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ABSTRACT
One important function of e-learning systems is to sequence
learning material for students. E-learning systems use data,
such as demographics, past performance, preferences, skillset,
etc. to construct an accurate model of each student so that
the sequencing of educational content can be personalized.
Some of these student features are“shallow”traits which sel-
dom change (e.g. age, race, gender) while others are “deep”
traits that are more volatile (e.g. performance, goals, in-
terests). In this work, we explore how reasoning about this
diversity of student features can enhance the sequencing of
educational content in an e-learning environment. By mod-
eling the sequencing process as a Reinforcement Learning
(RL) problem, we introduce Diversity Aware Bandit for Se-
quencing Educational Content (DABSEC), a novel contex-
tual multi-armed bandit algorithm that leverages the dy-
namics within user features to cluster similar users together
when making sequencing recommendations.
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1. INTRODUCTION
Advancements in Artificial Intelligence (AI) have resulted
in vastly improved models of student learning [4, 11, 14,
19]. Algorithms that use these models rely on data that de-
scribes students’ online interactions, as well as their demo-
graphic information, previous academic performance, suc-
cess on diagnostic questions, etc. All of this data can be
collectively referred to as the context of the student, and
it is within such contexts that algorithms operate in order
to decipher how students are learning and how to best aid
them. How these varying contextual features collectively
model the complexities of human beings is of particular in-
terest in this work, an idea we refer to as human contextual
diversity. The advancement of e-learning technologies have
brought together students of varied backgrounds and learn-

ing behaviors into single platforms, and reasoning about the
diversity this creates when sequencing educational content
is critical. We hypothesize that combining insights from so-
cial science about diversity can enrich educational models
of students’ behavior and improve the performance of ed-
ucational sequencing algorithms. This work addresses the
following questions: How can a machine detect human con-
textual diversity in educational data? Can we leverage the
diverse and dynamic nature of this human data to improve
how we sequence educational content to students?

To address these questions, we present a novel reinforcement
learning algorithm, Diversity Aware Bandit for Sequencing
Educational Content (DABSEC). DABSEC is a “diversity
aware”[20] Contextual Multi-Armed Bandit (CMAB) algo-
rithm with three main steps: calculate the dynamics of the
underlying human contextual diversity in a group, form clus-
ters of users with similar feature dynamics, and utilize these
clusters and past student performance to sequence learning
content to students. We compare the performance of DAB-
SEC against LOCB [1], a state-of-the-art contextual bandit
algorithm, as a baseline on two public educational datasets.
Our results show that DABSEC achieves a higher average re-
ward than LOCB on each dataset when predicting students’
responses to questions.

2. BACKGROUND
We give an overview of CMAB algorithms and diversity.

2.1 Contextual Multi-Armed Bandits
Prior work has established that Bandit Algorithms, and RL
in general, are effective solutions to educational sequenc-
ing[6]. One type of Bandit Algorithm, the Contextual Multi-
Armed Bandit (CMAB) is a simplification of the full RL-
problem and an extension of the Multi-Armed Bandit (MAB)
problem where, at each timestep, the agent is presented with
a list of arms (possible actions). Additionally, and unlike the
original MAB setup, the agent is also presented with con-
text (additional data) about the environment. The goal of
the agent is to select a single arm, resulting in that action
being performed. The agent then receives a reward for that
arm only. Over time, the agent learns the underlying reward
distribution of each arm and how that distribution is influ-
enced by the context, and endeavors to maximize the total
reward received over time [22].

CMABs have been used to sequence instructional material
to students to increase overall learning [23, 15, 12], recom-
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mend news articles to readers [16], recommend the position
of e-commerce items to maximize the chance a user inter-
acts with them online [10], and many other use cases [3].
One recent work introduced the Local Clustering in Bandits
(LOCB) algorithm [1] which implemented a “soft” cluster-
ing approach, by which users are clustered together if their
preferences are within a certain threshold of each other. In
this work, we use CMAB to select questions that students
are most likely to get correct based upon their past question
answering sequence.

2.2 Diversity
The existence of differences between humans in a group is
one notion of diversity [2], with these differences often falling
into two distinct categories: surface-level differences and
deep-level differences [9]. Surface-level differences include,
for example, age, sex, ethnicity, and race and are generally
defined by their low-dynamics and ability to be observed
immediately [13]. Deep-level differences, on the other hand,
may include skills, values, preferences, and desires. These
are more volatile and can only be observed through pro-
longed interaction between people [9]. For our purposes, we
define surface-level diversity and deep-level diversity as dif-
ferences between humans with respect to their surface-level
and deep-level differences, respectively. One example of the
importance of this classification is highlighted by the WeNet
project, which places human diversity at the center of a new
machine mediated paradigm of social interactions [2].

3. DABSEC
This section details the Diversity Aware Bandit for Sequenc-
ing Educational Content (DABSEC) algorithm.

3.1 Problem Definition
Assume N = {1, ..., n} representing a set of n total users
and T = 1, ..., t representing a sequence of timesteps. At a
timestep, t, a user, it, is drawn such that it ∈ N . Alongside
it, the agent receives the context, Ct = {c1,t, c2,t, ..., ck,t}
with one context vector for each of k arms and each context
vector having dimension d such that ck,t ∈ Rd. The agent
chooses one context vector, ck,t, associated with arm xk,t,
to recommend to it and receives reward rt in return. We
assume that each user is associated with an unknown ban-
dit parameter θi,t that describes how it interacts with the
environment and can be thought of as a representation of
how user it behaves [1]. As in previous bandit settings [16,
1, 7], the goal is to minimize the total regret, RT given by:

RT =

T∑
t=1

[θ⊺i,t(argmaxck,t∈Ctθ
⊺
i,tck,t)− θ⊺i,tct] (1)

where, at each round, t, we compute the regret by taking
the reward achieved from the best possible arm choice, xk,t,
and subtracting the reward achieved from the agent’s chosen
arm, xt. We also assume that each user, i, has a set of
features, F, of length q such that at any time, t, there exists
Fi,t = {fi,1,t, fi,2,t..., fi,q,t}.

3.2 DABSEC Algorithm
The DABSEC algorithm has three main steps: calculate the
underlying feature dynamics of all users over time, form clus-
ters of users with similar feature dynamics, then utilize the

clusters and past student performance to sequence learning
content to students. DABSEC (Algorithm 1) is initialized
with the number of clusters to maintain (s), the frequency
with which to update the clusters (Tcluster), the frequency
with which to update the user feature dynamics (U), and
an exploration parameter (α). Then, all users are initial-
ized (Lines 2-4) and the algorithm begins iterating over all
timesteps sequentially (Line 5). In each round, t, a user it
is presented along with the set of context vectors Ct (Line
6). DABSEC begins without any user clusters. DABSEC
first checks if there are any clusters (Line 7), and if there are
none (length(G ≤ 0)), then the arm with the highest upper
confidence bound (UCB) is chosen. As is standard practice
[16] in bandit algorithms, UCB is computed using the esti-

mation of user it’s unknown bandit parameter, θ̂i,t (Lines
14-16) where A−1

i,t−1 is the covariance matrix and bi,t−1 is a
normalizing matrix for user i at timestep t−1 that are used
to compute the ridge regression solution of the coefficients
[16]. On the other hand, if a user clustering has been estab-
lished (length(G > 0)), then the cluster holding user it is set

as gs,t (Line 8) and DABSEC calculates θ̂gs,t , which repre-
sents the unknown bandit parameter for the entire cluster
(Line 9).

Finally, to choose an arm, we compare the UCB using the
user’s unknown bandit parameter, θ̂i,t to the UCB using the
average unknown bandit parameter of all users in cluster
gs,t, θ̂gs,t (Lines 10-12). The maximum of these two UCB
values is selected (Line 13). The reasoning behind this is
that previous work has established that clustering users by
unknown bandit parameter is an effective strategy for iden-
tifying users who behave similarly in a task, thus resulting
in a collaborative filtering effect [8, 7, 17, 18, 1]. In datasets
where changes in user features are not available or consid-
ered, these past works still represent the state of the art in
clustering bandit algorithms. Our approach, by comparison,
is to gain an advantage in datasets where user feature dy-
namics are available and changing. In these cases, we expect
the collective bandit parameter of the cluster where user it
resides, θ̂gs,t , to estimate expected behavior better than θ̂i,t.

With an arm chosen and pulled, we observe the reward, rt,
then update user parameters and cluster parameters for the
cluster that user it resides in (Lines 17-22). Then, any user
features, Fi,t are updated (Lines 23-24). This step will be
tailored to the specific implementation and dataset, as the
number, type, and sophistication of the user features will
be entirely dependent on the problem definition and setup.
The count for how many times user it has been considered is
also updated (Line 25). Finally, the most up to date clusters,
Gt, are calculated and returned by the CLUSTER function
(Line 26 - see Algorithm 2), which ends round t.

3.3 Clustering by User Feature Dynamics
The second component of DABSEC is clustering users based
upon the similarity of their feature dynamics. The CLUS-
TER algorithm (Algorithm 2) assumes that each user has
a set of features, F, of length q such that at any time, t,
there exists Fi,t = {fi,1,t, fi,2,t..., fi,q,t}. The values of each
individual user feature, fi,q,t may change over time, which
can be tracked to cluster users based upon the similarity
of their feature dynamics. To do this, one can observe the
value of a feature at some initial timestep, then again at a



later timestep, and calculate the absolute value of the differ-
ence between them. More formally, at some initial timestep,
Tinitial, we store the values of all features for a given user,
it: Fit,Tinitial . We also initialize a set Yt that contains one
value for each user such that Yt = {y1,t, y2,t...yi,t} and yi,t
represents the number of times that the agent has made a
recommendation to user it. Thus, each time user it is se-
lected by the algorithm, we can update Fi,t based upon the
observed user features at timestep t, and increment yi,t by
1. Once the agent has made a recommendation to a user
U times, say at time Tfinal, such that yi,t = U , the feature
dynamics for user i, δi, can be computed based upon how
the features have changed between Tinitial and Tfinal (Al-
gorithm 2 Line 2). The differences are summed over time to
compute δi, and U is a hyperparameter that controls how
often user feature dynamics are updated. After this calcula-
tion, Tinitial is set to Tfinal and yit,t is set to 0. The process
repeats when yit,t = U until all timesteps are complete.

By performing this operation for every user, we constantly
have access to δi which represents the current dynamics of
user i’s features. We use the similarity between user’s δ
values to cluster them together, rather than θi,t as done in
previous works [8, 7, 17, 18, 1]. To that end, we assume
that there exists a set of clusters G of length s such that
Gt = {g1,t, g2,t...gs,t}. For simplicity, we assume that each
user must appear in exactly one cluster and all users are split
evenly amongst the clusters. This results in each cluster
containing n

s
users. See Algorithm 2 for the full clustering

pseudocode.

DABSEC updates clusters after a period of timesteps have
passed Tcluster. This is because calculating the dynamics of
the user features requires observing changes in those features
over a period of time. To re-cluster after every timestep
would not allow sufficient time to observe any true dynamics,
so we update δi for each user after every U timesteps in which
that user is selected.

4. DABSEC ON EDUCATION DATA
In this section, we apply the DABSEC algorithm to two
large-scale educational datasets: Eedi [24] and EdNet [5].

4.1 Eedi Dataset
Eedi1 released a dataset that includes over 17 million inter-
actions of students answering multiple choice questions. It
was used for The NeurIPS 2020 Education Challenge [24]
and contains two identically structured halves: Eedi1 and
Eedi2. Each provides interaction logs of the student ID,
question ID, student answer (range a-d), and the correct
answer (range a-d). Every question has an associated list of
features including a question ID, and a list of subject IDs (a
list of IDs that correspond to mathematics concepts that are
covered by the question). Every student has an associated
list of features including gender, date of birth and a boolean
indicator if the student is financially disadvantaged or not.

4.2 EdNet Dataset
The EdNet dataset[5] was the largest publicly-available edu-
cation dataset when it was released in 2020. It contains over
131 million interactions from over 784,000 students who,

1https://eedi.com

Algorithm 1 DABSEC

Require: number of clusters to form s, cluster update fre-
quency Tcluster, user feature dynamics update frequency
U , exploration parameter α

1: Tinitial ← 0
2: for each i ∈ N do
3: Ai,0 ← I, bi,0 ← 0
4: yi ← 0
5: for t← 1, 2...Tfinal do
6: receive it ∈ N and obtain Ct = {c1,t, c2,t..., ck,t}
7: if length of G ≥ 0 then
8: gs,t ← Cluster where it resides at round t

9: θ̂gs,t ← 1
|gs,t−1|

∑
j∈gs,t−1

A−1
j,t−1bj,t−1

10: xcluster ← argmaxca,t∈Ct θ̂
⊺
gs,tca,t +CBr,gs,t where

CBr,gs,t ← 1
|gs,t−1|

∑
j∈gs,t−1

α
√

c⊺a,tA
−1
j,t−1ca,t

11: θ̂itt ← A−1
i,t−1bi,t−1

12: xuser ← argmaxca,t∈Ct θ̂
⊺
itt

ca,t + CBr,i where

CBr,i ← α
√

c⊺a,tA
−1
i,t−1ca,t

13: xt ← max(xcluster, xuser)
14: else
15: θ̂itt ← A−1

i,t−1bi,t−1

16: xt ← argmaxca,t∈Ct θ̂
⊺
itt

ca,t+CBr,i where CBr,i ←

α
√

c⊺a,tA
−1
i,t−1ca,t

17: pull xt and observe reward rt
18: Ai,t ← Ai,t−1 + xtx

−1
t

19: bi,t ← bi,t−1 + rtxt

20: if length of G ≥ 0 then
21: Ags,t,t ← Ags,t,t−1 + xtx

−1
t

22: bgs,t,t ← bgs,t,t−1 + rtxt

23: for fi,q,t ∈ Fi,t do
24: update fi,q,t according to information gathered

from problem setup and rt
25: yi,t ← yi,t + 1
26: Gt ← CLUSTER(U , Y, Tcluster, it)

over the course of two years, used the Santa2 platform to
study English for the Test of English for International Com-
munication (TOEIC) exam. The dataset is organized in a
4-level, hierarchical style, and we consider the KT1 version
for our analysis. The KT1 dataset is a collection of 784,309
CSV files, where each file contains the question answering
logs of one student. Each line represents a question that the
student answered, and includes the timestamp of the answer
submission, a solving ID, the ID of the answered question,
the student’s answer (from a-d), and the amount of time
spent answering the question. For each of the 13,169 ques-
tions in the dataset, the correct solution and the question
tags are provided. These question tags are identical to the
concept of subjects from the Eedi dataset described in sec-
tion 4.1. We refer to the tags as subjects for consistency.

4.3 Experiments
In this section we describe an educational setting where
an agent trained using DABSEC chooses personalized se-
quences of mathematics questions, based upon past student
performance, that are likely to be answered correctly by the

2https://www.aitutorsanta.com



Algorithm 2 CLUSTER

Require: user feature dynamics update frequency U , user
update counts Y, cluster update frequency Tcluster, user
it

1: if yi == U then
2: δi =

∑Q
q=1{|Fi,t − Fi,Tinitial |}

3: Tinitial ← t
4: yi ← 0
5: if t % Tcluster == 0 then
6: δsorted ← sort δ in ascending order
7: Gt ← split(δsorted,s) where split(x,y) splits x into

length(x)%y groups each of size length(x)
y

+ 1 and the

rest of size length(x)
y

8: return Gt

student. We apply DABSEC to Eedi1, Eedi2 and EdNet,
by first obtaining the full list of unique questions that each
student answered, along with the subject categories, the stu-
dent answer, and correct answer for each question. At each
round where user it is selected, we randomly sample 10 ques-
tions that student it has answered. Because we are inter-
ested in building an agent that can identify questions that
each student should be able to answer correctly, we follow a
recent approach [1] of selecting 9 questions that the student
answered incorrectly in the past, and 1 question that the
student answered correctly in the past. The correct ques-
tion is not revealed to the agent. Not all students in the
dataset answered enough total questions to be considered
in this experimental setup, so we selected a subset: for the
Eedi datasets, we consider the 50 users with the most total
questions answered. For the EdNet dataset, we sample 50
users who have answered over 1000 questions. Thus, dur-
ing each round of DABSEC, the agent receives a user, it,
a list of 10 random questions that it has answered in the
past (9 incorrect, 1 correct) and a context vector that con-
tains the student’s past performance by subject. The agent
then chooses 1 question that it believes it is mostly likely
to answer correctly. The agent is given a reward of 1 if it
correctly selects the 1 question that user it did answer cor-
rectly in the past, and a reward of 0 otherwise. To compare
the performance across datasets and against the baseline, we
calculate and report the cumulative average reward achieved
over every sequence of 50 timesteps.

Using the above setup, we first applied the original LOCB
algorithm to both datasets. The creators released an open-
source implementation of LOCB3 which we extended and
adapted to operate on our datasets. After the base setup,
the algorithm continually forms and updates clusters based
on the similarity of student’s unknown bandit parameter,
θ, which is a proxy for student preferences and behavior as
discussed in Section 3. At each timestep, LOCB computes
the average θ of the current student’s cluster and uses it to
select the question that was most likely answered correctly.
In the original work’s main experiments, the authors con-
clude that setting the number of clusters to 20, gamma to
0.2 and delta to 0.1 would return good results on average,
so we use these values for our LOCB implementation.

3https://github.com/banyikun/LOCB

(a) Eedi1 Dataset (b) Eedi2 Dataset

Figure 1: A comparison of the performance of DABSEC,
DABSEC + static, and LOCB on both Eedi datasets based
on cumulative average reward.

We then applied DABSEC to all datasets, with clusters be-
ing continually updated every Tcluster timesteps based on
the average bandit parameter, θ, of a user’s cluster, where
clusters are formed based on similarity of feature dynamics
as discussed in Section 3. We set the following hyperparam-
eters for both datasets: Tcluster = 1000, U = 10, and s = 3,
as these produced the best overall performance. Additional
hyperparameter settings are described in Appendix A.

Finally, for the Eedi dataset only, we follow an identical
setup as DABSEC described above with the addition of the
static (low dynamic) student features: the age, gender, and
if they are financially disadvantaged. We call this DABSEC
+ static. We do not apply DABSEC + static to the EdNet
dataset because there are no demographic features.

5. RESULTS AND ANALYSIS
We compare the performance of DABSEC, DABSEC + static,
and LOCB on all datasets, and describe DABSEC’s poten-
tial educational applications.

5.1 Results
As shown in Figure 1a, both of the DABSEC variations out-
perform the LOCB baseline by nearly 30% with respect to
cumulative mean reward obtained over time on the Eedi1
dataset. Neither DABSEC variation seems to outperform
the other. Looking at Figure 1b, we see that both DABSEC
variations again outperform the LOCB baseline on the Eedi2
dataset - this time by about 25%. In this dataset, DABSEC
slightly outperforms DABSEC + static but the gap is nearly
closed by the time we reach the end of the rounds. Finally,
in Figure 2, DABSEC outperforms the LOCB baseline by
over 30% on the EdNet dataset.

Our experimental results confirm that DABSEC achieves
better performance than LOCB on the Eedi1, Eedi2, and
EdNet datasets. We found evidence that identifying and
extracting feature dynamics can improve RL algorithm per-
formance, and that clustering users based on their feature
dynamics, rather than estimated user preferences alone, is a
good starting towards improving clustering algorithms based
on human diversity. We argue that the reason for this im-
provement is that identifying the highly dynamic features
allows DABSEC to search the space of context-reward as-
sociations more completely and more quickly, thus leading
to better reward. The low dynamic, static features, on the
other hand, either exclude part of the search space or explore



Figure 2: A comparison of the performance of DABSEC and
LOCB on the EdNet dataset based on cumulative average
reward. We ran 35,000 rounds until seeing evidence of sta-
bilization.

it more slowly than DABSEC is capable of learning, leading
to lower reward over the same timespan. This theory re-
quires further testing, but the results of applying DABSEC
to real data are promising, and further research into aug-
menting our clustering approach is planned for the future.

5.2 Implications for Education
We believe that a diversity aware approach to RL has high
potential in the education domain. Due to the amount of
individual behavioral data, one of the dominant use cases
of RL and Bandit algorithms is e-learning systems, where
students answer questions while the system attempts to ob-
serve, understand, and improve student knowledge based on
the responses [21]. This is an ideal environment where user
features are highly dynamic, as student performance across
subjects changes with each question answered. This is a
phenomenon we saw in our experiments in Section 4 and
were able to exploit to boost performance. We believe that
there is a potential for algorithms like DABSEC to further
improve e-learning technology.

6. CONCLUSION
In this work, we designed, implemented, and tested DAB-
SEC, a diversity aware RL algorithm that uses feature dy-
namics as a proxy for underlying human-contextual diver-
sity, then clusters users based on this metric. We hypothe-
sized that this technique could improve RL algorithms that
operate in environments where user data is highly dynamic,
and this proved true when applying DABSEC to two large-
scale educational datasets. DABSEC outperforms the LOCB
baseline by approximately 30% based on cumulative mean
reward earned over time, and we believe that extensions to
DABSEC can make it an ideal tool for building more per-
formant e-learning applications.

6.1 Limitations
Our approach is an initial attempt to develop a diversity
aware RL approach that leverages the dynamics of human
data over time. One major drawback is that if a dataset is
mostly comprised of features with low dynamics, the user
feature dynamics would always be calculated as near zero
and the clusters would be far less informative. Similarly,
our assumption that user’s could only be in one cluster may
fall short of fully capturing the most available data on every
student, as LOCB found by letting user’s reside in multiple

clusters simultaneously [1]. Similarly, by requiring all clus-
ters to include the same number of users, we may not be
forming the ideal clusters - for example, if the cluster size
dictates that each cluster should have 10 users, but there
are 3 users that are extreme outliers, then these 3 might
benefit from residing in their own cluster. Additionally, in
our definition of diversity, we assume that user features that
remain constant are likely surface-level, whereas more dy-
namic features are likely deep-level. Of course, this may not
hold in all situations; some people’s goals, personalities, and
values may never change, despite being classified as traits of
deep-level diversity. For the sake of this work, we make this
assumption based upon past sociology research [9, 13], but
acknowledge that it may not hold in all implementation use
cases. Finally, we followed the experimental approach that
LOCB[1] used by randomly selecting the data at each round
- we picked the student randomly, then randomly chose 9
questions that the student got incorrect and 1 that the stu-
dent got correct to serve as the arms. This assumes knowl-
edge of the entire dataset at the beginning, which would not
be the case in real-time e-learning systems which consider
student interactions as they occur.

6.2 Future Work
Further research should be conducted to improve upon our
initial findings. First, there is an opportunity to improve the
clustering algorithm to account for additional data about the
user. For example, users could be clustered using a combi-
nation of overall feature dynamics and the preferences of
users, represented by their unknown bandit parameter θ.
This technique may boost performance by clustering users
based upon both their preferences and how those preferences
are changing over time. Second, this work included run-
ning DABSEC on two real-world educational datasets, but
deploying DABSEC in the wild would offer further insight
into the usefulness of diversity-aware RL. We would like to
deploy DABSEC in a live e-learning platform so that it can
sequence learning content to students in real-time. Finally,
given that incorporating human data and diversity within
algorithms needs to be handled with care, an exciting exten-
sion of this work would be to consider if diversity-aware al-
gorithms have any implications on algorithmic fairness. For
instance, investigating whether or not algorithmic fairness is
more easily achieved with a diversity-aware algorithm, or if
diversity-aware algorithms are more or less transparent than
traditional algorithms are both important research areas to
explore.
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APPENDIX
A. HYPERPARAMETER VARIATIONS
Using the DABSEC algorithm on the EdNet dataset, we also
explored a few variations of the hyperparameters: the num-
ber of clusters to sort users into, s, the user feature dynam-
ics update frequency, U , and the cluster update frequency,
Tcluster. Like before, we measure the performance based
on cumulative mean reward achieved over time. Figure 3a
shows the effect of changing the frequency with which the
user feature dynamics are updated (U). We held the number
of clusters constant at 3 and the cluster update frequency
constant at 1000. We set U as 5, 10, 50, and 100, which rep-
resent how many questions need to be answered by a user
before we recalculate their current feature dynamics. We
can see that the performance of DABSEC is not effected
much by changing U , though the best performing variation
updated a user’s feature dynamics after every 100 questions
answered by that user. This makes sense, because a larger U



forces a larger amount of questions to be answered between
feature dynamics calculations, meaning that there will be
far more data to consider than when U is smaller. However,
the difference in performance is not very significant.

Figure 3b shows the effect of changing the frequency with
which the actual global clusters are updated (Tcluster). We
held the number of clusters constant at 3 and the user feature
dynamics update frequency constant at 10. We set Tcluster

as 500, 1000, 2000, and 5000, which represent how many
rounds occur between every instance of reclustering. We can
see that the performance of DABSEC is not effected much
by changing Tcluster, though the worst performing variation
updated clusters every 500 rounds. This makes sense, be-
cause a smaller Tcluster would not be considering as much
data when forming new clusters, which may result in clusters
that are less indicative of true similarities between users. It
would make sense that a higher Tcluster would result in more
data being considered by the clustering algorithm, thus re-
sulting in better clusters and a better performing algorithm.
However, the difference in performance is not very signifi-
cant.

Finally, Figure 4 shows the effects of changing the number
of clusters that users are placed into. DABSEC achieves
better performance when the number of clusters is smaller
(3), with performance incrementally worsening as the num-
ber of clusters increases to 5, 10, and 15. This is in line with
our expectations, as we are only using 50 total users which
makes the size of the clusters quite small as the number of
clusters increases. In the future, running these experiments
with more total users would be interesting.

Figure 4: Cluster size varies (3, 5, 10, 15) while Tcluster

(1000) and feature dynamics update frequency (10 rounds)
remains constant.

(a) Frequency of calculating user feature dynamics, δ, varies (5, 10,
50, 100 rounds) while clusters (3) and Tcluster (1000 rounds) remain
constant.

(b) Frequency of calculating the global clusters, Tcluster, varies (500,
1000, 2000, 5000 rounds) while clusters (3) and feature dynamics
update frequency (10 rounds) remain constant.

Figure 3: Hyperparameter variations using DABSEC on the
EdNet dataset.


