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ABSTRACT
The use of digital lecture slides in e-book platforms allows
the analysis of students’ reading behavior. Previous works
have made important contributions to this task, but they
have focused on students’ interactions without considering
the content they read. The present work complements these
works by designing a model able to quantify the e-book LEC-
ture slides and TOpic Relationships (LECTOR). Our results
show that LECTOR performs better in extracting impor-
tant information from lecture slides and suggest that read-
ers’ topic preferences extracted by our model are important
factors that can explain students’ academic performance.

Keywords
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1. INTRODUCTION
The adoption of e-learning technologies in blended courses
can help instructors better understand students’ learning
behaviors and make more informed revisions of lessons and
materials [9]. Examples of these technologies include the
e-book reading systems used in university classrooms to dis-
tribute lecture materials. By modeling students’ interac-
tions on these systems, instructors can analyze their reading
behavior and support their learning process [14, 22, 15].

Several works have investigated how to model e-book read-
ing users based on their set of reading characteristics [1,
34, 24, 8, 2]. Nevertheless, their models did not consider
the content that students read [31], information that may
be important for improving the course content’s structures
[16], or providing process-oriented feedback to students [27].

Figure 1: Topic-wise data generation

Since lecture slide data consists of text and images, their
integration into current models poses several challenges to
be addressed [7, 31]. Both text and image processing are
difficult tasks that recent advances in computer science are
attempting to address in different domains. Furthermore,
considering multimodal data would require formulating a
model able of integrating the different data sources.

In this context, the present work takes the first step by fo-
cusing on the text-processing task. We propose the model
LECTOR, which uses Natural Language Processing (NLP)
techniques to estimate a quantitative relationship between a
lecture slide and a topic. By performing this estimation, we
can convert a slide-wise set of reading characteristics into
a topic-wise set of reading characteristics (Figure 1). Ac-
cordingly, we validate LECTOR’s performance on this task
against previous models.

2. RELATED WORK
2.1 Text processing in e-book lecture slides
Previous studies describe the use of e-book lecture slide
text to address various problems, such as slide summariza-
tion [28], personalized recommendation [21, 23], and learn-
ing footprint transfer [33]. Almost all of these works used
the TF-IDF method [26] to process their slides [28, 33, 21].
Other works use hierarchical models to perform this process
[32, 5], but they require human labeling of all the text in the
slides [3], a task that can be burdensome for teachers.

In addition, a previous study estimated topic reading time
from e-book user data by considering only the slides where
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the topic was written [31]. We can reformulate this method
as a matrix product (Figure 1), where they assigned a rela-
tionship of 1 when the topic appears in a given slide, and 0
in other cases (referred to as “Binary score” in this paper).

2.2 Keyphrase extraction from documents
Our problem is reduced to an unsupervised keyphrase ex-
traction task if we consider lecture slides as documents and
topics as key phrases. The state-of-the-art studies on this
task use pre-trained models (e.g., Doc2Vec [18], ELMo [25],
BERT [12]) to represent words as embedding vectors [6, 29,
13]. Then, their methods estimate the similarity between
key phrases and documents from the cosine similarity of
their corresponding embedding representations [6, 29, 13].

3. PROPOSED MODEL
LECTOR extracts a set of topic candidates from all the
slides of a given course and assigns a single score to each
slide-topic pair (Figure 2). This score is defined as a linear
combination of two different scores, one based on the words’
importance and the other on the similarity between the topic
and the slide embeddings.

Figure 2: Overview of our proposed model.

3.1 Topics extraction
We consider a topic to be an observable entity (keyphrase).
Models such as EmbedRank [6] and AttentionRank [13] use
the Part-Of-Speech to generate noun phrases that become
their possible key phrases. In our case, we work with slides
written in Japanese and use the Bi-LSTM-based NLP li-
brary Nagisa to identify the nouns. Then, we define single
nouns and n-gram sequences (n=2) of nouns as our topics.

3.2 Word embeddings and attention matrix
We use a BERT model (fine-tuned on all the course slides’
text in the MLM task [12]) to estimate a self-attention ma-
trix Ai and a set of word embeddings Ei for each slide. We
then correct these token-wise values to word-wise values [10].

3.3 LECTOR’s importance score
For a given slide si, we quantify the attention aij that words
w belonging to a given topic tj receive from all the other
words w within the slide si by summing the different weights
of the matrix Ai as shown in Equation 1.

aij =
∑
w∈tj

∑
w′∈si\{w}

Ai
w′w (1)

Since this score is strongly influenced by the frequency of the
topic’s words fj , the importance score (ssij) is calculated by

considering the Smooth Inverse Frequency [4] (Equation 2).

ssij = aij

(
k

k + fj

)
(2)

3.4 LECTOR’s similarity score
For a given slide si, we estimate its embedding represen-
tation P i

s as a weighted average of its corresponding word
embeddings Ei (Equation 3).

P i
s =

∑
w∈si

Weight (w)Ei
w (3)

We define the word weight as the probability of belonging
to the discourse of the given slide. We consider that this
discourse is given by a general discourse introduced in the
first slide of the lecture material and a specific discourse
introduced by the title of the respective slide (Figure 3).

Figure 3: Overview of the weight calculation process.

Accordingly, given the set of title and body embeddings Ei
st

and Ei
sb, the Weights are calculated as shown in Equation

4. In Appendix A, we detail the formulation and estimation
of these Weights from the set of word embeddings.

Weight = Pr (wt ∈ sti|st1)Pr (wt ∈ sbi|sti) (4)

Finally, the similarity score is given by the cosine similarity
between the topic tj and slide si embeddings [6, 29, 13].

bij =
P i
s · Ej

t

||P i
s || ||Ej

t ||
(5)

csij =

(
1

fj

∑
topicj

bij

)
fα
j , α ∈ [0, 0.25] (6)

3.5 LECTOR’s final score
The final score for a given topic tj and slide si is a linear
combination of the previously normalized importance and
similarity scores (Equation 7). The parameter d defines the
importance of each score value.

scoreij = d ∗ ssij + (1− d) ∗ csij (7)

LECTOR’s final output is the matrix M, whose elements
Mij are the final scores between slides si and topics tj .

4. RESULTS AND DISCUSSION
4.1 Dataset
Our dataset consists of the textual content of 620 slides from
22 e-book materials delivered in the course “Programming
Theory” in the year 2019 (before the pandemic restrictions).
This course was offered by the School of Engineering at
Kyushu University for 7 weeks.



4.2 First Experiment formulation
The ground-truth values to evaluate LECTOR’s estimates
are given by the relationships between different topics and
slides. However, to find them empirically, we would need
a large number of samples because these relationships are
perceived differently by different people. Furthermore, given
the large number of topics and slides in a course, we would
need millions of ground truth labels for each sample.

For this reason, our experiment is designed to indirectly
evaluate the estimates of the models. Similar to works on
keyphrase extraction, we assume that the most important
topics should have the highest relationships with the course
content (the different slides). For a given topic tj , we define
its keyphrase candidate score mtj as the sum of the scores
obtained across all slides (Equation 8).

mtj =

#slides∑
i=1

Mij (8)

We use the mtj values to extract the most important
topics of the course. Our ground-truth labels are given
by the course keywords extracted from the course syl-
labus (“Scheme”, “Data Structure”, “List Processing”, “Re-
cursion”,“Expression”,“Condition”,“Design Recipe”,“Func-
tion”, “High-level function”). We define @n as the set that
contains the top n topics according to the scores mtj . By
comparing this set to the ground truth, we can measure the
model performance.

We considered three baselines. The first is given by the TF-
IDF model [26], which is predominant in the slide text pro-
cessing literature. The second is given by the AttentionRank
model [13], which represents the state-of-the-art in unsuper-
vised keyphrase extraction. The third model is given by the
previously described Binary score model proposed by [31].

4.3 First Experiment results
Our results are summarized in Table 1. We can see that
AttentionRank outperforms all the other models with an F-
score of 28.68% when considering the 5 most important top-
ics. This result shows the high performance of this state-of-
the-art model even in a different domain (slides unstructured
text). This F-score was achieved by identifying 2 keyphrases
in its five most important topics. As we can see in Table
2, while all the models identified the keyphrase “Function”
as the most important topic, AttentionRank also identified
the keyword “Recursion” as its fourth most important topic.
From Table 2, we can also note that despite all the other
models achieving the same F-score, the TF-IDF and Binary
models are more influenced by the frequency of the topics,
estimating topics such as“i”and“define”as one of their most
important ones.

At n = 10, we can see that the attention-based models out-
perform the TF-IDF and Binary models. Specifically, Atten-
tionRank, LECTOR Similarity score, and LECTOR achieve
an F-score of 31.68%. At n = 15, LECTOR outperforms all
the other models with an F-score of 33.44%. We can see the
same result when comparing the best F-score obtained by
each model and the mean of the results obtained in the first
n@100 sets. These results show that AttentionRank has dif-
ficulty finding new keyphrases, whereas LECTOR does not.

Table 1: Summary of the F-score results for Experiment 1.
The mean is calculated from the first n@100 sets

.
n Model P R F1

5

Baseline (TF-IDF) 20.00 11.11 14.39
Baseline (AttentionRank) 40.00 22.22 28.68
Baseline (Binary score) 20.00 11.11 14.39
LECTOR Importance Score 20.00 11.11 14.39
LECTOR Similarity Score 20.00 11.11 14.39
LECTOR 20.00 11.11 14.39

10

Baseline (TF-IDF) 10.00 11.11 10.63
Baseline (AttentionRank) 30.00 33.33 31.68
Baseline (Binary score) 10.00 11.11 10.63
LECTOR Importance Score 20.00 22.22 21.15
LECTOR Similarity Score 30.00 33.33 31.68
LECTOR 30.00 33.33 31.68

15

Baseline (TF-IDF) 20.00 33.33 25.11
Baseline (AttentionRank) 20.00 33.33 25.11
Baseline (Binary score) 20.00 33.33 25.11
LECTOR Importance Score 20.00 33.33 25.11
LECTOR Similarity Score 20.00 33.33 25.11
LECTOR 26.67 44.44 33.44

Best

Baseline (TF-IDF) 20.00 33.33 25.11
Baseline (AttentionRank) 37.50 33.33 35.39
Baseline (Binary score) 23.08 33.33 27.38
LECTOR Importance Score 20.00 33.33 25.11
LECTOR Similarity Score 25.00 44.44 32.11
LECTOR 33.00 44.44 38.20

Mean

Baseline (TF-IDF) 11.68 46.00 15.53
Baseline (AttentionRank) 12.63 40.89 15.65
Baseline (Binary score) 11.26 43.33 14.77
LECTOR Importance Score 12.68 50.22 16.85
LECTOR Similarity Score 14.48 59.67 19.69
LECTOR 15.19 61.56 20.70

In Table 2, we can see that AttentionRank tends to give
high scores also to minor topics such as “define”, “else”, or
“empty”which may explain its lower performance.

The mentioned problem of AttentionRank has two reasons.
The first is that its “Accumulated Self-Attention” is influ-
enced by the word frequencies. In their paper, the authors
pointed out that this characteristic can be beneficial in large
documents. However, in the context of lecture slides, sev-
eral words from the domain knowledge of the course can ap-
pear repeatedly. For example, the mentioned “define” and
“else” are well used in the program examples of the course
“Programming Theory”. On the other hand, the design we
considered in the LECTOR’s importance score limits the
influence of the frequency of the words.

However, in the AttentionRank model, topics must also
achieve a high ”Cross-Attention” value in order to get a high
final score. The reason that words like ”define” and ”else”
are important topics of the model is due to the two discourse
hypotheses of AttentionRank. For a given slide, the first as-
sumes that the topic candidate defines the slide discourse,
and the second assumes that the slide defines the topic dis-
course. In the context of noisy and unstructured slide text,
this consideration can lead to some problems.

For example, given the topic “define” and a slide that con-
tains a programming code example about list processing,



Table 2: Most important topics of each model. ENG: a word originally written in English.

n TF-IDF AttentionRank Binary score LECTOR
1 function function function function
2 list example problem list data
3 list (ENG) definition define (ENG) list
4 i (ENG) recursion definition definition
5 define (ENG) example cond (ENG) program
6 definition value data computation
7 page define (ENG) list (ENG) function definition
8 data expression empty expression
9 count argument count example problem
10 program computation i (ENG) recursion
11 value list value data definition
12 expression else (ENG) expression list processing
13 cond (ENG) empty (ENG) recursion program design
14 example element else (ENG) recursion function
15 recursion count element exercises

the mentioned model will focus on the context words of “de-
fine” in the code (including the “define” itself) resulting in a
high Cross-attention score in this case. Then, when we con-
sider the topics “list processing” or “example code”, even if
the model manages to estimate high scores for these topics,
they will be relatively as important as “define”.

Similarly, the presence of noise in the slides can highly influ-
ence the relative scores, sometimes estimating low scores for
a closely related topic and slide pair. In contrast, LECTOR’s
similarity score considers a singular discourse defined by the
main title and slide title that give relatively high scores to
topics highly related to this discourse. In the previous exam-
ple, LECTOR would give higher scores to “list processing”
and“example code” rather than“define”, and also would give
a higher score to “define” rather than a random noise word.

4.4 Second Experiment formulation
Previous studies of students’ eye-tracking data have con-
cluded that each student has a different preference for learn-
ing content [20]. Accordingly, this experiment aims to com-
pare the topic preferences of students with different grades.

We extract their reading time on the different slides (inside
and outside of class) and obtain their slide preferences by
normalizing the reading time values across the week. Then,
we use LECTOR to quantify their Relative Reading Times
for the different topics (Topic RRT), as shown in Figure
1. Finally, we group the students according to their grades
(A=24, B=6, C=4, D=6, F=10) and compare both their
reading time and RRT distributions. We measure the sepa-
rability of the distributions by using the Fisher Discriminant
Ratio (FDR) and statistically validated them with a T-test.

4.5 Second Experiment results
We can see an example of our results in Figure 4. Figure 4a
shows the distribution of the reading time of the students
with final grades A and B in the second week after the lecture
(out-class). Both distributions overlap, so the FDR is 0.0502
and the significance level (p) of the T-test is 0.3302. In
Figure 4b we see the same distributions when we consider the
relative time spent reading about “Design method”. Here,

Figure 4: a) Reading time of the students with final grades
A and B. b) The same distributions when considering the
relative time of reading about the topic “Design method”.

students with a final grade of A tend to read more on this
topic, resulting in a higher FDR of 5.5802 and a lower p of
0.037 in the T-test.

Our different results are summarized in Table 3. We con-
sidered the first 3 weeks of the course because of insufficient
data in later weeks due to dropouts. As shown in this table,
we have included 5 cases, comparing students with consecu-
tive grades (A-B, B-C, C-D, D-F) and at-risk students (stu-
dents who failed the course) with non-risk students. The
result shown in Figure 4 can be found in the first column
and fourth row of the table.

In the results of Reading Time, we can see that students
from different groups tend to read the same amount of time.
In the case of at-risk and non-risk student groups, we find



Table 3: Fisher Discriminant Ratio between different groups of students in the first 3 weeks of the course.

A-B B-C C-D D-F At-risk

WEEK 1
(IN-CLASS)

Reading Time 0.0342 0.2615 2.782 0.0229 1.111*
Topic RRT 1.4517 612.44* 46.861 3.233* 4.3245
(Topic) (expressions) (data) (exercises) (design (execution)

method)

WEEK 1
(OUT-CLASS)

Reading Time 0.0409 0.0023 0.0436 0.0085 0.000
Topic RRT 3.0031 29.3069 653.11** 72.649 1.4049
(Topic) (auxiliary (problems) (program (problems) (auxiliary

functions) design) functions)

WEEK 2
(IN-CLASS)

Reading Time 1.0128 0.6902 0.1735 0.0021 0.0192
Topic RRT 6.3908 8.4876 568.83* 1.7794 1.5921
(Topic) (problems) (boolean (problems) (program) (program)

value)

WEEK 2
(OUT-CLASS)

Reading Time 0.0502 0.0855 0.2629 0.0913 0.325*
Topic RRT 5.5802* 29.9718 241.1* 2.8445 17.92*
(Topic) (design (cond (data (body (exercise

method) expression) analysis) expression) problems)

WEEK 3
(IN-CLASS)

Reading Time 0.0503 0.4597 0.1141 0.0142 0.3367
Topic RRT 11.8214 8.263 7.998 15.061 5.031
(Topic) (exercise (synthetic (synthetic (sorting) (examples)

problems) data) data)

WEEK 3
(OUT-CLASS)

Reading Time 0.0234 0.0008 0.2131 1.4279 0.1951
Topic RRT 15.166* 168.33* 286.84** 42.266 43.126*
(Topic) (templates) (element (structure (exercice (exercice

count) element) problems) problems)
*p<0.05 **p<0.01

statistically significant differences in out-of-class engagement
in the second and third weeks. On the other hand, we find
statistically significant differences between different groups
almost 40% of the time when we consider the Topic RRT,
which means that these preferences are good variables to
understand the differences between students with different
grades. This suggests that works that attempt to predict at-
risk students such as [24, 8] may benefit from the integration
of models such as LECTOR to obtain more differentiated
features.

We can consider student’s reading preferences for further
analysis. For example, as mentioned earlier, at-risk students
engage less outside of class in the second and third weeks.
In Table 3, we also see that they tend to focus more on ex-
ercise problems. This is a signal that at-risk students adopt
a surface learning approach [17], focusing on the content di-
rectly related to the assessments. Thus, previous works [1,
34] that have analyzed the students’ reading behavior can
use the topic preferences to make better reports.

5. LIMITATIONS
The first limitation is the indirect evaluation of the models’
estimates. As previously discussed, collecting labels for a
direct evaluation is impractical, but if we limit the number
of topics to the most important ones we can collect a limited
set of labels to conduct a more direct evaluation.

The second limitation is the size of our dataset. To evalu-
ate the generalizability of our model, we need to consider
slides from different courses. In a science course, the slides
are less structured and include equations or code. In this
case, the robustness of LECTOR plays an important role.

In addition, our slides are in Japanese and the generality of
our results may be affected by the use of other methods for
topic extraction in different languages.

6. CONCLUSIONS
We proposed LECTOR, a new model that adapts state-of-
the-art keyphrase extraction models to the domain of lec-
ture slides. From our results, we conclude that LECTOR
can quantitatively extract the relationships between topics
and e-book lecture slides better than previous models when
considering noisy text from scientific lecture slides. LEC-
TOR was able to extract important topics (higher F-score)
while avoiding frequent out-of-context topics.

LECTOR’s topic-wise representation of e-book reading char-
acteristics provides new insights into the students reading
behavior. Specifically, it allows to access the students’ pref-
erences for some topics and use them to model more detailed
behaviors. Our results show that this new model preserves
the differences related to reading preferences that exist be-
tween students with different final grades.

These responses validate the benefits of integrating attention-
based models like LECTOR into reading behavior models.
Accordingly, it allows future works to consider students read-
ing preferences in their models. Also, our model can be used
for other text processing tasks, such as slide summarization,
content recommendation, etc.
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APPENDIX
A. WORDS’ WEIGHTS ESTIMATION
A.1 Preliminary definition
Given a set of words A = {w1

a, w
2
a, ..} and B = {w1

b , w
2
b , ..},

we will estimate Pr (wa ∈ A|B): The probability of each
word in A being generated under the discourse (context) of
the set of words B.

First, the probability that a given word wa is generated un-
der a given context word wb is proportional to the inner
product of their word embeddings (Equation 9) [4, 19].

Pr (wa|wb) ∝ exp
(
ea · eTb

)
(9)

With this equation, we can estimate the probability of each
word wa in the set A to be generated under the single context
word wb, as shown in Equation 10.

Pr (wa ∈ A|wb) = [k1exp
(
ea · eTb

)
, k2exp

(
ea · eTb

)
, ..]

(10)
We assume a common proportional constant (k1 = k2 =
...). Then, we can represent Equation 10 as the softmax of
the matrix product between the set of embeddings Ea =
[e1a, e

2
a, ..] and the context embedding eb, as shown in Equa-

tion 11 (the parameter φ preserves the influence of the pro-
portional constant). This equation can also be interpreted
as the cross-attention between the Query eb and the Key Ea

[30].

Pr (wa ∈ A|wb) = Softmax

(
eb · Ea

T

φ
√
dk

)
(11)

Finally, we can generalize this equation to the context B =
{w1

b , w
2
b , ...} by using the approach “Attention over atten-

tion” proposed in the study [11].

S =
Eb · Ea

T

φ
√
dk

(12)

Pr (wa ∈ A|B) = AVrow (SFcol (S))SFrow (S) (13)

where AVrow means average along the row axis, SFcol means
softmax along the column axis, and SFrow means softmax
along the row axis.

A.2 Formulation
Given the set of words embeddings Ei for each slide, we split
it into the set of title and body embeddings Ei

st and Ei
sb.

Then, the words’ Weights are estimated using Equations 11
and 13 as follows:

S =
E1

st · Ei
st

T

φ
√
dk

(14)

Pr (wt ∈ sti|st1) = AVrow (SFcol (S))SFrow (S) (15)

Pr (wt ∈ sbi|sti) = Softmax

(
Ei

st · Ei
sb

T

φ
√
dk

)
(16)

Weight = Pr (wt ∈ sti|st1)Pr (wt ∈ sbi|sti) (17)


