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ABSTRACT
Problem decomposition into sub-problems or subgoals and
recomposition of the solutions to the subgoals into one com-
plete solution is a common strategy to reduce difficulties in
structured problem solving. In this study, we use a data-
driven graph-mining-based method to decompose historical
student solutions of logic-proof problems into Chunks. We
design a new problem type where we present these chunks
in a Parsons Problem fashion and asked students to re-
construct the complete solution from the chunks. We in-
corporated these problems within an intelligent logic tutor
and called them Chunky Parsons Problems (CPP). These
problems demonstrate the process of problem decomposi-
tion to students and require them to pay attention to the
decomposed solution while they reconstruct the complete
solution. The aim of introducing CPP was to improve stu-
dents’ problem-solving skills and performance by improv-
ing their decomposition-recomposition skills without signif-
icantly increasing training difficulty. Our analysis showed
that CPPs could be as easy as Worked Examples (WE).
And, students who received CPP with simple explanations
attached to the chunks had marginally higher scores than
those who received CPPs without explanation or did not
receive them. Also, the normalized learning gain of these
students shifted more towards the positive side than other
students. Finally, as we looked into their proof-construction
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traces in posttest problems, we observed them to form iden-
tifiable chunks aligned with those found in historical solu-
tions with higher efficiency.
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1. INTRODUCTION
Computational thinking, a set of skills and practices for
complex problem solving, provides a foundation for learning
21st-century skills, particularly computer science (CS). Edu-
cational researchers and teaching professionals acknowledge
problem decomposition-recomposition skill as a key compo-
nent of computational thinking and complex problem solv-
ing [11, 23, 13, 22]. Efficient problem solving using the prob-
lem decomposition skill or strategy involves several steps: 1)
identifying sub-problems (i.e. subgoals) to reduce the diffi-
culty associated with the problem, 2) constructing a solution
for each of those sub-problems, and 3) recomposing the sub-
problem solutions to form the larger solution [5]. Research
showed that experts carry out problem decomposition and
recomposition (PDR) steps more than novices [41]. How-
ever, several studies also showed that novices often attempt
to decompose problems [26, 40]. But while they may demon-
strate correct decomposition in easier problems, novices fail
to decompose sophisticated problems [26].
Despite problem decomposition-recomposition (PDR) being
vital to complex problem-solving, it is rarely mentioned ex-
plicitly in instructional materials for computer science (a
discipline focused on complex problem solving using com-
puters) [30]. Also, existing research lacks guidance on how
to motivate students to adopt this PDR process or how to
improve their skills associated with PDR. A few studies an-
alyzed the differences between experts and novices in adopt-
ing this PDR process, indicating that experts use PDR more
than novices [27, 20]. And, a few studies aimed at introduc-
ing this PDR skill to students, mostly during programming
problem solving, using varying methods [for example, us-
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ing pattern-oriented instruction [32], programming problem
decomposition exercise [42], guided inquiry-based instruc-
tion [36], etc.]. However, PDR remains under-explored in
the instruction of other structured problem-solving domains.

In this study, we design, implement, and evaluate a problem-
based training intervention, named Chunky Parsons Prob-
lem (CPP), that introduces to students the concept of prob-
lem decomposition-recomposition (PDR) while engaging them
in these processes during problem solving within an intelli-
gent logic tutor, DT (Deep Thought). To generate CPP, we
decomposed students’ historical solutions to each logic-proof
construction problem stored in DT’s problem bank into sub-
proofs (referred to as chunks) using a data-driven method.
These chunks are presented in a Parsons Problem fashion.
In a traditional Parsons Problem, all steps contributing to
the complete solution of a problem are presented in a jum-
bled order. On the contrary, within CPP, the solution to
a logic-proof problem is presented as jumbled-up chunks
(groups of connected statements) instead of individual state-
ments. By design, CPP is a partially worked example where
all the required statements are shown in chunks. However,
the missing connections among the chunks give the students
an opportunity to recompose the solution while having them
pay attention to the decomposition to understand the com-
position of each chunk, how each chunk contributes to other
chunks, and the overall solution. Thus, CPPs can be thought
of as problems that are partially worked examples and par-
tially problem-solving (PS) problems.
We deployed DT with CPP implemented within its train-
ing session in an undergraduate classroom of CS majors and
conducted a controlled experiment. In the controlled exper-
iment, we implemented three training conditions: 1) Con-
trol(C): received only worked example (WE) and problem-
solving (PS) logic-proof construction problems, 2) Treat-
ment 1(T1): received CPP (without explicit explanation of
the chunks) along with PS/WE, and 3) group who receive
CPP (with explicit explanation attached to the chunks) along
with PS/WE. Since prior research showed that explicit in-
struction on what to learn or take away from an intervention
may help to improve students’ decomposition ability [36], we
introduced the last training condition to identify the more
effective representation (between with/without explanation)
of CPP. Finally, we evaluated the efficacy of CPP by answer-
ing the following research questions:

• RQ1: How do Chunky Parsons Problems impact stu-
dents’ performance and learning?

• RQ2: What are the difficulties associated with solving
a Chunky Parsons Problem?

• RQ3: How do Chunky Parsons Problems impact stu-
dents’ Chunking (problem decomposition-recomposition)
behavior and skills while solving a new problem?

2. BACKGROUND AND MOTIVATION
Existing research has identified problem decomposition-reco-
mposition (PDR) as difficult for novices as problems get
more complex [26]. However, we found only a few studies
investigating methods to improve this skill. For example,
Pearce et al. [36] explored explicit instruction (openly in-
structing students to learn problem decomposition and de-

scribing how to go about that learning) to improve students’
problem decomposition skills and concluded that explicit in-
struction can lead to significant gains in mastering this skill.
Muller et al. [32] found that pattern-oriented instruction
can have a positive impact on problem decomposition skills.
We found some studies where researchers in the domain of
mathematics and programming, using problem-based meth-
ods, aimed at improving students’ subgoal learning which
is equivalent to the skill of identifying sub-tasks required to
solve a problem (i.e. problem decomposition). The most
common method explored by researchers in this regard is
subgoal-labeled worked examples or instructional materi-
als [29, 8, 7]. Studies showed that worked examples with
abstract labels that give away structural information help
improve students’ problem-solving skills measured by test
scores. However. these studies do not evaluate or measure
students’ problem decomposition or subgoaling skills after
training. Also, we did not find any established guidance
on how problem-based interventions can be generated au-
tomatically and how they should be designed to be used
within tutors to improve students’ problem decomposition-
recomposition (or chunking) skills.
From our literature review, we concluded that problem-based
interventions specifically designed for tutors to improve stu-
dents’ chunking skills are under-explored. Thus, in this pa-
per, we set our aim to design and implement CPPs to be
used within DT to improve students’ problem-solving and
chunking skills. While extracting chunks to present within
CPP and designing its representation within DT, we consid-
ered three goals: 1) Automating the solution-decomposition
process to extract chunks so that expert effort is not re-
quired; 2) Designing the problem to demonstrate chunking
and engaging students in the process to improve their skills,
and 3) keeping the difficulty-level low so that students can
persist and learn. To set the difficulty level of our prob-
lem, we explored problem types that are of low difficulty
as established by literature: Worked Examples and Parsons
Problems.
Worked Examples: Worked examples (WE) reduce learners’
intrinsic load (i.e. working memory load which is caused
by the complexity of the problem) and help them to learn
better [35]. This improvement in learning due to worked ex-
amples is referred to as the Worked Example Effect [44] in
literature. However, several studies argued the applicabil-
ity of worked examples in certain situations. For example,
worked examples may not be useful for students with high
prior knowledge [34], when problems are structured [34], or
if the problem is strategic but involves only a few interactive
elements [10]. In such cases, problem-solving (PS) supports
the learning process better [10]. Also, for goal or product-
directed problems, a worked example only shows the con-
struction of the solution and does not help students to grow
an understanding of the rationale behind the selection of
certain steps [49]. In this scenario, students fail to acquire a
schema of the problem-solving approach which leads to the
failure to transfer problem-solving skills. Renkl et al. [39]
suggested that worked examples help students to learn bet-
ter only when the examples give away structural information
of the solution and isolate meaningful building blocks.
Parsons Problems: Parsons problems ask students to con-
struct a solution from a given set of jumbled solution steps [14].
Poulsen et al. showed the application of the Parsons problem
in a mathematical proof construction tool, Proof Blocks [38].



They found that Parsons Problems within Proof Blocks sig-
nificantly reduced the difficulty associated with proof con-
struction. Parsons problem is heavily explored in program-
ming education. Studies found that Parsons problems can
improve students’ code writing capability [48, 24, 14, 17] or
can help in completing programming tasks efficiently with-
out impacting performance on subsequent programming tasks
[51]. Studies also showed that attached explanations [18]
and subgoal labels [31] can help students solve Parsons prob-
lem and improve the learning process.
From the overview of the impact of WEs and Parsons Prob-
lem, we designed CPPs as partially WE and partially PS,
which represent meaningful building blocks of a proof (i.e.
Chunks) in a Parsons Problem fashion. Additionally, we
explored attaching explanations to the chunks to further re-
duce difficulties and support students’ learning process.
Data-driven Solution Decomposition Techniques: Data-driven
solution decomposition refers to the process of automatically
decomposing a problem or its solution into subgoals or sub-
solutions based on the properties found in historical solu-
tions. These historical solutions often come from tutors or
learning platforms that collect students’ solution traces and
thus, are often redundant. While performing data-driven
decomposition, researchers mainly focused on identifying in-
dependent or dependent components of a solution. To do so,
they often presented student solutions as graphs depicting
how they moved from state to state to reach the final solu-
tion [37, 50, 45, 33, 4]. Prior research showed the application
of clustering [37] or connected component detection [50, 45,
16] to extract independent sub-solutions or chunks in these
graphical models. On the other hand, some researchers [12,
19] proposed constraint-based decomposition techniques for
linear problem solutions such that decomposed sub-solutions
can be replaced with alternate solutions without causing any
problem. To decompose computer programs, researchers
have used methods where they looked at the usage of dif-
ferent program components (for ex., variables) to identify
independent parts of the program [46, 47]. In this paper, we
demonstrate a solution decomposition method that extracts
chunks by applying rules/constraints on graphical represen-
tations of historical student solutions similar to Eagle et al.’s
work [16].
Evaluation of Students’ Chunking Skills We observed that
in prior research, researchers have only used test scores to
evaluate methods that were set to teach students chunk-
ing/PDR. Only a few recent studies explored methods to
measure students’ chunking skills from data. Kwon and
Cheon [26] mapped predefined sub-tasks and program seg-
ments in Scratch programs to observe how students decom-
pose and develop programs. In a recent study, Charitsis et
al. [9] used NLP to identify key components and students’
approaches to develop programs and then relate those to per-
formance metrics using linear regression to quantify their de-
composition skills. Kinnebrew et al. [25] also mined frequent
patterns in students’ action sequences and relate that to per-
formance to explain their learning behavior. Overall, to eval-
uate decomposition skills, these studies each sought a base-
line to compare students’ solutions against and explained
performance using solution characteristics. In this paper, to
measure students’ chunking/PDR skills after being trained
with CPPs, we analyzed students’ step sequences during
proof construction to identify potential chunking/PDR in-
stances and tried to explain their performance through the

chunking/PDR characteristics.

3. METHOD
In this study, we explored Chunky Parsons Problems (with
or without explicit explanations attached to them) to im-
prove students’ problem-solving skills (with an emphasis on
Chunking/PDR skills) and learning gain in the context of
logic-proof problems. We derived CPP using a data-driven
method and incorporated them into the training session within
DT [28], an intelligent logic tutor. In the subsequent sec-
tions, we first provide a brief introduction to DT. Then, we
discuss how we derived CPP from data, designed explana-
tions explaining the chunks, and presented them within DT.
Finally, we present the design of our experimental training
conditions and data collection method to facilitate analyses
to answer our research questions

3.1 Deep Thought (DT), the Intelligent Logic
Tutor

DT is an intelligent logic tutor that teaches students logic-
proof construction. Each logic-proof problem within DT
contains a set of given premises and a conclusion presented
as visual nodes [Figure 1a]. To solve a problem, new propo-
sitions (or nodes) are needed to be derived by applying valid
logic rules on the given premises and subsequently on derived
premises to reach the conclusion. Usually, each problem in
DT is either of type Worked Example (WE) or problem-
solving (PS). WEs are solved by the tutor step-by-step as
the students click on a next step (>) button [Figure 1b].
On the other hand, PSs are required to be solved by the
students where they have to derive all the steps of a proof
[Figure 1a]. Here, a step refers to the process of deriving a
single node or proposition.
DT is organized into 7 levels. In the first level, the tutor
starts by showing two sample logic-proof problems (one WE
and one PS) to help students understand how to use different
features of the tutor. Then, the students solve two pretest
PS problems. After the pretest level (i.e. level 1), the stu-
dents go through 5 training levels with 4 problems in each
level. Each of the first three problems in the training levels
is either a WE or PS. For these training-level PS problems,
on-demand step-level hints are available. The last problem
in each training level is always of type PS and is called the
training-level test problem. After the 5 training levels, stu-
dents enter into a posttest level containing 6 PS problems.
During the pretest, training-level test, and posttest prob-
lems, the tutor does not offer any hints or help and the stu-
dents have to solve them independently. For each of these
problems, students receive a score between 0 and 100 (effi-
cient proof construction [less time, fewer step counts, and
incorrect rule applications] receives higher scores) [3, 1].
The pretest scores represent students’ mastery level before
training. On the other hand, the training-level posttest and
posttest scores track how much students learned after each
level of training and after all 5 training levels. More Details
on DT interface and features can be found in Appendix A.

3.2 Deriving Chunky Parsons Problem (CPP)
using a data-driven Graph-Mining
Approach

Data for Deriving CPP: DT has been being deployed in an
undergraduate logic course offered at a public research uni-



Figure 1: (a) PS and (b) WE Interface in DT

versity in the Fall and Spring semesters since 2012. To de-
rive CPP representation for logic proofs, we used the most
recent log data collected by DT in the Fall and Spring of
the years 2018-2021. These log data detail students’ histor-
ical step-by-step proof-construction attempts for each prob-
lem they solved within DT. Using these data, we gener-
ated high-level graphical representations (Interaction Net-
works [16] and Approach Maps [15]) of students’ solution
approaches for these problems to derive CPP from them.
For each problem, data of approximately 170-200 students
containing altogether 2000-5500 solution steps were used.
To select the students, we performed equal random sampling
from the semesters mentioned before so that the data is rep-
resentative of different student groups who took the course
over the years. The reason for not using all data is to mainly
reduce the computational complexity of the adopted graph
mining approach. Also, the data used is assumed sufficient
enough to capture common student approaches to solve each
logic-proof problem in the problem bank of DT [43].
Interaction Network and Approach Map: For each of the
problems in the DT problem bank, we generated a graphi-
cal representation of how students moved from one state to
another during the construction of a proof for the problem.
Here, a state refers to all nodes (or propositions) a student
had at a particular moment during their proof construction
attempt. Students move from state to state by deriving
or deleting nodes, i.e. via a step. To limit the number of
states in the graph, the propositions at a particular state
are lexicographically ordered, which means that the order
of derivation of the nodes is not considered in the graphical
representation. This graphical representation of students’
proof-construction attempts for a problem is called an inter-
action network since it represents the interaction among the
states [16]. Since interaction networks are often very large
and visually uninterpretable, we applied Girvan-Newman
community clustering [21] on the interaction networks to
identify regions or clusters of closely connected states. Each
cluster contains a set of states containing effective proposi-
tions that contributed to the final proof submitted by the
students and also unnecessary propositions (i.e. proposi-
tions that did not contribute to the final proof) that they
derived along the way. We represented each cluster with one
single graphical node containing only the effective propo-
sitions. Thus, we obtained a graph where the start state
containing the given premises is connected to the conclusion
through clusters of effective propositions. Each path from
start to conclusion represents one student approach (or solu-
tion) to the logic-proof problem [sample approach maps are

visualized in Figure 2]. Thus, this representation is called
an approach map [15]. Later, we used a rule-based approach
to extract chunks from the approach maps.
Extracting Chunks from Approach Maps: As discussed in
Section 2, researchers [12, 19] have decomposed problem
solutions using constraints such that the decomposed sub-
solutions can be replaced with alternate solutions without
causing any problem. Based on this idea, we defined two
rules to extract pivot1 or subgoal propositions that are present
in multiple approaches and/or have multiple replaceable deriva-
tions within an approach map (for example, ¬K ∨N in Fig-
ure 2a has two possible derivations from the start state.).
The rules to identify such pivots are:
Rule 1: First proposition derived within a cluster where
multiple clusters merge is a pivot [¬K ∨N in Figure 2a].
Rule 2: Last proposition derived within a cluster that gen-
erates a fork is a pivot [¬K ∨N and ¬(K ∧ ¬N) in Figure
2a].
Recall that an approach is a path from start to goal in an
approach map. And, being present in multiple paths or ap-
proaches means that a proposition is possibly vital to the
proof and a subgoal in student approaches. Finally, we de-
fined a third rule to identify pivots in approaches that do not
have a common proposition with other approaches, i.e. they
are simply a linear chain of clusters of propositions[Figure
2b]. The third rule is described below:
Rule 3: In a chain of clusters, the last derived node in each
cluster is a pivot [M or ¬Z in Figure 2b]. Note that in this
rule, we simply exploit the clusters identified by Girvan-
Newman algorithm to dismantle a complete solution into
sub-solutions or subgoals.
Finally, Using the three rules, we extracted the subgoals
within the most common student-solution approach for each
DT logic-proof problem while traversing its approach map
from top to bottom. We validated our pivot/subgoal- ex-
traction process by comparing our rule-based subgoals from
approach maps against expert-identified2 subgoals for 15
problems. And, our method was successful in identifying
all expert subgoals for those problems. After validation,
we used the subgoals to decompose the solution to derive
Chunks from them. An example of deriving chunks can be
found in Figure 2b. In the example, pivots/subgoals are col-
ored blue, and using the subgoals three chunks are extracted
from the complete solution. Note here that each chunk is
associated with a subgoal.
Explanations for Chunks: To accompany each of the chunks,
we generated automated explanations using a script that ex-
plains the composition and purpose of the chunks. Before
writing the script, a format for the chunk explanations was
decided through discussion with an expert. Each explana-
tion is written in natural language and tells what a chunk
derives (i.e. the associated subgoal), how the subgoal is de-
rived within the chunk, and why it is derived [Figure 3b].
The why part simply tells that each subgoal is necessary for
the derivation of another subgoal or the final goal. Note
that we paid close attention while crafting the explanation
format so that it does not give away any information about
the final solution beyond the visual representation of the
chunks. Overall, the purpose of the explanations is just to

1major propositions within a proof that can be used to de-
compose the proof, also referred to as Subgoals.
2The experts are two academic professionals with 10+ years
of experience with logical reasoning



Figure 2: Demonstration of a) Rule 1 and 2; and b) Rule 3
and Chunk Extraction

Figure 3: a) Parsons Problem Interface in DT; b) Explanation
Given to Specific Student Groups for Chunks Presented in a
Parsons Problem.

highlight what the chunks represent (i.e. they are building
blocks of a complete solution each deriving a subgoal).

3.2.1 Chunky Parsons Problem Interface
The Chunky Parsons Problem representation is shown in
Figure 3a. In the presentation, the given premises and con-
clusion are presented as usual. And the chunks are presented
as groups of connected propositions (or nodes) in a Parsons
Problem fashion. The problem shown in Figure 3a has two
chunks. All nodes within the chunks are connected to each
other. However, the givens, the chunks, and the conclusion
need to be connected by students to complete the proof.
Each node within a chunk can be either justified (both an-
tecedents present), partially justified (one of the antecedents
missing as for M∧¬N), or unjustified (all of the antecedents
missing as for ¬O ∨ L or ¬N). For justified and partially
justified nodes, the associated logic rule is also shown. For
example, in Figure 3a, M∧¬N is labeled by MP, i.e. Modus
Ponens is required for its derivation from the antecedents. In
addition to the visual components, textual instructions con-
taining chunk explanations [Figure 3b] were also provided to
students who were assigned to a specific training condition
(more details about training conditions in the next subsec-
tion). Note that the chunk or subgoal IDs (for example, 1.C,
2.C, etc. in the figure) are used to associate an explanation
to a chunk and the IDs do not confirm the order of how the
chunks should be connected to each other.

3.3 Experiment Design

Figure 4: Problem Organization in the Training Levels for
the Three Training Conditions. Note: ‘/’ indicates a ran-
dom selection. For example, ‘PS/WE/CPP’ indicates that
the problem will be randomly presented as either a PS, or a
WE, or a CPP.

Using existing problem types within DT (PS and WE) and
the new problem types (CPP), we designed three training
conditions. The three training conditions are described be-
low:
Control (C): Students assigned to the Control (C) con-
dition received only PS or WE (selected randomly) during
training.
Treatment 1 (T1): Students assigned to this condition,
may receive CPP without explanation in addition to PS/WE
(selected randomly) during training.
Treatment 2 (T2): Students assigned to this condition may
receive CPP with an explanation (i.e. CPPE) in addition to
PS/WE (selected randomly) during training.
Problem organization for each condition in the 5 DT training
levels is demonstrated in Figure 4. Note that the Control
(C) condition gives us a baseline for comparison between
students who received CPP or CPPE [i.e. T1/T2 students])
and those who did not receive CPP at all (i.e. C students).
On the other hand, a comparison between T1 and T2 helps to
understand the impact of the explicit explanation attached
to each chunk in a CPP.
System Deployment and Data Collection: We deployed DT
with the three training conditions in an undergraduate logic
course offered at a public research university in the Spring
of 2022. Each participating student in that course was as-
signed to one of the three training conditions after they com-
pleted the pretest problems. Our training condition assign-
ment algorithm ensures that the pretest scores of students
in each of the training groups have a similar distribution.
Finally, we had 50 students assigned to C, 50 students as-
signed to T1, and 45 students assigned to T2 who completed
all 7 levels (pretest, all training levels, and the posttest
level) of the tutor. We collected their pretest, training-level
test, and posttest scores to compare performance/learning
across the training groups. Additionally, we collected their
solution traces to analyze differences in their proof con-
struction approaches. Note that access to these data is re-
stricted to IRB-authorized researchers. To answer our re-
search questions, we carried out statistical and data-driven
graph-mining-based analyses on the collected data that we
report in the subsequent sections.

4. RESULTS
4.1 RQ1: Students’ Performance and Learn-

ing Gain



To understand the impact of each of our training conditions
on students’ performance and learning, we analyzed stu-
dents’ test score-based performance and normalized learn-
ing gain (NLG) after training. For these analyses, we fo-
cused on the training-level test problems (2.4-6.4) and the
posttest problems (7.1-7.6) that students solved indepen-
dently without any tutor help. We adopted a combination of
regression and statistical analysis (Kruskal-Walis test with
posthoc pairwise Mann-Whitney test with Bonferroni cor-
rected α = 0.0163) to compare the performance and learn-
ing gain across the three training conditions. These tests
do not make an assumption about the data being perfectly
normal. Since most of our collected data were skewed, these
tests were considered suitable in this case. Note that there
were no significant differences found in performance across
the three groups in the pretest problems.

4.1.1 Test Score-based Performance
To identify the association between the training conditions
and performance, we performed two mixed-effect regression
analyses: one for the training-level test problems and one
for the posttest problems. In each of these two analyses,
problem IDs were defined as the random-effect variable (to
eliminate the impact of differences across problems), train-
ing conditions were defined as the fixed-effect variable, and
problem score was the dependent variable. The analysis
for the training-level test problems [avg. training-level test
scores(C, T1, T2) = 65.1, 61.7, and 65.5] gave a p-value of
0.8 [p < 0.05 indicates significance] indicating that there was
no significant association between training-level test perfor-
mance and the training conditions. However, the analysis
for the posttest problems [avg. posttest scores(C, T1, T2) =
69.3, 68.2, and 73.5] gave a p-value of 0.06 demonstrating a
marginally significant association between the training con-
ditions and posttest performance. Also, the average posttest
scores showed that T2 (who received CPPE) marginally out-
performed the other two groups after 5 levels of training.
To further investigate each training group’s posttest per-
formance, we statistically compared scores across the three
training groups in each of the independent posttest problem-
solving instances (7.1-7.6). The trend in scores for these
problems across the three training groups is shown in Fig-
ure 5. While analyzing the scores in the posttest problems,
we observed that T2 had significantly higher scores than T1

and C in problems 7.1-7.3 [for 7.1, PMW (T2 > T1)
4 = 0.003

and PMW (T2 > C) = 0.01, for 7.2, PMW (T2 > T1) = 0.02
and PMW (T2 > C) = 0.01, and for 7.3, PMW (T2 > T1)
= 0.03 (marginal) and PMW (T2 > C) = 0.012] and higher
average scores in problems 7.4-7.6. Note that posttest prob-
lems in DT are organized in increasing order of difficulty.
Our analyses indicate that even though T2 could not sig-
nificantly outperform the other two groups in the harder
posttest problems(7.3-7.6), they performed comparatively
better. This trend can be observed in the ‘Posttest’ frag-
ment in Figure 5.

As shown in the figure, although T2 did not show a signif-

3In the pairwise tests each datapoint was used in at most
three tests: (C, T1), (C, T2), and (T1, T2). Thus, corrected
α = 0.05/3
4PMW (T2 > T1) refers to the p-value obtained from the
Mann-Whitney U test for the hypothesis “T2 had signifi-
cantly higher values than T1 for the metric under consider-
ation.” p < 0.016 indicates significance.

Figure 5: Training-level Test and Posttest Scores across the
Three Training Groups

icantly higher average than the other two conditions in all
problems, starting from problem 6.4, T2 students always had
higher scores (shown by the solid green line) than the other
two groups (shown by the dotted blue line and dashed orange
line). Overall, from our regression and statistical analysis,
we concluded that students’ posttest performance was asso-
ciated with the training conditions, and the T2 training con-
dition that involved CPPE was more helpful in improving
students’ performance after training. However, T2 students
showed evidence of improved performance around the end of
training and in the posttest rather than showing gradual im-
provement over the period of training. A consistent pattern
that indicates improved performance could not be identified
for T1 students who received CPP without an explanation
attached.

4.1.2 Normalized Learning Gain
To identify the training condition that was most effective in
promoting learning, we analyzed students’ normalized learn-
ing gain (NLG) across the three training conditions. NLG is
defined as the ratio between how much the students learned
and the maximum they could have learned between the pe-
riod of pretest and posttest and is represented by the fol-
lowing equation:

NLG = (post− pre)/
√

(100− pre) (1)

Note that NLG is normalized between -1 and 1. A nega-
tive NLG value represents that the posttest scores are lower
than the pretest scores. Negative NLGs could occur if the
students did not learn enough from training or if the posttest
problems are significantly harder than the pretest problems.
NLG for the three groups is shown in Table 1. We compared
the NLGs across the three training groups using statistical
tests. A Kruskal-Walis test demonstrated significant differ-
ences in the NLGs across the three training groups (statis-
tic=5.8, p-val=0.05). As we carried out posthoc pairwise
Mann-Whitney U tests with Bonferroni corrected α=0.016,
we observed T2 students had significantly higher NLGs than
Control (C) (statistic=1283.0, p-val=0.01) and T1 (statis-
tic=1235.0, pvalue=0.02) students. As we plotted the dis-
tribution of NLGs for the training groups in Figure 6, we
observed that the distribution of NLGs for T2 is centered
around positive (+) values, whereas the other two groups
had tails on the negative (-) side. Also, as reported in Table
1, 80% of T2 students had a positive NLG, whereas the per-
centage for the other two groups are only 70% and 72% re-
spectively. The results of this analysis on NLG indicate that
training condition T2 (combination of CPPE with PS/WE)



Figure 6: NLG across the Three Training Groups

Table 1: Normalized Learning Gain (NLG) across the Three
Training Groups

Group
(n)

Pre Post NLG
%Student
with(+)
NLG

C (50) 61.6(19.7) 70.4(14.4) 0.20(0.35) 70%
T1(50) 61.7(18.3) 68.2(15.1) 0.16(0.37) 72%
T2(45) 60.8(18.9) 73.2(14.8) 0.31(0.33) 80%

helped the students to learn better which moved their NLG
above 0. Possibly, CPPE helped the students to perform
comparatively well even in the harder problems (7.3 to 7.6)
that could have caused negative NLG otherwise.

4.2 RQ2: Difficulties Associated with Solving
Chunky Parsons Problems

The results from students’ performance analysis showed that
CPP with explanations attached to chunks (i.e. CPPE) has
the potential to improve students’ performance and learn-
ing gains. However, since it is a new type of problem-based
training intervention, we acknowledged the necessity of an-
alyzing its difficulty level in comparison to traditional train-
ing interventions like PS or WE. Since tutors like DT are
often used by learners in the absence of a human tutor,
our aim was to avoid increasing the training difficulty so
that the students can persist and learn. Thus, we carried
out a comparative analysis between the difficulty level of
training CPP/CPPE and PS/WE problems. The difficul-
ties associated with each problem type were measured by
the average time that the students needed to solve them
(i.e. the problem-solving time). Additionally, to guide fu-
ture improvements so that the students are better supported
during training with CPP/CPPE, we carried out an analysis
to identify difficulties that could be associated with specific
problem structures where students may need additional help
to succeed. In the subsequent sections, we report the find-
ings from the two analyses.

4.2.1 Comparative Difficulty Level of CPP/CPPE
To understand the comparative difficulty level of CPP/CPPE,
we compared the problem-solving times of CPP/CPPE against
the problem-solving times of PS/WE using Mann-Whitney
U tests. The plot representing problem-solving times for
each of these problem types over the period of training is
shown in Figure 7. Notice that in the first two training
levels, students’ problem-solving time for CPP/CPPE was
almost twice the problem-solving time of PS. This higher

Figure 7: Problem-solving Times for Different Problem Times
over the Period of Training.

problem-solving time in the early training levels could be
potentially associated with the additional time that the stu-
dents needed to figure out how different components in the
CPP/CPPE interface within DT work. However, as train-
ing progressed problem-solving time for CPP became more
aligned with that of PS [notice the problem-solving times
and comparative p-values at training levels 5 and 6 in Fig-
ure 7]. On the other hand, CPPE problem-solving times
were marginally or significantly lower than that of PS at
levels 5 and 6 respectively. Additionally, CPPE problem-
solving times were only marginally higher than that of WEs
in these two levels. These statistics indicate that the diffi-
culty level of Chunky Parsons Problems (with/without ex-
planation) lies in between the difficulty levels of PS/WE.
However, with explanation, it can be a low-difficulty train-
ing task (difficulty level similar to WEs and lower than PS
in terms of problem-solving time) that can help improve stu-
dents’ learning gain.

4.2.2 Difficulties Associated with Specific Problem
Structure

To identify difficulties associated with specific problem struc-
tures, we calculated the average time students spent to com-
plete the proof of each chunk presented in a CPP/CPPE
(by connecting all nodes within a chunk to their correct
predecessor). We call this chunk-solving time. We identi-
fied 10 problems that contained chunks with chunk-solving
time above the 75th percentile (> 2.5 minutes) for at least
10% (>= 10 students) of all T1 (CPP) and T2 (CPPE) stu-
dents. To identify the difficulty patterns in these problems,
we carried out an exploratory analysis of the structures of
these problems and how the students approached to solve
the problem. For simplicity, while explaining the problems
associated with student difficulties, we present only the ab-
stract structure of the problems [Figure 8a, b, and c]. In the
abstract structure, we show how the chunks need to be con-
nected to solve the problem and rule categories instead of the
specific rules required to connect the chunks. We grouped
the available logic rules in DT into 3 categories: 1) Transfor-
mation rules: transform the logic operator in between vari-
ables or reorganize the variables in a proposition (Comm,
Assoc, DN, De Morgan, Impl, CP, Equiv, Dist), 2) Elim-
ination: remove one or more variables from proposition(s)
(MP, MT, DS, Simp, HS), 3) Combination: combines vari-
ables from two propositions in one proposition (Add, Conj,
CD). For the 10 problems, we identified three abstract prob-
lem structures that are shown in Figure 8. Structure 1 was
associated with 6 problems. Structures 2 and 3 were asso-



Figure 8: Abstract Structure of Problems where Students
Spent Higher Times when Presented as CPP or CPPE. Note:
Dashed components are missing in some problems.

ciated with 2 problems each. Below we present our obser-
vations on student difficulties (i.e. when and where in these
structures students spent more time) associated with each
problem structure:
Structure 1: In structure 1 [Figure 8a], the chunks are se-

quentially connected with different categories of rules. We
observed that within each of the six difficult problems with
this structure, there are almost no visual commonalities
across the chunks. An example problem with this struc-
ture is shown in Figure 8d. In the figure, notice that each
chunk contains propositions composed of variables from al-
most exclusive sets (Chunk 1 variables=S, I, Y, Q), Chunk
2 variables=D, Y), and also each chunk requires a different
rule.
In these 6 problems, we found 71 students (T1 = 39, T2

= 32) who spent time above the 75th percentile to derive
a chunk within at least one of these problems. A total of
247 difficult instances were found for these students solving
problems with structure 1. 132 of those instances were asso-
ciated with forward-directed sequential derivation (i.e., the
students completed the problem in the following sequence,
chunk 1 → chunk 2 → conclusion), 11 were associated with
backward-directed sequential derivation (i.e., the students
completed the problem in the following sequence, conclusion
→ chunk 2 → chunk 1), and 104 instances were associated
with random derivation where students moved from chunk
to chunk without demonstrating a strategical pattern.
Overall, after the analysis of the structure of the 6 problems
and student approaches to solving the problems (forward,
backward, or random), we could not associate a specific ap-
proach with the chunk-solving difficulty. Rather, we con-
cluded that the difficulties could be associated with the di-
versity in rules/variables across chunks within the problems
that possibly increased cognitive load5 introducing difficul-
ties for students.

Structure 2: In structure 2 [Figure 8b], two parallel chunks
(chunk 1 and chunk 2) with very similar derivations are com-
bined to derive the conclusion or a third chunk (chunk 3)

5The amount of working memory being used

that later helps to derive the conclusion. We found 2 dif-
ficult problems associated with structure 2. An example
problem for this structure is shown in Figure 8e.
We identified 40 students (18 T1 students, 22 T2 students)
who at least had one difficult instance (i.e. spent above
75th percentile of time) while solving one of the problems
associated with this structure. 50 difficult instances [16 as-
sociated with forward-directed sequential derivation, 1 as-
sociated with backward-directed sequential derivation, and
33 with random derivation] were found for these students
while solving one of these 2 problems. We observed that the
students spent more time on either chunk 1 (31 instances)
or chunk 2 (19 instances) depending on whichever they at-
tempted to complete first. We also observed that they spent
average or below-average time while deriving the rest of the
chunks.
These observations indicate that the students were able to
identify similarities across the chunks within a problem. Thus,
although they spent more time on the first chunk, after fig-
uring out the derivation of the first chunk, they needed less
time to derive the rest.
Structure 3: Structure 2 and structure 3 [Figure 8c] are vi-
sually very similar. However, the main difference is that the
derivations of chunk 1 and chunk 2 within structure 3 have
no similarities (an example problem is shown in Figure 8f).
We found 2 difficult problems associated with structure 3.
33 students were identified (19 T1 students, 14 T2 students)
who had at least one difficult derivation (i.e. spent above
75th percentile of time) while solving one of the problems
associated with this structure. 45 difficult instances [28 asso-
ciated with FW-directed sequential derivation, 13 associated
with BW-directed derivation, and 4 with random derivation]
were found for these students while solving one of these 2
problems. And, we observed that in most of the cases, stu-
dents spent higher time on both chunk 1 and chunk 2 (total
35 instances).
Overall, our observations indicate that difficulties mostly oc-
curred when chunks within a problem were very dissimilar
(in Structure 1 and Structure 3). On the other hand, if
there are similar chunks within a problem, after deriving
one chunk, the students figured out the derivation of other
similar chunks very quickly.

4.2.3 Learning Efficiency and Correlation Test be-
tween NLG and Training Time

Overall, the training time for T1 (this group received CPP
without any explanation) and T2 (this group received CPP
with explanations) was higher than the control group [Con-
trol (C): 66.4(35.3) minutes, T1 (CPP): 89.7 (60.7) minutes,
T2 (CPPE): 81.8 ( 46.0) minutes]. The skewed distribution
of training times across the three training conditions is vi-
sualized in Appendix B, Figure 12.
Since the training times were higher for the treatment groups,
we calculated the learning efficiency (NLG/Training Time)
for each group. However, we did not find any difference
in learning efficiency across the groups [Control (C): 0.007(
0.011), T1 (CPP): 0.003( 0.005), T2 (CPPE): 0.004(0.009).
Kruskel-Wallis Test: (statistic=2.84, p-value=0.24); Pair-
wise post-hoc Mann Whitney U Tests: (C, T1)=(statistic=
986.0, p-value=0.30), (C, T2)=(statistic=1020.0, p-value =
0.11), (T1, T2)=(statistic=1231.0, p-value=0.43)]. We also
did not find any significant correlation between NLG and
training times [Control (C): coefficient = -0.09, p-value =



0.32; T1 (CPP): coefficient = -0.21, p-value = 0.96; T2 (CPPE):
coefficient = 0.01, p-value = 0.43]. Therefore, it is unclear
whether or not the differences in NLG across the training
conditions occurred due to differences in training times.

5. RQ3: STUDENTS’ CHUNKING BEHAV-
IOR

CPP and CPPEs were incorporated within DT training lev-
els to demonstrate chunking (i.e. decomposed problem so-
lutions), engage students in the process (by having them
recompose complete solutions from chunks), and motivate
them to adopt chunking (i.e. decomposition-recomposition
(PDR)) to reduce difficulties while solving new problems.
To investigate if students successfully captured the notion
of chunking while solving CPP/CPPE and if they tried to
form chunks when solving problems independently (which
we refer to as chunking behavior), we adopted a data-driven
approach. From log data collected within DT, we tried to
infer if the students showed chunking/PDR behavior and
how the behavior was associated with their performance.
Method to Identify Chunking Behavior: We analyzed stu-
dents’ chunking behavior in the posttest problems that they
solved independently [7.1-7.6]. To do so, first, we derived
baseline chunks from historical student solutions to these
problems. For problems 7.1-7.6, using the method described
in Section 3.2, we generated approach maps using historical
data collected in DT to capture previous students’ solutions
and identified baseline chunks in those solutions. The base-
line chunks answer ’What to look for in the solutions of the
students participating in this study’. Next, to confirm the
presence of the baseline chunks or chunking/PDR behavior
in a student’s proof construction attempt, we sequentially
scanned through the student’s steps while constructing a
proof and identified consecutive steps as chunking when the
step sequence has the following characteristics:
1. The propositions derived in the step sequence overlaps
with propositions and subgoal associated with only one of
the baseline chunks [we applied the ‘Intersection’ set opera-
tion to find an overlap].
2. The step sequence may or may not be separated from the
rest of the steps by a time gap above the average step time
(the time spent on a single step) of 1.6 minutes. The two
cases of separation by time gaps are shown in Sample 1 and
Sample 2 in Figure 9.
The process of identifying chunking in a student solution at-
tempt is further illustrated in Figure 9.
Learning and Chunking Behavior: Following prior research [9,
25], to validate our method to identify chunking behavior,
we sought to explain students’ learning gain that reflects
their problem-solving skills through derivation efficiency in
the chunking instances detected using our method.
We hypothesized that a higher number of treatment group
students (who received CPP/CPPE) will have chunking in-
stances in their solutions of posttest problems than the con-
trol(C) group students. However, we identified that most of
the students (121 out of the 145 students) regardless of their
training conditions had baseline chunks present in their solu-
tions. Only 24 students (C=8,T1=9,T2=6) never showed any
identifiable chunking behavior. This indicates that students
might have a natural tendency to identify sub-problems and
construct logic proofs in chunks. Whereas the presence of
some chunking instances is desirable, too many chunks in a
problem solution do not represent better performance and

Figure 9: Method to Identify Chunking using Approach Map
and Students’ Solution Traces [showing the mapping between
step sequence and chunks].

more learning. Deep Thought proofs are usually 7-15 steps
long and an ideal solution for each problem mostly contains
2-3 chunks. Since the Deep Thought problem score which
impacts NLG is designed as a function of time, step counts,
and rule application accuracy, to achieve higher scores and
NLG, students need to demonstrate only correct baseline
chunks within their solutions and each of those chunks needs
to be derived efficiently with less time and fewer steps. This
fact was validated by a mediation analysis. In the analy-
sis, we used training condition as the independent variable
(IV), NLG as the dependent variable (DV), and average #
chunks/problem as the mediator (MD). The analysis gave
an insignificant p-value [Appendix B, Figure 14] indicating
that the impact of the training treatments on learning or
NLG is not mediated by the amount of chunking present in
students’ logic-proof solutions.
Thus, in subsequent analyses, instead of focusing on the
number of chunks present in student solutions, we focused
only on students’ efficiency in deriving the baseline chunks.
We calculated efficiency in terms of time spent on deriv-
ing different chunks and # of steps within the chunks. We
also analyzed NLGs across different pretest score groups to
understand the impact of CPP/CPPEs on students with dif-
ferent levels of prior knowledge.
Moderation Analysis on Different Pretest Score Groups: Prior
studies showed that both worked examples and Parsons prob-
lems may have a different impact on students based on their
prior knowledge or skill level [34, 17]. We carried out a
moderation analysis to understand how NLG and chunking
behavior and efficiency varied across different pretest score
groups and training conditions. The pretest score distri-
bution is visualized in Appendix B, Figure 13. We classi-
fied students based on their pretest scores (low, medium,
and high) and used this classification as the moderator in
our analysis. Within this classification, we considered train-
ing condition as the independent variable. For each pretest
score group and training group, we analyzed 4 dependent
variables: average # chunks/problem, average chunk time,
avg. chunk step count, and the NLG. Table 2 shows the
groupings and values for the dependent variables. To com-
pare the dependent variables across pretest score groups and
training conditions, we carried out Kruskal Wallis test and
pairwise posthoc Mann Whitney U tests with Bonferroni
correction (corrected α = 0.05/3 or 0.016). Note that a to-
tal of 36 tests(3 pretest score groups, 4 dependent variables,
and 3 pairwise tests for each group and dependent variable)
were carried out to compare the metrics presented in Table



2. Thus, a more conservative Bonferroni correction could
be carried out to eliminate false positives. However, to not
introduce many false negatives while eliminating false posi-
tives, we decided the level of correction based on the number
of unique pairwise tests each datapoint participated in [6]
rather than on the number of related tests (for example, the
9 tests on NLG across the pretest scores groups though inde-
pendent could be considered related and a more conservative
correction could be carried out). We explain the results for
each pretest score group below:
Low Pretest Scorers: We considered students with pretest
scores below the 25th percentile as low scorers. In this
group, we observed that T2 who received CPPE had sig-
nificantly higher and less negative NLGs than the other two
training conditions [pKW < 0.001, pMW (T2 > C) = 0.011,
pMW (T2 > T1) < 0.001]. We also observed that T2 stu-
dents with low pretest scores had lower average chunk time
and significantly lower step counts per chunk [pKW < 0.03,
pMW (T2 < C) = 0.004, pMW (T2 < T1) < 0.014]. Overall,
T2 students with low pretest scores demonstrated compara-
tively more efficient chunking (in terms of less time and step
counts) and higher NLG. However, a difference in the num-
ber of chunks per problem was not found across the training
conditions as expected.
Medium Scorers: Students with pretest scores between 25th-
75th percentile were identified as the medium scorers. Within
this group, we observed that the T2 condition again showed
significantly or marginally higher NLG than the other two
training conditions [pKW < 0.001, pMW (T2 > C) = 0.002,
pMW (T2 > T1) < 0.021]. We observed differences in the av-
erages of chunk time across the three training conditions,
however, a significant difference was not found in chunk
count, time, or step counts.
High Scorers: We did not observe any significant differences
in NLG across the three training conditions for students with
high pretest scores (above 75th percentile). However, we
observed that T1 and T2 students in the high pretest score
group demonstrated comparatively more chunking (in the
range of 3-4 chunks per problem) in posttest than the con-
trol (C) group (in the range of 2-3 chunks per problem).
Overall, the results of the moderation analysis indicate that
T2 students with low and medium pretest scores achieved
significantly higher NLGs than students from the other two
training conditions with similar levels of prior knowledge.
There were no significant differences in the amount of chunk-
ing per problem across the training conditions. However,
we observed differences in the chunking efficiency where T2

had lower chunk derivation times and fewer steps within
chunks in some cases. Thus, next, we analyze and present
the chunking efficiency across the three training conditions
on different posttest problems in further detail.
Chunk Derivation Efficiency: We compared the chunk deriva-
tion efficiency of the students across the three training condi-
tions who had identifiable chunks in their solutions. Toward
that, we analyzed two metrics for the baseline chunks identi-
fied in student solutions to the posttest problems: 1) Time to
derive a chunk (shorter chunk derivation time [CTime] indi-
cates students figured out ‘how to derive the chunk ’ quickly),
2) unnecessary proposition count [UProp]6 (fewer unneces-
sary propositions indicate students correctly identified ‘what

6Unnecessary propositions are propositions that students
derived during proof construction but later deleted and those
were not part of the final proof.

to derive within the chunk ’). Lower values for these two met-
rics indicate higher chunk derivation efficiency.
In Figure 10, we show the chunks commonly found in stu-
dents’ proof for each of the posttest problems. For simplicity,
for each of the chunks, we only show what subgoal the chunk
derives. To identify significant differences in the derivation
efficiency of these chunks (in terms of CTime or UProp)
across the three training conditions, we carried out Kruskal-
Wallis tests. The chunks for which there is a significant
difference in derivation efficiency across the training condi-
tions in terms of at least one of UProp or CTime are marked
with thicker edges and green nodes in the figure. The results
of the statistical tests are shown along the thicker edges. We
observed that the significant differences were found mostly
for non-trivial chunks, i.e. chunks that involve several propo-
sition derivations. For example, there are two chunks in the
solution of 7.1: the first chunk derives ¬R which requires
multiple steps (i.e. non-trivial), and the second chunk de-
rives R ∨ ¬T which can be derived after a Simplification
rule application on the given premise (R ∨ ¬T ) ∧ X (triv-
ial derivation). We found significant differences only in the
derivation efficiency of chunk 1 (the non-trivial chunk). To
identify the training condition that was the most efficient
in deriving the green chunks in Figure 10, we carried out
posthoc pairwise Mann-Whitney U tests [for the pairs (C,
T1), (C, T2), and (T1, T2)] with Bonferroni correction (cor-
rected α=0.016) comparing UProb and CTime. The results
of the tests are shown in Table 3. As shown in the table, in
most of the cases, T2 is the most efficient group in deriving
the chunks, i.e. the tests for the hypotheses ‘T2 < C’ and
‘T2 < T1’ in terms of UProp/CTime gave p-value < 0.016.
Overall, these results indicate that although most students
naturally derived chunks, T2 students achieved higher effi-
ciency in deriving non-trivial chunks.

Figure 10: Chunk Derivation Efficiency in Posttest Problems.

6. DISCUSSION
Overall, our analysis showed that Chunky Parsons problem
could be a low-difficulty training intervention, specifically
when presented with an explanation hinting at what the
chunks mean and how they contribute to the complete so-
lution. However, while being a low-difficulty training inter-
vention, it has the potential to improve students’ learning
gain and problem-solving skills, specifically chunking skills.
We observed that most students formed some chunks dur-



Table 2: Moderation Analysis across the Three Training Conditions Categorized on Pretest Scores. [Note: Blue* indicates a
significant difference. Boldface indicates comparatively better averages (e.g. higher for NLG/lower for extra steps).]

Moderator Independent Variable (IV) Dependent Variables (DV)

Pretest
Quantile

Training
Condition

Avg.
# chunks/
prob.

NLG
Avg. Chunk
Time
(minutes)

Avg. Chunk
Step Count

Low Scorers
(< 25th percentile)
N = 35

Control(n=12) 2.02(3.25) -0.20(0.35) 3.42(1.45) 2.01(0.81)
T1-CPP(n=12) 2.47(3.62) -0.40(0.39) 2.78(3.80) 2.06(1.03)
T2-CPPE(n=11) 2.19(3.54) -0.07(0.22)* 2.21(3.26) 1.94(0.90)*

Medium Scorers
(25th-75th percentile)
N = 75

Control(n=25) 2.51(3.98) 0.34(0.23) 2.88(4.51) 2.25(1.38)
T1-CPP(n=26) 2.58(3.96) 0.35(0.25) 3.03(5.15) 2.05(1.08)
T2-CPPE(n=23) 2.26(3.60) 0.48(0.22)* 2.45(3.90) 2.14(1.14)

High Scorers
(> 75th percentile)
N = 35

Control(n=13) 2.92(3.72) 0.30(0.17) 3.09(4.22) 2.45(1.34)
T1-CPP(n=11) 3.50(4.5) 0.32(0.13) 4.03(5.64) 2.16(0.89)
T2-CPPE(n=11) 3.13(3.96) 0.33(0.17) 2.94(3.47) 2.31(1.26)

Table 3: Chunk Derivation Efficiency across the Three Train-
ing Groups (only significant p-values are shown).

Problem Chunk Metric
Pairwise Mann-
Whitney U Test

7.1 Chunk 1 UProp
p(T1<C)=0.005
p(T2<C)=0.012

7.2 Chunk 2 UProp
p(T2<C)=0.016
p(T2<T1)=0.006

7.3
Chunk 1
+ Chunk 2

CTime
p(T2<C)=0.015
p(T2<T1)=0.002

7.4 Chunk 3 CTime
p(T2<C)=0.013
p(T2<T1)=0.014

7.5
Chunk 2
+ Chunk 3

CTime
p(T2<C)=0.010
p(T2<T1)=0.030

7.6
Chunk 2
+ Chunk 3

CTime
p(T1<C)=0.010
p(T2<C)=0.020

ing proof construction. However, students from all training
conditions were not equally efficient in chunking. Our statis-
tical tests showed that T2 (who received CPP with an expla-
nation attached to chunks) derived non-trivial chunks with
higher efficiency. However, this efficiency often was not ob-
served for all chunks within a problem. Another limitation
of CPP/CPPEs is the difficulties associated with it when
students first encounter CPP/CPPE in early training levels
or when the chunks within a CPP/CPPE are very diverse.
Thus, we recommend providing additional guidance or tu-
tor help in these scenarios to ensure a better student experi-
ence while solving and learning through CPP/CPPE. Never-
theless, our analyses have established that Chunky Parsons
Problems with explanations can be an effective problem-
based training intervention to improve students’ Chunking
skills (i.e. problem decomposition into chunks and recom-
posing them to construct a complete solution).
Also, our data-driven method to derive subgoals can be
adopted for any structured problem-solving domain as long
as each step during problem solving can be presented as a
state transition. For example, in a math-expression evalu-
ation problem, a state can be the set of all evaluated parts
of the equation at a particular moment. A step or an action
(for example, applying a math operator) changes the prob-
lem state. Once the state transitions or interaction is defined
within a domain, generating the approach maps and extract-

ing subgoals from them can be carried out generically (graph
construction, applying clustering, and simplifying the graph
in approach maps). Similarly, the chunking efficiency eval-
uation method can be adopted in other domains, as long
as each point in the students’ sequential problem solution
traces can be presented as a state from a finite state space.

7. CONCLUSION AND FUTURE WORK
The contributions of this paper are 1) the demonstration
of a data-driven graph-mining-based method to decompose
problem solutions into expert-level chunks, 2) the design of a
problem-based training intervention called Chunky Parsons
Problem to be used within an intelligent tutor to teach stu-
dents the concept of structural decomposition-recomposition
(or Chunking) of problems, 3) an evaluation of the impact of
Chunky Parsons Problem on learning and students’ chunk-
ing skills, and 4) a mechanism to identify Chunking in stu-
dents’ solution traces using historical baseline chunks. As
discussed earlier, our data-driven methods to derive Chunky
Parsons Problem and to identify Chunking in student so-
lution traces can be adapted for any domain where prob-
lem solving is structured and the states and transitions of
students during problem solving can be defined definitely.
Likewise, Chunky Parsons Problem can be adapted for any
problem-based tutor within such domains.
However, this study has several limitations. First, the de-
sign decisions for Chunky Parsons Problems (CPPs) and
their explanations were made based on prior literature, with-
out any user studies to validate them. Second, while we
validated chunks found in participants’ solutions, our data-
driven evaluation method may not be able to detect new
chunks that were not previously seen in prior student data.
Also, the outcomes of this study are dependent on how we
defined different data-driven metrics (for example, difficulty
or efficiency). Third, although our evaluation can identify
the impact of interventions, it cannot validate the source of
the impact. Thus, future user studies involving interviews
or talk-aloud protocols could help address these three is-
sues and validate the findings on the usability and impact of
Chunky Parsons Problem. Finally, our study focused only
on logic-proof problems and should be replicated in other
domains to understand the generalizability of the findings.
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APPENDIX
A. DEEP THOUGHT INTERFACE AND

FUNCTIONALITIES
Figure 11 shows the different components and architecture
of Deep Thought or DT, including one property worth men-
tioning: during training problems, the tutor colors student-
derived propositions based on their frequency in prior stu-
dent solutions. This coloring is designed to help the students
to understand if they are on the right track or not.

A.1 Problem-Solving Strategies within Deep
Thought

Logic Proof Construction problems in Deep Thought can be
constructed using one of the three following strategies: 1)
Forward Problem Solving; 2) Backward Problem Solving;
and 3) Indirect Problem Solving. The three strategies are
briefly described below:

Forward Problem Solving: In this strategy (Figure 15a),
proof construction progresses from the given premises to-
ward the conclusion. At each step, a new node is derived
by applying rules on the given premises or derived justified
nodes. To derive a new node in the forward direction, stu-
dents first need to select the correct number of premise(s)
or already justified node(s) and then select the rule to apply
to the selected node(s).

Backward Problem Solving: In this strategy (Figure 15b),
proof construction progresses from the conclusion toward
the given premises. At each step, the conclusion is refined
to a new goal. In this strategy, students can add unjusti-
fied nodes in the proof that they wish to derive from the
given premises. To derive a node backward, students need
to select the ‘?’ button above a node, then select the rule,
and then input the proposition(s) which are the antecedents
of the selected node as per the selected rule. For example,
in Figure 15b, the conclusion ¬N is first refined into an-
tecedents ¬T → ¬N and ¬T using the Modus Ponens (MP)
rule. ¬T → ¬N (given) is already justified. So, ¬T becomes
the new goal since it is still unjustified. Then, ¬T is refined



Figure 11: Deep Thought Interface

to a new goal ¬E ∨¬T using the Simplification (Simp) rule.
In this way, the unjustified goal(s) are refined to the given
premises to complete the proof.

Indirect Problem Solving: Indirect problem solving [2]
refers to the ‘Proof by contradiction’ approach. To construct
a proof using this strategy, students first need to click on the
‘Change to Indirect Proof’ button (Figure 11) which adds
the negation of the original conclusion to the list of givens
(as in ¬¬N in Figure 15c). From there, students need to
derive two contradictory statements (for example, ¬¬N and
¬N) to prove the contradiction (∅).

Note that usually within Deep Thought, students are not
required to follow any particular strategy. They can use any
strategy at any point in a proof construction attempt.

B. SUPPLEMENTARY FIGURES
Figure 12, 13, and 14 supplement the analyses presented in
Section 4.2.3 and 5.

Figure 12: Training Time across the Three Training Condi-
tions.

Figure 13: Distribution of Pretest Scores across the Three
Training Conditions.

Figure 14: Mediation Analysis to Analyze the Impact of
Amount of Chunking on Learning.



(a) Forward Strategy (b) Backward Strategy (c) Indirect Strategy

Figure 15: Problem-Solving Strategies Implementable in Deep Thought


