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ABSTRACT
It is well–known that personalized instruction can enhance
student learning. AI–based education tools can be used to
incorporate blended learning in the science classroom, and
have been shown to enhance teachers’ ability to prescribe
this personalization. We utilise cluster analysis to reveal
student knowledge profiles from their response data. How-
ever, clustering algorithms typically require the number of
clusters as a hyperparameter, yet there is no clear method
for choosing the optimal number. Motivated by a practical
instance of this foundational problem for a group–based per-
sonalization tool, this paper discusses several variations of
the gap statistic to identify the optimal number of clusters
in student response data. We begin with a simulation study
where the ground truth is known to evaluate the quality of
the identified methods. We then assess their behaviour on
real student data and suggest a stability–based approach to
validate our predictions. We identify an empirical thresh-
old for the number of observations required for a prediction
to be stable. We found that if a dataset had cluster struc-
ture, very small subsamples also showed cluster structure
– large datasets were only required to discern the number
of clusters accurately. Finally, we discuss how the method
enables teachers to tailor their personalization according to
their class environment or teaching goals.
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1. INTRODUCTION
In recent years, the increased usage of digital learning envi-
ronments has led to the mass collection of student data [3].
The task of translating these data into tangible insights for
understanding and improving student learning remains an

active challenge. Blending technology into student learning
and providing actionable analytics has massive potential to
support teachers in adopting personalized pedagogy [4, 24,
32, 45]. Personalized instruction has been shown to signif-
icantly enhance learning outcomes by adapting various at-
tributes of the learning procedure, such as the pace and the
contents, to the specific needs of the individual students [6,
56]. The recent development of GrouPer, a learning analyt-
ics tool, has assisted teachers in implementing more person-
alized instruction [39]. The tool was co–designed with teach-
ers and separates students into competency-based knowl-
edge profiles. Whilst participating teachers acknowledged
the power of personalization, they suggested that individ-
ual tailoring would be impractical in real K–12 classrooms,
and that ‘group–based personalization’ would be a viable
compromise between individual adaptation and frontal in-
struction, whilst also supporting social learning. In addition
to competency–based profiling of the students, the teachers
also requested semantic information explaining the knowl-
edge profile that each cluster represents; providing this in-
formation has been shown to enhance teachers’ ability to pre-
scribe personalized learning sequences [39]. GrouPer with its
group–based personalization strategy is currently being inte-
grated into the PeTeL (Personalized Teaching and Learning)
environment1, allowing teachers to blend digital learning re-
sources into their teaching and provide personalized peda-
gogy. Over 1000 physics, chemistry, and biology teachers
have chosen to make the environment accessible to more
than 12,000 students in real classrooms since 2018. In order
to perform a sound analysis, GrouPer must first identify how
many unique knowledge profiles a given activity contains.
This is an instance of a fundamental problem – deciding on
the number of clusters in a dataset. This is relevant for
many applications in education [44, 46], such as discovering
knowledge profiles, adaptive learning and student modelling
[12, 13, 21, 22, 25, 29, 33, 34, 40, 50]. Despite this vast
use, the issue of investigating ways to decide on the num-
ber of clusters in student response data was not studied in
a systematic manner. This is the focus of the current work,
which is motivated, as described above, by an actual EDM
application.

1https://stwww1.weizmann.ac.il/petel/en/home-en/
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2. BACKGROUND
In our application, the student responses to each activity
are binary. The number of responses for each activity may
vary from a few hundred responses to many thousands. The
datasets are highly dimensional, where the number of ques-
tions ranges between 5 to 30. Combined with the inherent
noise in human–based data [40], identifying cluster structure,
if it exists, is significantly non–trivial. Unsupervised cluster-
ing learns the natural groups in a dataset from the raw data
alone [20, 26]. This can be difficult, since there is no rigor-
ous definition of a cluster [19]. Cluster analysis is used in
a wide range of applications. Outside of education, it has
found usage in image recognition [17], healthcare [30] and fi-
nance research [14], amongst many others. There are many
algorithms in the literature, such as density–based clustering
(e.g. DBSCAN [11]), distribution clustering (e.g. Gaussian
mixture modelling [8]) and hierarchical clustering [37]. To
avoid placing strict assumptions on our data structure, we
choose the simple yet robust k–means algorithm [20, 31, 49].

The k–means algorithm takes a predefined number of clus-
ters as a hyperparameter, k. One can initialise the cluster
centroids randomly, or choose them strategically to avoid
finding a local minima [54]. Each point is assigned to its
nearest centroid; each centroid is then updated by taking
the mean of all cluster members. This procedure is repeated
until convergence. An alternative framework is the k–modes
algorithm [7, 18], which updates the centroids by taking the
mode of all members, retaining their binary nature. For our
application, since there is no inherent meaning to the cen-
troid, we use the more robust k–means algorithm, which we
found to provide more reliable clustering than k–modes.

3. METHODOLOGY
A handful of methods exist in the literature to identify the
optimum number of clusters within a dataset, denoted k∗.
Classical statistical approaches (e.g. silhouette index [47])
have been used for many decades. X–means works along-
side k–means to estimate k∗ using information criteria [41].
Cluster prediction and validation methods have also been
exploited [9]. Information theoretic approaches [51] and
eigenvalue decomposition methods [16] have recently been
implemented with success. However, the simple gap statis-
tic has remained a consistent contender, and importantly
does not require stringent assumptions to be made on the
dataset. We follow the approach from Tibshirani [53], mea-
suring the quality of clustering at each value of k. We use
the Euclidean metric as a measure for the distance between
two observations. For each cluster, we calculate the total
distance between all members:

Dr =
∑

i,i′∈Cr

∥xi − xi′∥2 = 2nr

∑
i∈Cr

∥xi − µr∥2. (1)

We reduce the complexity to O (nr) by comparing each point
to the cluster centroid, µr. Taking the sum over all clusters,
we obtain the total within–cluster sum of squares (WSS):

Wk =

k∑
r=1

1

2nr
Dr. (2)

As we increase the number of clusters, this quantity will
monotonically decrease. After the optimal number, since
all points are already close to a centroid, the total WSS

plateaus, creating a sharp ‘kink’ at the optimum k. Methods
of detecting this bend have been developed [48], but can be
subjective, particularly for noisy data. To alleviate this, we
utilise the gap statistic [53]; a comparison between the true
sample data and its expectation under an appropriate null
reference distribution, (W ∗

k ):

Gap(k) = E [log (W ∗
k )]− log (Wk) . (3)

We obtain E [log (W ∗
k )] by taking the average of many binary

bootstrapped samples. Finally, k∗ is selected by considering
adjacent values of the gap plot with the selection criterion:

k∗ = min
k

{Gap(k) ≥ Gap(k + 1)− sk+1} , (4)

where sk = sdk

√
1 + 1/B and sdk is the standard deviation

of the bootstrap samples. In our work, we took B = 280,
but we observed no significant difference with varying B.
The gap statistic performs well when clusters are well-separated
and uniform, but fails when the dataset becomes noisy. Prior
work removed the logarithms in Eq. (3) [36]; we observed
no benefit in doing so. Finally, the criterion in Eq. (4) is
not robust; even if the plot has a clear optimum, the crite-
rion fails to identify it correctly. We identify two methods to
successfully overcome both of these issues: the weighted gap
and DD–stopping criterion. The weighted gap approach [57]
is identical to Tibshirani’s approach, but modifies Eq. (2):

W ∗
k =

k∑
r=1

D∗
r =

k∑
r=1

1

2nr(nr − 1)
Dr. (5)

This robust quantity D∗
r represents the averaged sum of the

pairwise distances between all points in cluster r; this averag-
ing reduces sensitivity to outliers. These statistics are inter-
preted as a comparison between a dataset and a truly unclus-
tered distribution, which is crucial for identifying datasets
with no cluster structure. However, the weighted gap statis-
tic is also prone to overestimate the numbers of clusters,
even if there is a clear optimum in the curve. We consider
the alternative ‘DD–stopping criterion’ [57], which compares
adjacent neighbours in the gap curve:

k∗ = max {2Gap(k)−Gap(k − 1)−Gap(k + 1)} . (6)

We have also used this criterion with the Tibshirani gap
statistic. We therefore consider four methods: the gap statis-
tic, the weighted gap statistic, and their DD–stopping cri-
terion variants. Their typical outputs are shown in Fig. 1.
We note that the DD–comparisons not only estimates the
‘dominant’ cluster structure, but also suggests multiple local
maxima. The gap statistic can also produce local maxima
[53]; we only obtained a single maximum in our applications.

On real student data, we do not know the ground truth. We
begin with a simple study on five different structures of bi-
nary synthetic data. In all cases, the dataset will be a matrix
of dimensions ns ×nf , where ns is the number of student re-
sponses and nf is the number of items within the activity. In
the context of this study, we refer to the items as features of
the model. The simplest structure, but perhaps most funda-
mental, is the case when the data has no inherent clustering
(Model N). Here, the data is simply noise: we generate a ma-
trix where each entry is uniformly chosen to be either 0 or 1.
Well–defined cluster structure (Model WC) is generated by
defining a matrix of correct responses and overlaying blocks



2 4 6 8 10
Number of clusters, k

0.50

0.75
G

ap

2 4 6 8 10
Number of clusters, k

0.50

0.75

W
G

ap
2 4 6 8 10
Number of clusters, k

0.0

0.1

D
D

–G
ap

2 4 6 8 10
Number of clusters, k

0.0

0.1

D
D

–W
G

ap

Figure 1: Outputs of the gap statistic, weighted gap statistic,
and their DD–variants as a function of the hyperparameter
k, shown for synthetic dataset R1 (Table 1).

Table 1: Predicted k∗ for a selection of synthetic models. Pre-
dictions denoted ‘F’ failed to satisfy the selection criterion.
DD–local maxima are in brackets. Here, n∗

s = ns/1000.

Synthetic Model k∗ Prediction

Model nf n∗
s k Gap WGap DD–Gap DD–WGap

N1 20 1 1 1 1 – –

WC1 20 1 5 F 8 5 5
WC2 20 1 8 F F 8 8

UWC1 20 1 5 6 F 5 5
UWC2 5 1 3 3 9 3 3

R1 20 1 5 7 5 5 (3, 5) 5 (5, 7)
R2 5 1 3 F 7 3 (3, 6) 3 (3, 7)

UR1 15 1 3 F 8 3 3 (3, 6, 8)
UR2 15 1 5 F 6 3 (3, 5) 2 (2, 4, 6)
UR3 15 10 5 F F 5 2 (2, 4, 7)
UR4 15 1 8 F F 6 (3, 6) 7 (4, 7)
UR5 20 1 5 F F 5 (5, 8) 2 (2, 5, 7)
UR6 32 1 8 F F 7 (3, 7) 2 (2, 5, 8)

of incorrect responses along the diagonal. We assume that
different clusters have students who are weak in particular
skills – a specific block of questions are assumed to measure
a particular skill. For k evenly sized clusters, each block
has dimensions of ns/k×nf/k. To generate psuedo-realistic
datasets with noise (Model R), we allow for the probability
of students slipping (Pslip = 0.1) and guessing (Pguess = 0.2)
[40]. We generate the background matrix where each entry
has a probability of 1−Pslip to be correct. We again overlay
incorrect diagonal blocks but allow for the chance of guess-
ing; each entry has a probability of 1−Pguess to being incor-
rect. Finally, we impose uneven population distributions by
defining the kth triangle number, kt = k(k+1)/2. Each clus-
ter population has an increasing fraction of kt; e.g. cluster n
has n/kt of the total population. This is utilised in the well
clustered and realistic synthetic datasets, Models UWC and
UR respectively. It is worth noting here that the number of
features assigned to each cluster remains constant.

4. RESULTS ON SYNTHETIC DATA
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Figure 2: Outputs of the gap statistic, weighted gap statistic,
and their DD–variants as a function of the hyperparameter
k, shown for the real dataset P2 (Table 4).

A selection of results on synthetic data is shown in Table 1.
On unclustered data (Model N), both the gap method and
the weighted gap method are able to successfully identify
unclustered data. However, on well–clustered data (Model
WC), both methods predicted poorly; as can be seen in Fig.
1, the kink of the plot commonly occurs at the correct k, yet
the stopping criterion proposed by Tibshirani is unsatisfac-
tory. Both the gap and weighted gap methods were found
to suffer from this problem, typically overestimating the
number of clusters within the system. The DD–comparison
methods were found to solve this issue, performing excel-
lently for data with well–separated and compact clusters.
The same results are found with uneven well–clustered data
(Model UWC). On more realistic data (Model R), we see
similar results. Again, the gap and weighted gap methods
are unable to identify the correct number of clusters; how-
ever, they were able to identify that some cluster structure
exists. The DD–comparison methods again performed well.

Finally, on the uneven realistic data (model UR), we see
some interesting results. Model UR1, where each cluster
had 5 features, provided the correct prediction. In Mod-
els UR2–4, the predicted value from the DD–models was
not correct; we can gain some insight by interpreting the
‘strength’ of a cluster. Models UR2 and UR3 have 3 ques-
tions per cluster, whilst Model UR4 has between 1 and 2
questions per cluster. By comparing the labelling of stu-
dents from the synthetic generation to the labels generated
from the clustering, we found that the smallest clusters are
prone to being mislabelled and ‘absorbed’ into the noise of
others. Increasing the number of students within this small-
est clusters has no effect, as seen in comparing Models UR2
and UR3. We conclude that the strength of a cluster with
binary data is determined by the number of questions asso-
ciated with each cluster – in Models UR5 and UR6, each
cluster has 4 features within it and the method is now able
to predict correctly. The DD–gap and the DD–weighted
gap performed similarly. We therefore adopt a two–step ap-
proach: we first apply the gap or weighted gap method to
discern if k > 1, and then use the DD–comparison method
for determining the optimal number of clusters.

5. RESULTS ON STUDENT DATA
The student data considered here was collected from PeTeL
activities in a mixture of subjects (Physics, Chemistry) and



Table 2: Predicted k∗ for a variety of real student datasets.

Student Dataset k∗ Prediction

ID Number nf ns WGap DD–WGap

P1 17 1572 4 2 (2, 4)
P2 18 726 5 5 (2, 5, 9)

C1 23 943 4 4 (2, 4, 7, 10)
C2 13 216 4 4 (2, 4, 6, 9)

subtopics (magnetism, forces). An example output on real
student data is shown in Fig. 2. Since the signal to noise
ratio is now lower, the original gap statistic curve is much
shallower. Correspondingly, the DD–Gap method does not
provide significantly meaningful predictions, typically find-
ing the optimum number of clusters to be 2; we attribute
this to the algorithm identifying the simple splitting of the
students into strong/weak groups, which does not represent
a meaningful pedagogical contribution. We therefore con-
sider only the weighted gap and DD–weighted gap methods
for the remainder of the paper. In Table 4, we show the
results on real student datasets, with varying numbers of
student responses and items in each learning activity.

Since we do not have a ground truth for these real datasets,
we need to assess the validity of these predictions. If we re-
ceive a prediction that k∗ > 1, how do we know that this k∗

is correct (true positive)? Conversely, if we receive a predic-
tion that k∗ = 1, do we require more data (false negative),
or does the activity have an inherent unclustered structure
(true negative)? Both questions are addressed by consider-
ing the stability of our prediction. There are many methods
of validating the stability of a cluster [9, 27, 52]; we utilise a
resampling method used in similar approaches [28]. A stable
cluster prediction is one that is similar under a small pertur-
bation to the data (e.g. taking a subsample) [5, 55]. Many
methods of cluster stability introduce some figure of merit,
typically measuring the similarity between clusterings. We
choose a simpler (but more practically–oriented) approach,
and compare the predictions of the optimum number of clus-
ters in the resampled dataset. In particular, since we are
focusing on the DD–weighted gap method, we consider the
predictions for the first 2 local maxima. This has a practi-
cal motivation; we do not want to provide teachers with a
number of profiles that is too large to manage. We measure
the validity of our clustering predictions by repeatedly tak-
ing fractional subsamples of our dataset and comparing the
prediction results to those of the complete dataset. In order
to address the second issue of true/false negatives, since we
cannot collect more data, we instead take a dataset which
has previously exhibited clustering (e.g. P1) and take sub-
samples of it. By taking successively smaller fractions, we
attempt to identify some quantitative threshold for a ‘suffi-
cient’ number of student responses.

In Fig. 3, we compare the predictions of the complete dataset
to the predictions on three different fractional subsamples
of the P1 dataset. Unsurprisingly, the positions of the first
two maxima are identical for the largest fraction (90%, cor-
responding to 1415 students), indicating that the prediction
we found was a stable one. We see that there is an increase
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Figure 3: DD–weighted gap plots for three fractions of the P1
dataset: 90% (top), 50% (middle) and 10% (bottom), com-
pared to the full dataset. Each fraction is sampled 10 times.

in variance of the DD–weighted gap plots as we decrease the
fraction to 50% (786 students), but the local maxima are
again identical. Finally, when we take very small fractions,
such as 10% (157 students), we observe significant variance
in the DD–weighted gap curve itself, and the position of
the local maxima now begin to vary. In Fig. 4, we present
the predictions of the first and second local maxima from the
DD–weighted gap as a function of the number of students for
dataset P1. We infer the stability of each fractional subsam-
ple by indicating the frequency of anomalous observations
from the complete dataset.

Our notion of stability allows a prediction on a smaller sub-
sample to be considered stable if the difference is within ±1
of the prediction on the complete dataset, since we expect
only a small change after making a small perturbation to
the dataset. For the dataset shown in Fig. 4, we find that
P1 has a threshold of 550 students. It is worth noting here
that similar numerical thresholds were observed in the other
clusterable datasets; C2 had a threshold of 660 students, P2
had a threshold of 653, and C3 was found to be unstable
immediately. This latter result is not surprising given the
small number of observations in the dataset, which is far be-
low the threshold observed in other datasets. Perhaps the
most interesting result we found is that the identification of
cluster structure required only a remarkably small number
of students. Explicitly, when taking 5% of the P1, P2, C2 or
C3 datasets (with as few as 30 students), an overwhelming
majority of the the weighted gap predictions were still that
k∗ > 1. Although the prediction of k∗ in these small frac-
tions was prone to extreme variation, the method was still
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as a function of number of student observations (sample frac-
tion), for the P1 dataset. If the observation of a fraction was
different to that of the complete dataset, then the frequency
of each anomalous observation is indicated.

able to confirm that some cluster structure existed; very few
student responses were needed to discern if a dataset is clus-
terable. Specifically, it suggests that if an activity (with a
reasonable number of responses) is predicted to have k = 1,
then that particular activity likely will not have cluster struc-
ture. In this case, one should investigate the specific activity
more closely, checking for any issues within the dataset and
the data collection procedures itself.

6. DISCUSSION AND CONCLUSIONS
The results on real student data have demonstrated that our
approach is able to provide reasonable predictions, proving
to be robust even in the presence of noise. We have found
that our approach is applicable for a wide range of learning
activities. In particular, our stability verification results sug-
gest that the number of responses is not a limiting factor in
identifying if cluster structure exists. The method proposed
is also completely generic in that it does not rely on any
subject–specific knowledge. Although the interpretation of
the clusters (e.g. as knowledge profiles) may vary between
applications, we expect that this approach should be appli-
cable as a generic tool for identifying cluster structure in a
wide range of educational contexts.

A usability-oriented aspect that may influence our decision
for the number of clusters is that, in reality, teachers may
be constrained in the number of clusters that they are capa-
ble of treating simultaneously. This consideration provides a
further secondary justification for why the DD–weighted gap
method was selected. Providing teachers with multiple good
clustering solutions allows them to choose how many clusters
they want to work with enables the tool to be useful in a va-
riety of situations; if there are additional teaching assistants
in the classroom, or the activities require addtional care and
attention, then the teacher may choose to split the class into
more/fewer groups as required. Predictions on datasets with
an insufficient number of responses will be inaccurate, but
may only deviate by a couple of clusters. For our application,
it could be argued that it is acceptable to provide teachers
with a non-optimal recommendation. Moreoever, the tool is

intended to be a recommendation, allowing teachers to over-
ride the suggestions if they deem it to be necessary – this is
crucial for maintaining trust in the tool [38].

Applying this method in real environments requires careful
data collection; it is very easy for a dataset to become very
noisy. Some environments allow activities to be customized
by teachers, enabling them to remove, modify or rearrange
items, inserting inconsistencies into the data. Noise may
also result from cheating, making responses unrepresenta-
tive of authentic student performance [1, 2]. Such sources
of noise (amongst others) are typical for real educational ap-
plications [10, 15, 43, 58], and our process handled them in
various ways (e.g., excluding activities modified by teachers).
We note that the theoretical basis for an activity to be suit-
able for clustering is yet to be established and a better under-
standing of the types of assessment for which cluster analysis
is theoretically justified is an interesting direction for future
research. We expect clusters to exist in multi–dimensional
activities that involve several binary skills (or skills with
very steep learning curve) with some interconnections among
them. However, in assessments that make the assumptions
of IRT (normally distributed uni/multi–dimensional data),
clusters may simply not exist.

In this work, we have evaluated common options for decid-
ing on the optimum number of clusters within a dataset,
and discussed their application on binary student data. We
have compared these methods on synthetic data where the
ground truth is known. We also found some insights into
the factors determining the strength of a cluster; the num-
ber of features that comprise a cluster is important. This
synthetic study formed the basis of our method applied to
real student data; we discern if cluster structure exists by us-
ing the weighted gap method, and then subsequently deter-
mine the precise number of clusters using the DD–weighted
gap method, as in [57]. We described an approach to val-
idate the predictions from our method based on fractional
resampling [28], and found an empirical threshold for the
number of responses to have a stable prediction, typically
around 500–600 student observations. Interestingly, we also
found that if a data had cluster structure, then the exis-
tence of structure was observable with only a small handful
of responses. This suggests that large datasets are only im-
portant in identifying the precise number of clusters. Our
final contribution is the flexibility to the teachers, providing
them with options of ‘good’ clustering solutions that they
can apply according to the class environment and pedagogi-
cal goals. However, the challenge of providing pedagogically
meaningful information about the strengths/weaknesses of
each cluster is still outstanding. Methods of providing expla-
nations of the knowledge profiles have already been studied
in the literature, automatically building pedagogically mean-
ingful explanations from item-level metadata [23, 35, 42].
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Muñoz-Merino, and D. E. Pritchard. Copying@ Scale:
Using harvesting accounts for collecting correct
answers in a MOOC. Computers & Education,
108:96–114, 2017.

[2] G. Alexandron, L. Y. Yoo, J. A. Ruipérez-Valiente,
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T. Käser. Identifying and Comparing
Multi-dimensional Student Profiles Across Flipped
Classrooms. In Artificial Intelligence in Education:
23rd International Conference, AIED 2022, pages
90–102, 2022.

[34] A. Merceron and K. Yacef. Clustering students to help
evaluate learning. In IFIP World Computer Congress,
TC 3, pages 31–42, 2004.

[35] T. Miller. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelligence,
267:1–38, 2019.

[36] M. Mohajer, K.-H. Englmeier, and V. J. Schmid. A
comparison of gap statistic definitions with and
without logarithm function, 2011.

[37] F. Murtagh and P. Contreras. Algorithms for
hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(1):86–97, 2012.

[38] T. Nazaretsky, M. Ariely, M. Cukurova, and
G. Alexandron. Teachers’ trust in AI-powered
educational technology and a professional development
program to improve it. British Journal of Educational
Technology, 53(4):914–931, 2022.

[39] T. Nazaretsky, C. Bar, M. Walter, and G. Alexandron.
Empowering Teachers with AI: Co-Designing a
Learning Analytics Tool for Personalized Instruction
in the Science Classroom. In LAK22: 12th
International Learning Analytics and Knowledge
Conference, pages 1–12, 2022.

[40] T. Nazaretsky, S. Hershkovitz, and G. Alexandron.
Kappa learning: A new item-similarity method for
clustering educational items from response data. In
Proceedings of the 12th International Conference on
Educational Data Mining (EDM 2019), pages 129–138,
2019.

[41] D. Pelleg and A. Moore. X-means: Extending k-means
with efficient estimation of the number of clusters. In
Icml, volume 1, pages 727–734, 2000.

[42] M. T. Ribeiro, S. Singh, and C. Guestrin. ”Why
Should I Trust You?”: Explaining the Predictions of
Any Classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 11351144,
New York, NY, USA, 2016. Association for
Computing Machinery.

[43] C. Romero, J. R. Romero, and S. Ventura. A survey
on pre-processing educational data. In Educational
data mining, pages 29–64. Springer, 2014.

[44] C. Romero and S. Ventura. Educational data mining:
a review of the state of the art. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 40(6):601–618, 2010.

[45] C. Romero and S. Ventura. Data mining in education.

WIREs Data Mining and Knowledge Discovery,
3(1):12–27, 2013.

[46] C. Romero and S. Ventura. Educational data mining
and learning analytics: An updated survey. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 10(3):e1355, 2020.

[47] P. J. Rousseeuw. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65, 1987.

[48] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan.
Finding a ”Kneedle” in a Haystack: Detecting Knee
Points in System Behavior. In 2011 31st International
Conference on Distributed Computing Systems
Workshops, pages 166–171, 2011.

[49] D. Sculley. Web-scale k-means clustering. In
Proceedings of the 19th international conference on
World wide web, pages 1177–1178, 2010.

[50] R. P. Springuel, M. C. Wittmann, and J. R.
Thompson. Applying clustering to statistical analysis
of student reasoning about two-dimensional
kinematics. Phys. Rev. ST Phys. Educ. Res., 3:020107,
Dec 2007.

[51] C. A. Sugar and G. M. James. Finding the number of
clusters in a dataset. Journal of the American
Statistical Association, 98(463):750–763, 2003.

[52] R. Tibshirani and G. Walther. Cluster validation by
prediction strength. Journal of Computational and
Graphical Statistics, 14(3):511–528, 2005.

[53] R. Tibshirani, G. Walther, and T. Hastie. Estimating
the number of clusters in a data set via the gap
statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2):411–423,
2001.

[54] S. Vassilvitskii and D. Arthur. k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035, 2006.

[55] U. Von Luxburg et al. Clustering stability: an
overview. Foundations and Trends® in Machine
Learning, 2(3):235–274, 2010.

[56] C. A. Walkington. Using adaptive learning
technologies to personalize instruction to student
interests: The impact of relevant contexts on
performance and learning outcomes. Journal of
educational psychology, 105(4):932, 2013.

[57] M. Yan and K. Ye. Determining the Number of
Clusters Using the Weighted Gap Statistic.
Biometrics, 63(4):10311037, 2007.

[58] N. Z. Zacharis. A multivariate approach to predicting
student outcomes in web-enabled blended learning
courses. The Internet and Higher Education, 27:44–53,
2015.



APPENDIX
A. ADDITIONAL SYNTHETIC DATA RESULTS
Table 3: Predicted k∗ for a selection of synthetic models.
Predictions denoted ‘F’ failed to satisfy the selection crite-
rion. Predictions marked by † were incorrect despite having
a clear optimum. DD–local maxima are in brackets. Here,
n∗
s = ns/1000.

Synthetic Model k∗ Prediction

Model nf n∗
s k Gap WGap DD–Gap DD–WGap

N1 20 1 1 1 1 – –
N2 20 10 1 1 1 – –
N3 5 1 1 1 1 – –

WC1 20 1 5 F† 8† 5 5
WC2 20 1 8 F† F† 8 8
WC3 8 1 3 F† 3 3 3
WC4 6 1 2 F† 3 2 2
WC5 6 10 2 F† F† 2 2

UWC1 20 1 5 6† F† 5 5
UWC2 5 1 3 3 9† 3 3
UWC3 15 1 8 F† F† 8 8

R1 20 1 5 7 5 5 (3, 5) 5 (5, 7)
R2 5 1 3 F 7 3 (3, 6) 3 (3, 7)
R3 15 1 8 F F 8 (3, 5, 8) 8 (3, 5, 8)
R4 15 10 8 F F 8 (3, 5, 8) 8 (3, 5, 8)

UR1 15 1 3 F 8 3 3 (3, 6, 8)
UR2 15 1 5 F 6 3 (3, 5) 2 (2, 4, 6)
UR3 15 10 5 F F 5 2 (2, 4, 7)
UR4 15 1 8 F F 6 (3, 6) 7 (4, 7)
UR5 20 1 5 F F 5 (5, 8) 2 (2, 5, 7)
UR6 32 1 8 F F 7 (3, 7) 2 (2, 5, 8)

B. ADDITIONAL REAL DATASET RESULTS
Table 4: Predicted k∗ for a variety of real student datasets.

Student Dataset k∗ Prediction

ID Number nf ns WGap DD–WGap

P1 17 1572 4 2 (2, 4)
P2 18 726 5 5 (2, 5, 9)

C1 23 943 4 4 (2, 4, 7, 10)
C2 13 216 4 4 (2, 4, 6, 9)
C3 14 292 1 –
C4 14 379 1 –
C5 14 300 1 –
C6 13 241 1 –


