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ABSTRACT
We propose in this work a novel approach to retrieve the pre-
requisite structure of a domain model from learner traces.
We introduce the E-PRISM framework that includes the
causal effect of prerequisite relationships in the learner model
for predicting the learner’s performance with knowledge trac-
ing. By studying the distribution of the learned values of
each learner model parameter from synthetic data, we pro-
pose new metrics for measuring the existence, direction, and
strength of a prerequisite relationship. We apply the same
methodology to real-world datasets and observe promising
results in retrieving the prerequisite structure of a domain
model from learner traces.
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1. INTRODUCTION
The prerequisite relationships, which describe dependencies
between knowledge components, play a crucial role in deter-
mining the most effective instruction sequence for students.
The objective of this research is to answer the following ques-
tion: is it possible to propose a learner model where the
parameters are enough interpretable to detect the domain
model’s prerequisite relationships, on top of predicting the
learner performance?

We introduce the E-PRISM framework, which relies on an
interpretable learner model, to analyze learners’ data and
detect the prerequisite structure of the domain model. We
summarize our contributions in this work as follows. First,
we introduce an effective and tractable method for incor-
porating prerequisite relationships into a continuous scale
of the learning process. Second, we define new metrics for
assessing the causal impact of prerequisite relationships uti-
lizing the interpretable parameters of the E-PRISM learner
model and we apply them to real-world datasets.

2. DISCOVERING THE PREREQUISITE
STRUCTURE OF THE DOMAIN MODEL
THROUGH LEARNER MODELING

We provide an overview of the current state-of-the-art meth-
ods for retrieving the prerequisite structure of the domain
model through learner modeling. We focus specifically on
the learner performance prediction models and how they are
used in the literature to determine the prerequisite structure
within a domain model.

2.1 Approaches in learner modeling
In the field of learner modeling a variety of algorithms can be
used to predict students’ performance on assessments, diag-
nose their strengths and weaknesses, and track their learning
progress over time.

One of the popular and used methods is logistic regression,
a statistical model to predict the likelihood of an event oc-
curring given a set of predictors or independent variables.
Some logistic regression algorithms, such as IRT [11] and
MIRT [19], use simple features, while others, such as LFA
[2], PFA [17], DAS3H [3], and Best-LR [9], use engineered
and more complex features.

Besides, cognitive diagnosis algorithms model the learner’s
knowledge state to predict their answers. Non-temporal
Bayesian network (BN) approaches, such as DINA [10], NIDA
[14], and DINO [21], use BNs to compute the probability of
answering correctly by modeling the learner’s mastery of
Knowledge Components (KCs). Bayesian Knowledge Trac-
ing (BKT) uses BNs to track the learner’s knowledge over
time [5] and assumes knowledge states to be dynamic.

Deep learning techniques have been applied to learner mod-
eling and have gained popularity due to their ability to learn
and extract features from large and complex datasets auto-
matically. Deep Knowledge Tracing (DKT) is a deep learn-
ing model for the knowledge tracing task using a neural net-
work to learn a non-linear model of the learner’s knowledge,
allowing it to capture more complex patterns and make more
accurate predictions [18]. Variants of DKT have been de-
veloped, but they generally only show minor performance
gains compared to the original DKT model [20], except Self-
Attentive Knowledge Tracing (SAKT) [16]. However, Jaeger
has reported that even the more interpretable deep learning
techniques are less interpretable than probabilistic graphical
models such as BNs [12].
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2.2 Prerequisite structure in learner models
A priori knowledge of the domain to construct a model of
the prerequisite structure has been integrated into simple
learner models, most of the time with Bayesian networks
(BN) [4, 1]. These techniques typically involve experts us-
ing their domain knowledge to define the prerequisite rela-
tionships between the KCs through the probabilities in the
networks. Also, works employ data to retrieve the condi-
tional probabilities that rule such BNs [7].

Another approach to retrieve the prerequisite structure of
the domain model is to use the predicted knowledge states of
a learner over time. The idea is to use the predictions made
by a learner model, which estimates the learner’s knowl-
edge state at different points in time, to infer the prereq-
uisite relationships between the knowledge components [18,
7]. This can be done by comparing the masteries of the dif-
ferent knowledge components over time. The prerequisite
structure of the domain model can then be determined by
conducting a statistical study of these inferred states.

Finally, the work of Käser et al. is notable for its use of a
Dynamic Bayesian Network (DBN) to model the effect of
the prerequisite structure between knowledge components
in learner models [15]. The DBN includes arcs between the
variables of related KCs’ mastery, which allows for modeling
the causal effect of relationships between KCs. However, as
the number of prerequisite KCs increases, the DBN’s condi-
tional probability distributions (CPDs) can become complex
to interpret. The number of parameters grows exponentially
with the number of prerequisite relationships and can be
challenging to analyze. Despite this limitation, Käser’s ap-
proach is a promising method for modeling the prerequisite
structure in learner models, as it allows for explicitly mod-
eling the causal effect of relationships between KCs.

3. E-PRISM: EMBEDDING
PREREQUISITE RELATIONSHIPS
IN STUDENT MODELING

In this research work, we introduce a new student model-
ing framework called E-PRISM (for Embedding Prerequisite
Relationships in Student Modeling). The E-PRISM domain
model supposes a decomposition of the domain knowledge
into Knowledge Components (KCs). The E-PRISM learner
model assumes the learner knowledge defined as the binary
masteries of each KC in the domain model. Predictions
about learners’ knowledge state and performance are made
from data on the learner’s interactions with learning sys-
tems.

3.1 Overview of the E-PRISM learner model
The learner model in E-PRISM is a knowledge-tracing model
that considers variables for the mastery of several KCs of the
domain model. Knowledge tracing is performed through a
dynamic Bayesian network (DBN) which models the mas-
tery of KCs over time. The DBN leverages the causal effect
of the learning process and the causal effect of the prerequi-
site relationships to infer learners’ knowledge states at any
time.

E-PRISM has a key feature that sets it apart from other stu-
dent modeling frameworks. It utilizes ICI-based conditional

probability distributions (CPDs) [8] to model the causal ef-
fects of the learning process and the prerequisite relation-
ships on the KC mastery at each timeslice. This defines
KC mastery variables as deterministic functions of variables
representing the independent causal effects that influence
them. We represent the part of the DBN associated with
the mastery of a KC X at a time t > 0 in Figure 1.

Figure 1: Noisy-AND gate of X and its Markov blanket in the
DBN of E-PRISM. The Noisy-AND gate is colored blue. It is
composed of a variableXt for KC mastery, defined as an AND
function of auxiliary variables representing the causal effect of
both its learning process and the mastery of its prerequisite
KCs. The auxiliary variables are T , representing the causal
effect of learning and forgetting on X mastery, and Zi for
each X prerequisite, representing the causal effect of the i-
th prerequisite mastery on X mastery. Pat

X,i is the variable
associated with the mastery of the i-th X prerequisite.

The DBN is composed of Noisy-AND gates for each KC
and each timeslice. We represent a toy example of the
DBN in Figure 2. The parameters of the DBN are learned
with the Monte-Carlo Expectation-Maximization (MCEM)
algorithm [23]. The MCEM algorithm is a variant of the
Expectation-Maximization (EM) algorithm [6]. It considers
the expectations of the E-step to be approximated with a
Monte-Carlo sampling, which is the Blocking Gibbs sam-
pling (BGS) [13] in our research. MCEM with BGS allows
for a converging and tractable parameter learning of the
learner model in E-PRISM.

3.2 Interpretability of parameters
ICI-based CPDs rely on a pair of parameters for each causal
effect. In the E-PRISM learner model, there are parame-
ters associated with the learning process, namely (lX, fX)
for each KC X, and parameters associated with the prereq-
uisite relationship, namely for (qX,i, sX,i) each prerequisite i
of each KC X. lX and fX parameters are the probabilities
of learning and forgetting X. qX,i is the probability that the
i-th prerequisite of X is not sufficient to master X. On the
other hand, sX,i is the probability the i-th prerequisite of X
is not necessary to master X. These interpretable param-
eters allow for a clear understanding of the causal effects
of the learning process and prerequisite relationships on the



Figure 2: Example of the DBN that encodes the learner’s knowledge state and considers a domain model {A,B,C} with
prerequisite relationships A → C and B → C.

learner’s performance. E-PRISM allows for the identifica-
tion and understanding of the prerequisite structure of the
domain model, which is a key focus of our research.

3.3 Metrics from E-PRISM
First, we highlight the gain of performance induced by the
presence of an effective prerequisite relationship in the E-
PRISM learner model. We wonder if the difference between
the Root Mean Squared Error (RMSE) values obtained from
different E-PRISM learner models depends on their prereq-
uisite structure. We generate three synthetic datasets D∅,
Dweak, and Dstrong. D∅ is generated from an E-PRISM
learner model considering no prerequisite relationship be-
tween A and B. Dstrong is generated from an E-PRISM
learner model that considering a strong prerequisite relation-
ship A → B. Dweak is generated from an E-PRISM learner
model considering a weak prerequisite relationship A → B.
By generating these synthetic datasets, we will be able to
study the performance of the E-PRISM framework in dif-
ferent scenarios where the prerequisite relationship between
A and B is varied. We learn the parameters of three E-
PRISM learner models, namely e∆∅, e∆A→B, and e∆B→A.
e∆∅ assumes no prerequisite relationship, while e∆A→B and
e∆B→A respectively assume A → B and B → A. We run
1000 simultaneous instances of the MCEM algorithm, with
parameters NGibbs = 10 and M = 0, to perform E-PRISM
parameter learning. The full synthetic dataset is used as a
training dataset. We report the RMSE values obtained from
parameter learning in Table 1.

Table 1: Best RMSE values computed by comparing E-
PRISM predictions with the entire data that considers a
strong prerequisite relationship. Parameter learning of E-
PRISM models is also realized with the full dataset.

Method RMSE on DA→B,strong

e∆∅ 0.353
e∆A→B 0.327
e∆B→A 0.394

We assume the presence of an effective prerequisite relation-
ship in the E-PRISM learner model enhances the model’s

performance. Thus, to study a prerequisite relationship
A → B, we can compare the performance of e∆A→B, the E-
PRISM learner model that considers the relationship A →
B, and e∆∅, the model with no prerequisite relationship.
We define the LePPED (for Learner Performance Prediction
Error Difference) metric to identify the existence and the
direction of the prerequisite relationship. We compute the
relative difference between their RMSE value obtained af-
ter learning parameters. LePPED is computed in Equation
(1). It senses the direction of the prerequisite relationship
between two KCs.

LePPED(A → B) =
1

K

(RMSE of e∆∅ − RMSE of e∆A→B)

RMSE of e∆∅
(1)

where K is a normalizing constant.

LePPED(A → B) is a measure for the existence of the
prerequisite relationship, as it indicates how better the E-
PRISM model performs by considering A → B. LePPED
ranges from −1 (very unlikely there exists a relationship
A → B) to 1 (very likely there exists a relationship A → B).

Upon analyzing the distributions of the E-PRISM param-
eter learned values, we observed shifts in the value of the
parameter when the direction of an effective prerequisite re-
lationship is reversed. We introduce a custom metric CPVD
(for Comparing Peak Values of the Distribution) computed
by comparing the peak values of the learned parameter dis-
tributions. CPVD is defined in Equation (2).

CPV D(A → B) =
1

6

(
1(lA→B

A > lB→A
A ) + 1(lA→B

B < lB→A
B )

+ 1(fA→B
A < fB→A

A ) + 1(fA→B
B > fB→A

B )

+ 1(qA→B > qB→A) + 1(sA→B < sB→A)
)

(2)

where 1 is the identity function.

CPVD is an indicator of the existence and the direction of
the prerequisite relationship. It ranges from 0 to 1. The



Figure 3: Distribution of the values of prerequisite parame-
ters obtained from training on synthetic data.

greater CPVD(A → B), the most likely the existence of the
A → B relationship.

Finally, we benefit from the enhanced interpretability al-
lowed by ICI-model CPDs in the E-PRISM learner model.
We observe the distribution of the learned values of q and s
parameters in the different situations for the E-PRISM pa-
rameter learning procedure. Specifically, we study E-PRISM
learner models that either assume the correct or the wrong
direction of the prerequisite relationship A → B, which is
expressed in the data strongly (through Dstrong) or weakly
(through Dstrong).

Based on these previous observations, we propose a novel
metric based on the distribution of the s parameter learned
values. This second metric Nec is calculated by determin-
ing the proportion of learned values of s lower than 0.2 ob-
tained in all the runs of parameter learning. It stands for the
strength of the prerequisite relationship, according to the in-
terpretation of the s parameter. The closer to 1 the value of
Nec, the stronger the prerequisite relationship between the
two considered KCs.

Nec =
1

K

Number of learned parameter values lower than 0.2

Total number of learned parameter values
(3)

with K a normalizing constant.

By combining these three metrics, we should be able to
gain a deeper understanding of the interpretability of the E-
PRISM learned parameters, and how they can be employed
to retrieve the prerequisite structure (existence, direction,
and strength) of the domain model in E-PRISM.

4. DISCOVERY OF THE PREREQUISITE
STRUCTURE FROM REAL-WORLD
DATA

4.1 Method
We study real-world data to evaluate the generalizability of
the proposed metrics for measuring the existence, direction,
and strength of prerequisite relationships.

We evaluate the capacity of our model to search for the exis-
tence, direction, and strength of prerequisite relationships in

the ASSISTments12, Eedi2020, and Kartable datasets. AS-
SISTments12 is issued from the ASSISTment system, with a
relatively coarse granularity of KCs. Eedi2020 was released
as part of a NeurIPS2020 challenge and is issued from the
Eedi system. Kartable is provided by Kartable and is not
freely available.

We focus on the study of pairs of KCs because of tractability
issues of E-PRISM with larger domain models. We consider
the sub-datasets restricted to pairs of KCs and restrict each
sub-dataset to learner traces from students that trained both
KCs. Specifically, we have selected the 6 pairs of KCs with
the highest number of learners transactions. Selected pairs
of KCs are listed in Table 4 in Appendix A. Additionally, we
only consider seven transactions per learner in the parameter
learning procedure to ensure its tractability.

4.2 Study of the proposed metrics
We wonder how the metrics relate to the prerequisite struc-
ture of the domain model with real-world data. We report
metrics’ values for each selected pair of KCs in Table 2.

Some of the relationships with high custom metric scores are
prerequisite relationships according to common knowledge.
In particular, relationships between addition KC and multi-
plication KC are greatly represented. The ordering of met-
ric values can be interpreted as a prerequisite relationship
strength. Metrics CPVD and Nec show great performance
for relationships Determine if a real number is a root of a
quadratic polynomial → Give the roots of a quadratic poly-
nomial, Give the roots of a quadratic polynomial → Give the
sign chart of a quadratic polynomial, and Addition and Sub-
traction Positive Decimals → Multiplication and Division
Positive Decimals. We can clearly observe that these de-
tected prerequisite relationships, thanks to the CPVD and
Nec metrics, are coherent with the mathematics domain
knowledge. Nevertheless, we remark that there is also a
relationship suggesting that Multiplication and Division In-
tegers is a requirement of Addition and Subtraction Integers.
These relationships should be submitted for the approval of
experts in the domain.

4.3 Relative agreement between metrics
We study the relative agreement between introduced met-
rics for asserting the correctness of the inferred prerequisite
structure. To do so, we compute the Cohen kappa [22] be-
tween the metric predictors. For each sub-dataset, we eval-
uate the reliability between metrics on the existence and
direction of the corresponding prerequisite relationship.

For every KCs A and B, we define predictors on the ex-
istence of the prerequisite relationship A → B from each
metric by checking if they are positive. Similarly, predictors
for the correct direction of the prerequisite relationship are
introduced by comparing the metric value of both directions
of the relationship between A and B. We also introduce a
predictor that combines the two conditions, and we present
the results in Table 3.

We observe that the predictors of the existence of the pre-
requisite relationship give different results depending on the
employed metric. The predictors for the direction of the
prerequisite relationships grossly agree with each other, es-



Table 2: Scores of the metrics LePPED, CPVD, and Nec on relationships that have been predicted as prerequisites according
to the CPVD and Nec predictors.

Order Relationship LePPED Relationship CPVD Relationship Nec
1 ASI → ASF 1 ASPD → MDPD 1 Root → Solve 1
2 Chart → Solve 0.85 Solve → Chart 1 MMD → MAS 0.89
3 ASI → MDI 0.72 Root → OR 0.92 Solve → CF 0.89
4 Root → OR 0.56 Root → Solve 0.92 Solve → Chart 0.89
5 Solve → Chart 0.54 MDI → ASI 0.83 ASF → DF 0.78
6 ASF → DF 0.49 ASI → ASF 0.83 E → ASI 0.78
7 MMD → MAS 0.45 FHCF → MLCM 0.83 MAS → MMD 0.78
8 PNPF → FHCF 0.44 PNPF → MLCM 0.83 ASPD → MDPD 0.67
9 VNP → MMD 0.42 VNP → MMD 0.75 MPDP → ASPD 0.67
10 MDI → ASI 0.34 ASF → DF 0.58 FHCF → MLCM 0.67
11 OR → Root 0.33 FHCF → PNPF 0.58 PNPF → MLCM 0.67
12 MMD → VNP 0.29 MAS → VNP 0.58 Root → OR 0.56
13 DF → ASF 0.28 Chart → CF 0.58 CF → Chart 0.56
14 ASF → MF 0.23 ASF → MF 0.5 ASF → MF 0.44
15 MAS → MMD 0.23 ASI → E 0.42 ASI → ASF 0.44

Table 3: Cohen kappa values obtained from measuring the
agreement of metrics LePPED, CPVD, and Nec on the ex-
istence and direction of the prerequisite relationships.

Existence Direction Ex. + Dir.
LePPED CPVD 0.133 0.325 0.111
LePPED Nec −0.071 0.55 0.117
CPVD Nec 0.053 0.55 0.778

pecially LePPED with Nec and CPVD with Nec. Finally,
when considering the two conditions in the predictor, we ob-
serve a strong agreement between CPVD and Nec, CPVD
andNec then suggest the same relationships to be part of the
prerequisite structure of the domain. On the other hand, we
observe a weak agreement (near random) between LePPED
and the other metrics.

This result suggests that RMSE is not sufficient to infer the
prerequisite relationships from data, even if it can be in-
terpreted as a first filter to determine the existence of the
prerequisite structure with LePPED. Nevertheless, even if
the relevance of CPVD and Nec have been confirmed by the
results, they should be compared with the predictions of ex-
perts, to assess that the joint agreement between CPVD and
Nec indeed corresponds to the correct prerequisite structure.

5. CONCLUSIONS AND PERSPECTIVES
In conclusion, this work presents a novel approach for lever-
aging the causal effect of prerequisite relationships to infer
students’ knowledge state over time. The E-PRISM frame-
work, which utilizes Dynamic Bayesian Networks (DBNs)
to predict student performance, is based on a set of inter-
pretable parameters that sense the causal effect of the learn-
ing process and the structure of prerequisite relationships in
a specific domain. Our study demonstrates the ability of
these parameters to compute metrics, such as CPVD and
Nec, which can infer the existence, direction, and strength
of prerequisite relationships. Our results, applied to the
domain of mathematics, indicate the existence of common
knowledge prerequisite relationships. However, further re-
search is necessary to verify the effectiveness of these pre-

dictions by examining each inferred relationship from an
expert’s point of view. In summary, this work presents a
promising approach for inferring prerequisite relationships
in educational data mining from analyzing an interpretable
learner model.
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APPENDIX
A. KNOWLEDGE COMPONENTS IN THE

REAL-WORLD SUB-DATASETS



Table 4: Studied couples of knowledge components for each real-world dataset

Dataset A B
ASSISTments12 Addition and Subtraction Integers (ASI) Multiplication and Division Integers (MDI)
ASSISTments12 Addition and Subtraction Fractions (ASF) Multiplication Fractions (MF)
ASSISTments12 Addition and Subtraction Integers (ASI) Addition and Subtraction Fractions (ASF)
ASSISTments12 Addition and Subtraction Positive Decimals

(ASPD)
Multiplication and Division Positive Decimals
(MDPD)

ASSISTments12 Addition and Subtraction Fractions (ASF) Division Fractions (DF)
ASSISTments12 Addition and Subtraction Integers (ASI) Exponents (E)

Eedi2020 Factors and Highest Common Factor (FHCF) Multiples and Lowest Common Multiple (MLCM)
Eedi2020 Factors and Highest Common Factor (FHCF) Prime Numbers and Prime Factors (PNPF)
Eedi2020 Multiples and Lowest Common Multiple (MLCM) Prime Numbers and Prime Factors (PNPF)
Eedi2020 Volume of Non-Prisms (VNP) Mental Multiplication and Division (MMD)
Eedi2020 Volume of Non-Prisms (VNP) Mental Addition and Subtraction (MAS)
Eedi2020 Mental Addition and Subtraction (MAS) Mental Multiplication and Division (MMD)
Kartable Determine the canonical form of a quadratic poly-

nomial (CF)
Give the roots of a quadratic polynomial (Solve)

Kartable Determine if a real number is a root of a quadratic
polynomial (Root)

Find an obvious root for a quadratic polynomial
(OR)

Kartable Give the roots of a quadratic polynomial (Solve) Determine if a real number is a root of a quadratic
polynomial (Root)

Kartable Determine the canonical form of a quadratic poly-
nomial (CF)

Give the sign chart of a quadratic polynomial
(Chart)

Kartable Give the roots of a quadratic polynomial (Solve) Give the sign chart of a quadratic polynomial
(Chart)

Kartable Find an obvious root for a quadratic polynomial
(OR)

Calculate the discriminant of a quadratic polyno-
mial given in the expanded form (D)


