 

the performance difference between first trials and other consecu-

tive wrong trials at the beginning of the practice session where 

calculating the mediancorRT is impossible. For example, suppose the 

learner’s responses are (wrong, wrong, wrong, wrong, correct with 



latency 4000ms) for the first five trials for the same KC. In that 

case, the calculation for this learner’s running mediancorRT is (0, 0, 

0, 0, 4000), where the corresponding dummy code for the learner’s 

first five responses was (1, 1, 1, 1, 0). This dummy provides a base-

line for all trials before the first correct result, which offsets the 

value of 0 that is needed to predict the correct latency effect (0 since 

there has been no correct latency). Since we cannot use 0 for these 

trials (since it is just a placeholder), we need this dummy to charac-

terize the baseline performance when we have no correct prior trials 

for the KC. Indeed, by itself, the dummy provides some small im-

provement since it marks a one-time increase in the prediction after 

the first correct response is counted. The main purpose, however, 

is to allow the coefficient for the effect of the prior correct median 

to be fit freely without the 0 placeholder data values affecting this 

result. 

According to the above correct RT-related component mediancorRT, 

we computed a new feature to capture how the learner’s correct RT 

during the practice process fluctuates around their estimated ideal 

fluentRT. The logic behind this feature calculation is that if a 

learner’s correct RT fluctuation for a specific KC is large, even if 

they just answered the question correctly, the memory traces for the 

KC maybe still unstable, and the learner probably needs more prac-

tice trials on the same KC. The calculation is straightforward, for 

each learner 𝑖 , for each trial 𝑡 , the fluentRT is subtracted from the 

mediancorRT. The new feature is labeled as fmediancorRT. 

2.2.3 Logistic Knowledge Tracing (LKT) package in 

R 
For logistic regression models, like PFA, the additive nature of fea-

tures increases their flexibility, making it easy for researchers to 

add new or drop out old features and build their models. We used 

the ‘LKT’ package [30], which makes the logistic model-building 

and parameter-searching processes simpler by reducing high-level 

technical skills and knowledge demands for researchers. For exam-

ple, the models in this paper were run with single calls to LKT 

following the data preparation for latency analysis. The LKT code 

has been publicly shared as an R package in GitHub, and examples 

with detailed notes are available for reference [31]. 

2.3 Datasets and Data Preprocessing 
The model comparison was conducted across several datasets to 

examine the improvement from the addition of the correct RT-re-

lated features we mentioned above. For calculating the mediancorRT 

and the estimation of fluentRT, the dataset needs to include a column 

identifying the time elapsed between the start of the presentation of 

the specific practice trial and the response reaction made by the in-

dividual learner. We used the time from the first seeing the question 

to the learner’s first action as our RT measurement by assuming 

that this time duration reflected the learner’s retrieval time. Specif-

ically, for multiple-choice questions, the learners’ response was 

measured by the mouse click; for short-answer and cloze questions, 

the response duration was from the first keypress. Furthermore, for 

fitting logistic models in LKT, columns are required to identify the 

learners’ deidentified id, response accuracy (correct or incorrect), 

KC id, and the practice opportunity of each KC for the individual 

learner. We expected that the model predictiveness improvement 

after incorporating RT-related features should generalize across da-

tasets with different learning materials and formats of practice 

trials. 

The same data preprocessing criteria were applied to all datasets by 

adopting the procedure of Pavlik and colleagues [30]. Within each 

dataset, students with less than 25 observations were omitted. KCs 

with less than 300 observations overall were also omitted. Extreme 

correct RT outliers (>95th percentile) were winsorized to equal the 

95th percentile correct RT values. Missing RT values were imputed 

with the overall median trial duration for the student. Observations 

relevant to instructions, learning and review trials, or hints were 

omitted since we focused on RT values from learners’ practice at-

tempts for this study. Furthermore, learners whose accuracy values 

during the practice session were less than the probability of a ran-

dom guess were omitted (less than 25%). We used 25% as a general 

accuracy criterion to maintain consistency across all datasets.  

2.3.1 Dataset1. Chinese Vocabulary Pronunciation 
Memory Multiple-Choice Questions 

Dataset 1 was from an experiment designed to explore the best 

practice context and review spacing schedule for learners to re-

member the pronunciation of foreign vocabulary words. The 

learning materials were 27 aural Chinese words. The experiment 

was conducted by using an online Flashcard learning system. Par-

ticipants were recruited from Amazon’s Mechanical Turk. The 

format of practice trials was multiple-choice. For each trial, learn-

ers were asked to select the correct meaning of the aural Chinese 

word they had just heard. Learners have 5 seconds to make their 

choice. Correct answers were provided for learners after their in-

correct attempts, and they were encouraged to learn from the 

feedback within 5 seconds. The 5-second response threshold was 

chosen because for such a simple task it results in very little trun-

cation of the latency distribution and prevents outlier data from 

being collected, preferring to mark such unlikely long-duration re-

sponses wrong [29]. One Chinese word pronunciation was seen as 

a unique KC. After data cleaning, 190 learners and a total of 39,282 

observations, of which 23,981 correct observations were retained 

in dataset 1.  

2.3.2 Dataset 2. Japanese-English Word Pairs Short 

Answer Questions 
Dataset 2 was from an experiment in optimal learning [9], Experi-

ment 2. The experiment was designed to investigate the 

effectiveness of an optimal difficulty threshold adaptive scheduling 

for improving learners’ memory retention. The learning materials 

were 30 Japanese-English word pairs. Participants were recruited 

from Amazon’s Mechanical Turk. All practice trials were short-an-

swer questions, and learners were asked to type in English 

translations after seeing Japanese words. One unique Japanese-

English word pair was seen as a unique KC. The initial dataset in-

cluded 72,455 observations from 291 adult learners, after data 

cleaning, 262 learners and a total of 59,885 observations were re-

tained in the dataset, of which 42,482 correct observations were 

retained. 

2.3.3 Dataset 3. Statistics Content Cloze Questions 
Dataset 3 from practice with cloze sentences about introductory sta-

tistics was downloaded from the Memphis Datashop repository 

(https://datashop.memphis.edu) [16]. The experiment was designed 

to explore the effect of spacing schedules and repetition of KCs on 

learners’ memory of simple statistical concepts. The learning ma-

terials were 36 sentences about different statistical concepts. 

Participants were recruited from Amazon’s Mechanical Turk. All 

practice trials were cloze items, and learners were asked to type in 

the missing word for each sentence. The initial dataset consisted of 

58,316 observations from 478 learners. After data screening, 462 

learners and a total of 53,277 observations were retained, of which 

29,708 were correct observations.    

https://datashop.memphis.edu/


3. RESULTS 

3.1 The fluentRT Estimation Results 
Within each dataset, we used Equation 3 and the optim function 

from the ‘stats’ R package [35] to estimate the ideal fluentRT value 

for each learner. We also calculated the correlation between the 

learners’ estimated fluentRT and their average RT during the prac-

tice session (averageRT). Table 2 shows the descriptive statistics 

and correlation test results for all three datasets.   

Table 2. Descriptive statistics for estimated fluentRT and its cor-

relation with averageRT  

Dataset 

FluentRT 

M (SD) 

AverageRT 

M (SD) 

FluentRT 

and AverageRT 

correlation 

1 
1381.717 

(558.811) 

1917.562 

(655.858) 
0.898*** 

2 
2442.846 

(855.596) 

3231.382 

(1132.548) 
0.934*** 

3 
3883.096 

(956.854) 

5910.799 

(1215.972) 
0.908*** 

Note. *** p <.001 

First, we found a highly positive correlation between the learner’s 

estimated neural integration time (fluentRT) and motor response 

time 𝐴𝑖, and the learner’s averageRT during the practice session in 

all datasets. The consistent highly positive correlation suggested 

that learners’ averageRT reflected their neural integration time and 

motor response time which is reasonable since the individual dif-

ferences in neurons’ response speed. Second, individual differences 

in neural integration time and motor response time were observed 

from the fluentRT. For instance, the estimated fluentRT of two learn-

ers with different response speed tendencies from Dataset 1(the 

multiple-choice dataset) was shown in Figure 1. It was clear that 

learner A tended to respond faster than learner B. Based on each 

learner’s correct RT history, the estimated neural integration time 

and motor response time for learner A was only 759.56 millisec-

onds, while for learner B, 1830.72 milliseconds corresponded to 

fluent responding. 

 

Figure 1. Estimated fluentRT as a function of the practice oppor-

tunity for two learners with different response speed from 

Dataset 1 (Multiple-Choice Dataset) 

3.2 Model Fit and Comparison Results 
Five models were fitted to the three datasets. Table 3 shows the 

features included in each model. The $ operator produces a unique 

coefficient for each learner and each KC. For example, the ‘inter-

cept$learner’ feature fits a unique intercept for each learner. While 

for features without the $ operator, a single coefficient would be fit 

for the feature. All features shown in Table 3 represent independent 

variables in logistic regression. The third model (PFAdummy) we 

built here was used as a baseline model to split the unique effects 

of RT-related features, mediancorRT and fmediancorRT, which we 

were most interested in. 

Table 3. Features included in each model 

Model Features 

1_PFA 
intercept$learner + intercept$KC + line-

sucKC + linefailKC 

2_PFAfluentRT 
intercept$learner + intercept$KC + line-

sucKC + linefailKC + fluentRT$learner 

3_PFAdummy 
intercept$learner + intercept$KC + line-

sucKC + linefailKC + dummy 

4_PFAmediancorRT 

intercept$learner + intercept$KC + line-

sucKC + linefailKC + dummy + 

medianRT$learner 

5_PFAfmediancorRT 

intercept$learner + intercept$KC + line-

sucKC + linefailKC + dummy + 

fmedianRT$learner 

Table 4 shows the model comparison and five-fold unstratified 

cross-validation results. According to McFadden’s R2 and Akaike 

information criterion (AIC) values, we can examine whether the 

predictiveness of standard PFA is improved after incorporating RT-

related features. By inspecting the averaged R2 after 5-fold cross-

validation, we want to ensure that the improvement is not caused 

by over-fitting. 

Table 4. Model comparison and cross-validation results  

Model 

Model Comparision 

R2 

(AIC) 

Δ R2 

(Δ AIC) CV R2 

Multiple-Choice Dataset 

PFA 
0.1082 

(47273.57) 
- 0.0984 

PFAfluentRT 
0.1082 

(47275.56) 
- 0.0984 

PFAdummy 
0.1315 

(46053.14) 

0.0233 

(-1220.43) 
0.1215 

PFAmediancorRT 
0.1417 

(45516.02) 

0.0102 

(-537.11) 
0.1318 

PFAfmediancorRT 
0.1438 

(45409.95) 

0.0123 

(-643.18) 
0.1338 

Short-Answer Dataset 

PFA 
0.1966 

(58704.92) 
- 0.1855 

PFAfluentRT 
0.1966 

(58706.92) 
- 0.1855 

PFAdummy 
0.2133 

(57503.39) 

0.0166 

(-1201.53) 
0.2022 



Model 

Model Comparision 

R2 

(AIC) 

Δ R2 

(Δ AIC) CV R2 

PFAmediancorRT 
0.2217 

(56898.67) 

0.0084 

(-604.71) 
0.2105 

PFAfmediancorRT 
0.2163 

(57287.38) 

0.0030 

(-216.00) 
0.2052 

Cloze Dataset 

PFA 
0.2752 

(54229.77) 
- 0.2564 

PFAfluentRT 
0.2752 

(54232.25) 
- 0.2564 

PFAdummy 
0.2920 

(53002.99) 

0.0168 

(-1226.78) 
0.2728 

PFAmediancorRT 
0.2929 

(52940.5) 

0.0008 

(-62.49) 
0.2736 

PFAfmediancorRT 
0.2923 

(52979.33) 

0.0003 

(-23.65) 
0.2731 

Note. Δ McFadden's R2 calculates the difference between PFAdummy 

and PFA; the difference between PFAmediancorRT and PFAdummy; the 

difference between PFAfmediancorRT and PFAdummy, respectively. Val-

ues reflect the pure influence predicted by the mediancorRT and 

fmediancorRT features. 

First, the model comparison results showed that adding the fluentRT 

feature did not improve the predictiveness of standard PFA much 

for all three datasets. This suggested that the learner’s overall pro-

cessing speed contributed little to predicting their future 

performance. Second, after incorporating the mediancorRT and the 

fmediancorRT features to model learning-correlated speedup, the pre-

dictiveness of the standard PFA was improved most in the 

Multiple-choice dataset (Dataset 1). At the same time, the improve-

ment was not crucial for both the Short-answer dataset (Dataset 2) 

and the Cloze-question dataset (Dataset 3). Third, the dummy fea-

ture caused stable improvement for the standard PFA model across 

three datasets, indicating that incorrect trials before the first correct 

response of the learner, perhaps represented the learner’s encoding 

phase [44]. 

4. DISCUSSION 
When predicting learners’ future performance, accuracy-based fea-

tures have been used in various learner modelings, such as 

knowledge tracing [9, 12] and logistic regression [7, 8, 30, 32]. Re-

cently, some researchers have argued that learners’ response time 

(RT) during practice is also informative for predicting their future 

performance [21, 23, 24, 25, 26, 41, 42]. The key theoretical ra-

tionale behind such assumptions is the strength theory [27] which 

emphasizes the positive correlation between the correct RT and the 

strength of memory traces. Quicker correct responses indicate more 

stable memory traces have been generated than slower correct re-

sponses. 

Following the strength assumption, in the present research, we cal-

culated two RT-related features, then investigated how much the 

predictiveness of the standard performance factor analysis model 

(PFA) can be improved after combining the learner’s RT history. 

The first feature, mediancorRT, captures the sequential median cor-

rect RT for the specific KC of an individual learner. The second 

feature, fmediancorRT, captures how the learner’s median correct RT 

fluctuates around their estimated ideal fluent RT (fluentRT). The flu-

entRT for each learner is estimated using the exponential law of 

practice function [13]. The intercept of the exponential function is 

seen as the fluentRT which represents the neural integration time and 

motor response time without retrieval time, in other words, the as-

sumption here is that the intercept reflects the minimum RT needed 

for an individual learner to correctly answer a specific KC after 

reaching to the automatic level. 

Our results show that the improvement of standard PFA by medi-

ancorRT and fmediancorRT features on the learner’s future 

performance are constrained by the practice questions format. For 

multiple-choice questions, the observed accuracy perhaps cannot 

precisely reflect the learner’s latent learning processes since the 

correct responses might be caused by guessing. Thus, after incor-

porating RT-related features, such measurement imprecision of 

accuracy can be somewhat offset, resulting in improvements of pre-

dictiveness. While for short-answer and cloze questions, the lack of 

precision of the latency in representing strength limits the method's 

effectiveness.  

One exciting aspect of the research was the unexpected benefit of 

using the dummy variable we computed to differentiate trials be-

fore the first correct response from trials after a correct response. 

This improvement is not directly related to reaction time hypothe-

ses we had, and indicates future work is needed to understand this 

result and its generality (though it was more broadly applicable than 

the RT terms themselves). We speculate that the dummy feature 

may trace the transition between stages of learning. Perhaps indi-

cating the student is moving from an encoding to responding stage 

of learning similar to what has been proposed in cognitive theories 

of skill acquisition [36, 44]. Another possible underlying construct 

traced by the dummy feature may be relevant to the moment-to-mo-

ment learning proposed by Baker and colleagues for Bayesian 

knowledge tracing [6]. For instance, the dummy feature which de-

tects the first correct response in a series of responses could indicate 

a learner's state change between unlearned and learned at a coarse 

grain size. 

Limitations of the present research should be noted here as future 

research directions. One limitation is the method we used to esti-

mate the learner’s ideal fluentRT. In Equation 3, for simplifying 

calculations, 𝐵  and 𝛼  values were assumed as the same for all 

learners across all to-be-learned items to keep the parsimonious 

model. Consequently, the practice curves for different learners have 

the same shape and are only different in the vertical y-coordinate 

direction (see Figure 1). We also estimated the same 𝐴  value for 

each learner across all items. These simplifications may constrain 

the implications of RT-related features since the same learner's flu-

ent RT for different items is variable, and more difficult items 

typically require longer RT than easier items [15]. Thus, in future 

research, more precise estimated fluentRT values for each specific 

KC may be required before incorporating RT-related features in the 

real-time adaptive scheduling system. Another limitation in the cur-

rent research is that our results are most relevant to simple-fact 

memory tasks. Thus, one further research direction is how to gen-

eralize the RT-related features to more complex tasks such as 

arithmetic. However, different from simple memory tasks, how to 

accurately decompose learners’ RT data to precisely reflect their 

cognitive processes involved in complex tasks requires more effort 

before generating the RT-related features. 
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