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ABSTRACT
Vocabulary proficiency diagnosis plays an important role in
the field of language learning, which aims to identify the
level of vocabulary knowledge of a learner through his or
her learning process periodically, and can be used to provide
personalized materials and feedback in language-learning ap-
plications. Traditional approaches are widely applied for
modeling knowledge in science or mathematics, where skills
or knowledge concepts are well-defined and easy to associate
with each item. However, only a handful of works focus on
defining knowledge concepts and skills using linguistic char-
acteristics for language knowledge proficiency diagnosis. In
addressing this, we propose a framework for vocabulary pro-
ficiency diagnosis based on neural networks. Specifically, we
propose a series of methods based on our framework that
uses different linguistic features to define skills and knowl-
edge concepts in the context of the language learning task.
Experimental results on a real-world second-language learn-
ing dataset demonstrate the effectiveness and interpretabil-
ity of our framework. We also provide empirical evidence
with ablation testing to prove that our knowledge concept
and skill definitions are reasonable and critical to the per-
formance of our model.

Keywords
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1. INTRODUCTION
Vocabulary proficiency diagnosis is one of the key funda-
mental technologies supporting language education and has
lately gained increased popularity in online language learn-
ing. It is crucial to identify the learners’ latent proficiency

Figure 1: An example of cognitive diagnosis.

level on different knowledge concepts (e.g., words) to higher
accuracy in providing personalized materials and adaptive
feedback in language-learning applications [1]. In practice,
with the diagnostic results, systems can provide further sup-
port, such as learning planning, learning material recom-
mendation, and computerized adaptive testing accordingly.
Most importantly, it can help second-language learners to
place themselves in the correct learning space or level after
a long gap without using the application, during which they
might have forgotten a lot or, conversely, have advanced in
the target language without the use of the application [25].

Many cognitive diagnosis methods have been proposed for
knowledge proficiency diagnosis of learners. Figure 1 shows a
simple example of a cognitive diagnosis system, which con-
sists of learners, question items, knowledge concepts, and
learner responses (scores). Specifically, a learner interacts
with a set of questions and leaves their responses. Moreover,
human experts usually label each question item with several
knowledge concepts. Then, the goal is to infer their actual
knowledge proficiency based on the interactions. Therefore,
a cognitive diagnosis system can be abstracted as a learner-
question-concept interaction modeling problem, and most
previous works focus on learner-question interaction mod-
els or learner-concept interaction models [11]. For example,
traditional methods like Item Response Theory (IRT) [9],
Multidimensional IRT (MIRT) [24], and Matrix Factoriza-
tion (MF) [23] try to model the learner-question interaction
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and provide learner latent traits (e.g., ability level) and the
question features (e.g., difficulty level). In addition, MIRT
and MF cannot provide explainable traits and IRT only pro-
vides an overall latent trait for learners, while each question
usually assesses different knowledge concepts or skills. Other
works such as Deterministic Inputs, Noisy-And gate (DINA)
[6] try to build the learner-concept interaction instead of
learner-question interaction. Unlike learner-question inter-
action models, learner-concept interaction models could in-
fer the learner’s traits in detail for each knowledge concept
contained in the question item, despite leaving information
of questions underexploited by simply replacing them with
their corresponding concepts. Although great successes have
been made, there are some limitations of traditional meth-
ods, which decay their effectiveness. Also, these approaches
are widely applied for modeling knowledge in science or
mathematics and ignore characteristics of language learn-
ing, which make it a significant research challenge to infer
the mastery level of learners’ vocabulary proficiency.

A critical drawback of traditional methods is that they can
only exploit the response results and ignore the actual con-
tents and formats of the items and cannot effectively utilize
the rich information hidden within question texts and under-
lying formats [18]. Most traditional methods were proposed
for scale-based tests, where a group of examinees is tested
using the same small set of questions, and each examinee
is supposed to respond to every question. As a result, the
response data is complete and usually not large. While for
learning applications nowadays, the data might be collected
via different scenes, such as offline examinations and online
self-regulated learning, and the distribution of response data
can be of high volume but very sparse due to the large to-
tal number of items and limited questions attempted by the
learners [33]. Therefore, neglecting contents and formats
leaves traditional methods no possibility to utilize the rela-
tionships of different items, hence they are unable to gener-
alize item parameters to unseen items [25]. Previous studies
have already shown that the information of questions is sig-
nificantly related to item parameters, for instance, the dif-
ficulty level. For language vocabulary questions, character
length and corpus frequency prove to be essential factors for
predicting vocabulary difficulty [5], while the average word
and sentence lengths have been used as key features to pre-
dict text difficulty [2, 25]. Also, studies have indicated that
different question formats impact the difficulty level and ex-
planatory power in predicting receptive skills [16]. For the
same vocabulary, different question formats are often used
collectively to assess different skills, such as reading, writing,
listening, and speaking skills, and many assessments have a
mixture of item types. Consequently, it is important to con-
sider the format information of the items and their influence
on different traits when building a vocabulary proficiency di-
agnosis model.

Another important challenge is to define and use linguistic
skills for vocabulary proficiency diagnosis. Although many
approaches are widely applied for proficiency diagnosis, they
have not frequently been applied to data generated in lan-
guage learning settings. Instead, they have been primar-
ily applied to science, engineering, and mathematics learn-
ing contexts, where skills or knowledge concepts are well-
defined and easy to associate with each item. Most works

use manually labeled Q-matrix to represent the knowledge
relevancies of each question. For example, a math question:
6× 9 + 3 = () examines the mastery of two knowledge con-
cepts: Addition and Multiplication. Thus, the Q-matrix for
this question could be labeled as (1, 1, 0, ..., 0), where the first
two positions show this question test Addition and Multipli-
cation concepts, and other positions are labeled with zero,
indicating other knowledge concepts are not included. How-
ever, proficiency diagnosis in the realm of language learning
is different from other domains since linguistic skills are hard
to define and need to be well-designed [21, 38].

To address these challenges, which have not been well ex-
plored in the research community, in this paper, we propose
a framework for vocabulary proficiency diagnosis, which could
capture the learner-question interactions more accurately
using neural networks. In addition, we use linguistic fea-
tures of words such as morphological and semantic features
to define knowledge concepts and skills related to vocabulary
and grammar knowledge that is shared between words. Ex-
tensive experimental results on a real-world second-language
learning dataset demonstrate the effectiveness and interpre-
tational power of our proposed framework. We also provide
empirical evidence with ablation testing to prove that our
knowledge concept and skill definitions are reasonable and
critical to the performance of our model. The results show
that using linguistic features to refine knowledge concepts
and skills improves performance over the basic word-level
model. We also explore the relationship of the question for-
mat, and in turn, its effect on the vocabulary proficiency
diagnosis.

2. RELATED WORK
2.1 Cognitive Diagnosis
Cognitive diagnosis is a fundamental and important task,
and many classical cognitive diagnosis models have been de-
veloped in educational psychology, such as IRT, MIRT, and
DINA. IRT [9] is a widely used method and has been applied
in educational testing environments since the 1950s [9]. It
applies the logistic-like item response function and provides
interpretable parameters. In its simplest form, IRT could be
written as:

P (Xij = 1) = σ(θi − βj),

where P is the probability of the learner i answering the item
j correctly, σ is a logistic-like function, θ and β are unidi-
mensional and continuous latent traits, indicating learner
ability and item difficulty, respectively. Besides the basic
IRT, other IRT models extend the basic one by factoring in
other parameters, such as the item discrimination or guess-
ing parameter.

IRT has proven to be a robust model. However, a single abil-
ity dimension is sometimes insufficient to capture the rele-
vant variation in human responses. By extending the trait
features into multidimensions, Reckase et al. [24] proposed
MIRT, which tries to meet multidimensional data demands
by including an individual’s multidimensional latent abili-
ties for each skill. MIRT goes a step further compared to
IRT, however, as the process of estimating the parameters
for MIRT is the same as IRT, these two models share the
same shortcomings [4]. Also, latent trait vectors provided by



IRT and MIRT is not explainable enough to guide learners’
self-assessment [34].

By characterizing learner features (e.g., ability) and item
features (e.g., difficulty), IRT builds learner-question inter-
action and provides an overall latent trait for learners. How-
ever, real-world questions usually assess different knowledge
concepts or skills, and an overall trait result is insufficient
[20]. To provide detailed results on each knowledge concept
or skill, other works try to directly build learner-concept in-
teraction. For example, DINA [6] model the learner-concept
interaction by mapping questions to corresponding concepts/
skills directly with Q-matrix, which indicates whether the
knowledge concept is required to solve the question. Differ-
ent from IRT, θ and β are multi-dimensional and binary in
DINA, where β came directly from Q-matrix. Another two
parameters, guessing g and slipping s, are also taken into
consideration. The DINA formula is written as:

P (Xij = 1) = gj
1−ηij (1− sj)ηij , ηij =

K∏
k=1

θik
βjk ,

where the latent response variable ηij indicates whether the
learner has mastered all the required knowledge to solve
the question. And the probability of the learner i correctly
answering item j is modeled as the compound probability
that the learner has mastered all the skills required by the
question without slip, and the learner does not master all
the required skills but makes a successful guess. Although
DINA has made great progress and shows its advantage com-
pared to IRT in specific scenarios, it ignores the features of
questions and simply replaces them with the corresponding
knowledge concepts/skills, thus leaving useful information
from questions underexploited.

2.2 Matrix Factorization
Besides the traditional models, the other line of studies has
demonstrated the effectiveness of MF for predicting learner
performance by factorizing the score matrix, which was orig-
inally widely used in the field of recommendation systems
[3]. Studies have shown that predicting learner performance
can be treated as a rating prediction problem since learner,
question, and response can correspond to user, item, and
rating in recommendation systems, respectively.

Toscher et al. [30] applied several recommendation tech-
niques in the educational context, such as Collaborative Fil-
tering (CF) and MF, and compared them with traditional re-
gression methods for predicting learner performance. Along
this line, ThaiNghe et al. [28] proposed multi-relational fac-
torization models to exploit multiple data relationships to
improve the prediction results in intelligent tutoring sys-
tems. In addition, Desmarais [8] used Non-negative Matrix
Factorization (NMF) to map question items to skills, and
the resulting factorization allows a straightforward interpre-
tation in terms of a Q-matrix. Similarly, Sun et al. [27]
proposed a method that uses Boolean Matrix Factorization
(BMF) to map items into latent skills based on learners’ re-
sponses. Wang et al. [36] proposed a Variational Inference
Factor Analysis framework (VarFA) and utilized variational
inference to estimate learners’ mastery level of each knowl-
edge concept.

Despite their effectiveness in predicting learner performance,
the latent trait vectors in MF are not interpretable for cogni-
tive diagnosis, i.e., there is no clear correspondence between
elements in trait vectors and specific knowledge concepts.
Also, these works have considered only learners and ques-
tion items, and ignored other information that may also be
useful.

2.3 Deep-learning based models
With the recent surge in interest in deep learning, many
works have begun to use deep learning to address some of
the shortcomings of traditional cognitive diagnosis models
[13, 19, 29].

Traditional methods are often based on simple linear func-
tions, such as the logistic-like function in IRT or the inner
product in matrix factorization, which may not be sufficient.
To improve precision and interpretability, some previous
works focus on interaction function design and use neural
networks to learn more complex non-linear functions. For
example, Wang et al. [33] propose a Neural Cognitive Diag-
nosis (NCD) framework for Intelligent Education Systems,
which leverages neural networks to automatically learn the
interaction function.

Some researchers focus on incorporating the content repre-
sentation from question texts into the model by neural net-
works, which is difficult with traditional methods. Cheng
and Liu [4] proposed a general Deep Item Response The-
ory (DIRT) framework that uses deep learning to estimate
item discrimination and difficulty parameters by extracting
information from item texts. Wang et al. [34] applied neural
networks to extract two typical types of information in the
question text: knowledge concepts and extra text-related
factors. Their results indicated that using such content in-
formation benefited the model and significantly improved its
performance.

Other deep-learning models try to incorporate dependency
relations among knowledge concepts for enhancing diagno-
sis performance. For example, Wang et al. [35] proposed
a model based on neural networks and aggregate knowl-
edge relationships by converting all knowledge concepts into
a graph structure. Ma et al. [22] proposed the Prereq-
uisite Attention model for Knowledge Proficiency (PAKP)
to explore the prerequisite relation among knowledge con-
cepts and use it for inferring knowledge proficiency. Recent
work proposed the Relation map driven Cognitive Diagnosis
(RCD) [11] model by comprehensively modeling the learner-
question interactions and question-concept relations. Their
model achieved better performance compared to traditional
works that consider only learner-question interactions (e.g.,
IRT) or only question-concept interactions (e.g., DINA).

Although deep learning models have been widely explored
nowadays, they have been primarily applied to learning con-
texts such as math, algebra, or science, where skills or knowl-
edge concepts are well-defined and easily associated with
each item. Therefore, these methods cannot be directly used
in the language learning area, and linguistic skills need to be
well-defined and well-designed for language proficiency diag-
nosis. In addition, except for the work by wang et al. [34],
other aforementioned works failed to consider question for-



Figure 2: Overview of the proposed framework.

mats, which are important for language-learning questions
and may have a significant influence on the question diffi-
culty level and learner’s performance.

3. PROPOSED METHOD
We first give the definition of our problem in Section 3.1.
Then we present our proposed framework in Section 3.2.

3.1 Problem Formulation
Like every test, there are two basic elements: user and item,
where a user represents a learner, and an item represents
a question. We use L to denote a set of learners, Q to
denote a set of questions and s to denote the learner-question
interaction score. Learner question records are represented
by R = {(l, q, s)| l ∈ L, q ∈ Q, s ∈ {0, 1}}, which means
learner l responded to question q and received the score s.
Each score s is in {0, 1} where 1 indicates the question is
correctly answered while 0 stands in the opposite.

Given enough question-records data R of learners, our goal
is to build a model to mine learners’ proficiency through the
task of performance prediction.

3.2 Framework
Generally, for a cognitive diagnostic system, there are three
parts that need to be considered: learner, question item,
and interaction function. As shown in Figure 2, we propose
a cognitive diagnostic framework with deep learning, which
aims to obtain the learner parameter (proficiency) and item
parameters (discrimination and difficulty). Specifically, for
each response log, we use one-hot vectors of the correspond-
ing learner and question as input and obtain the diagnostic
parameters of the learner and question. Then the model
learns the interaction function among the learner and item
parameters and outputs the probability of correctly answer-
ing the question. After training, we get the learner’s profi-
ciency vectors as diagnostic results.

3.2.1 Item Parameters

The item’s characteristics are calculated in the item network
to represent the traits of a specific item. Two parameters
extended from the Two-Parameter Logistic IRT model [32]
are used in our model, i.e., discrimination and difficulty.
The discrimination a ∈ (0, 1) indicates the ability of an item
to differentiate among learners whose knowledge mastery is
high from those with low knowledge mastery, and difficulty
b ∈ (0, 1)1×K indicates the difficulty of each knowledge con-
cept examined by the question, where K is the number of
knowledge concepts.

As we mentioned before, two elements influence the item’s
characteristics for a vocabulary question: the target word
and the specific item format. Then the item is represented
by integrating the one-hot word embedding vector w and
one-hot item format embedding f .

i = w ⊕ f , (1)

where ⊕ is the concatenation operation. After obtaining
item representation using the word embedding and item for-
mat, we input it into two different networks to estimate the
question discrimination a and knowledge difficulty b. Specif-
ically:

a = σ(Fa(i)), (2)

b = σ(Fb(i)) (3)

Where Fa and Fb are discrimination and difficulty networks,
respectively, and σ is the sigmoid function.

3.2.2 Learner Parameter
In the learner network, the proposed method characterizes
the traits of learners, which is closely related to the profi-
ciency of various knowledge concepts or skills tested in the
question and would affect the learner’s performance. Specif-
ically, each learner is represented with a proficiency vec-
tor θ = (θ1, θ2, . . . , θn), where θi ∈ [0, 1] represents the
degree of proficiency of a learner on a specific knowledge
concept or skill i and the goal of our cognitive diagnosis
model is to mine learners’ proficiency through the task of
performance prediction. The proficiency vector is obtained
by multiplying the learner’s one-hot representation vector l
with a trainable matrix A. That is:

θ = l×A. (4)

3.2.3 Prediction of Learner Response

Interaction layer. The proposed method predicts a learner’s
response performance to a question as a probability. We in-
put the representations of the learner parameter and ques-
tion parameters (i.e., item discrimination and knowledge dif-
ficulty, respectively) into an interaction function to predict
the learner’s probability of answering the specific question
correctly.

The interaction function simulates how learner parameters
interact with question parameters to get the response re-
sults, for example, a simple logistic-like function is used as
the interaction function in IRT. Based on previous works
[22, 33, 34, 35], we use a neural network to learn a more
complex non-linear interaction function to boost the model.



Specifically, the input of the interaction function can be for-
mulated as:

x = a (θ − b) � kc (5)

where kc is the knowledge concept or skill vector that in-
dicates the relationship between the question and knowl-
edge concepts or skills, which is usually pre-labeled by ex-
perts and obtained directly from Q-matrix. We discuss how
we define the knowledge concepts or skills in Section 3.3.
The operator � is the element-wise product and x indicates
the learner’s performance on each concept pertaining to the
question. We then use a three-layer feed-forward neural net-
work Fi to learn the non-linear activation function and out-
put the probability p that the learner answers the question
correctly. It can be formulated as:

p = σ(Fi(x)). (6)

Following previous works [33, 34, 35], we restrict each weight
of Fi to be positive during the process of training to ensure
the monotonicity assumption, which assumes that the prob-
ability of learners answering the exercise correctly increases
monotonically with the degree of mastery on each knowledge
concept pertaining to the question.

Guess and Slip Adjustment. We noticed that many ques-
tion items in the dataset are multiple-choice items, which
makes it highly possible for the learners to guess the correct
answer even if they don’t master the knowledge concept,
or slip even though they know the answer. To obtain bet-
ter results, we add a guessing parameter g ∈ [0, 1] and a
slipping parameter s ∈ [0, 1] to adjust the performance re-
sults, where g indicates the probability that a learner did
not master the knowledge concepts but guessed the correct
answer and s indicates the probability that a learner masters
the knowledge concepts but did not answer correctly. The
guessing and slipping parameters can be formulated as:

g = σ(Fg(i ⊕ l)), (7)

s = σ(Fs(i ⊕ l)), (8)

where Fg is the guessing and Fs is the slipping networks,
respectively. To compute the final probability that a learner
answers the question correctly, we apply adjustments of the
guessing parameter and slipping parameter on the probabil-
ity estimation, which can be expressed as:

y = g + (s− g)× p. (9)

3.2.4 Model Learning
We use the binary cross-entropy loss function for the pro-
posed method. The learner’s score is recorded as 1 when
she/he answers the item correctly and 0 otherwise. For
learner i and question j, let yij be the actual score for learner
i on question j, and ŷij be the predicted score. Thus, the
loss for learner i on question j is defined as:

L = yij logŷij + (1 − yij )log(1 − ŷij ). (10)

Using Adam optimization [15], all parameters are learned si-
multaneously by directly minimizing the objective function.
After training, the value of θ is what we get as the diagnostic
result, which denotes the learner’s knowledge proficiency.

Table 1: An example subwords Q-matrix.

Knowledge Concept
Words active actual actor act -tive -tual -ual -tor -or · · ·
active 1 0 0 1 1 0 0 0 0 · · ·
actual 0 1 0 1 0 1 1 0 0 · · ·
actor 0 0 1 1 0 0 0 1 1 · · ·

...
...

...
...

...
...

...
...

...
...

...

3.3 Defining Knowledge Concepts and Skills
The knowledge concept or skill vector indicates the relation-
ship between question items and knowledge concepts/skills,
which is fundamentally essential as we need to diagnose the
degree of proficiency of a learner corresponding to a specific
knowledge concept/skill. As for each question, the knowl-
edge concept/skill vector c = (c1, c2, c3, . . . ck), ci ∈ {0, 1}
represents if a specific knowledge concept/skill is required
to solve the question, in which ci = 1 indicates that the
knowledge concept/skill is included in the question and con-
versely ci = 0 is not.

Usually, skills or knowledge concepts are pre-labeled by ex-
perts, and the vector c can be directly obtained from the
pre-given Q-matrix. However, the knowledge concept/skill
is difficult to define for language learning compared to other
learning contexts such as science, engineering, and mathe-
matics. Conventional models treat all question items nested
under a particular word equivalent, but even for the same
word, the ability of learners to comprehend a specific word
can be divided into different levels. Some researchers define
‘word knowledge’ as different components including spelling,
word parts, meaning, grammatical functions, the associa-
tions a word has with other words, and collocation to de-
scribe the totality of the learner’s knowledge of a specific
word in a language [20]. Thus, different items may refer to
the same word if the word is used differently in multiple con-
texts (e.g., used as different parts of speech), or if different
components of the word are tested. It is important to con-
sider these when building vocabulary proficiency diagnosis
models.

In the following subsections, we introduce several methods
for defining knowledge concepts/skills in vocabulary profi-
ciency diagnosis using different linguistic features and pro-
vide more detailed results on diagnosing associated knowl-
edge concepts/skills.

3.3.1 Words as Knowledge Concepts
The simplest way to label knowledge concepts in an item
is to simply use the unique words as knowledge concepts.
There could be many knowledge concepts (e.g., many unique
words) in a language-learning system, but only one knowl-
edge concept (i.e., a word tested in the question) is related
to a question item.

3.3.2 Sub-words as Knowledge Concepts
Another way to label multiple knowledge concepts in an item
is to identify sub-words that comprise a word and treat each
of these sub-words as an additional knowledge concept. Sub-
words can be viewed as morphological features of an origi-
nal word, which may indicate the relationships of different



Table 2: Summary of question formats and required
skill(s).

Format Skill Q-matrix Vector
F1 Recognition [1, 0, 0, 0]
F2 Recognition [1, 0, 0, 0]
F3 Recognition, Listening [1, 1, 0, 0]
F4 Recognition, Spelling [1, 0, 1, 0]
F5 Reading [0, 0, 0, 1]

words and reinforce the knowledge related to gender agree-
ment, prefixes, suffixes, compound words, etc. Inspired by
the work of Zylich and Lan [38], we apply a sub-word tok-
enizer to automatically identify sub-words contained in each
word. As shown in Table 1, we formulate a Q-matrix to ap-
ply the sub-word knowledge concepts for each word. For
example, the word ‘active’ could have additional knowledge
concepts such as ‘act’ and ‘-tive’.

Figure 3: Examples of different question formats

3.3.3 Semantically Similar Words as Knowledge Con-
cepts

Recent works indicated that cross-effects commonly exist
in language learning [21, 38]. That is, during the exercise
process of a learner, when an exercise of a particular knowl-
edge concept is given, she/he also applies the relevant knowl-
edge concepts to solve it. Specifically, in language learning,
it seems that knowledge pertaining to semantically-similar
words related to the word being tested are helpful in answer-
ing the question.

Following previous work [38], we used word embeddings to
obtain semantic similarities of words. First, we embedded
each word into a 300-dimensional vector using pre-trained
fastText word embeddings [12] and calculated the cosine
similarity scores between each pair of words to get a matrix
of values that indicates the similarities of each word. Using
this similarity matrix, all the similar words in the dataset
that have cosine similarity larger than a threshold α with the
current word can be counted as addition knowledge concepts
required to solve the question. The threshold α is used to
control the degree of semantic similarity, for example, only
highly semantically similar words can be used as knowledge
concepts in the Q-matrix if α is large, and if α = 1, this
model reduces back to the basic word-level model that only
uses the current word as the knowledge concept. Other-
wise, if α = 0, which means that all other words that have
non-negative similarity with the current word are treated as
knowledge concepts.

3.3.4 High-order Skills

Figure 4: Distribution of question formats and re-
sponse pie chart.

We formulated several methods for defining knowledge con-
cepts in language proficiency diagnosis using different lin-
guistic features such as additional morphological and seman-
tic concepts. However, the ability used to solve vocabulary
questions can depend on several high-order skills but not on
whether the learner knows the word or not. Following previ-
ous works [14, 20, 37], we also consider defining skills instead
of knowledge concepts in language proficiency diagnosis.

Here we propose two different methods to label skills in lan-
guage proficiency. The most basic way we can choose to
label a skill is by the question format. As shown in Figure
3, there are five different question formats in our dataset
(more detailed information on the data can be found in Sec-
tion 4.1). And if a learner is good at correctly answering a
particular type of question, we can assume that she/he has
a high skill in this question format. However, there will only
be a single skill associated with each item and is not explain-
able enough if we use the question format as skills. To have
a better interpretation, as summarized in Table 2, for each
question format (see Figure 3), we defined some high-order
language skills (i.e., Recognition, Listening, Spelling, Read-
ing) required to tackle a specific question format based on
some of the evidence from the literature [14, 16, 20, 26].

4. EVALUATION
4.1 Dataset
Our real-world dataset came from one of Japan’s most pop-
ular English-language learning applications, and most of the
users are Japanese students. The dataset includes 9,969,991
learner-item interactions from 2,014 users. There are 1,900
English words in the dataset, and each word has five dif-
ferent question formats collectively assessing different skills,
resulting in 9500 items. The different question formats are
shown in Figure 3, and some basic statistics of the dataset
and response distributions are shown in Figure 4.

4.2 Experimental Settings
4.2.1 Evaluation Metrics

The performance of a cognitive diagnosis model is hard to
evaluate as we can’t obtain the true knowledge proficiency
of learners directly. Usually, the models are evaluated by
predicting learner performance in most cognitive diagnosis
works. Following previous works, we evaluated by compar-
ing the predicted responses with the ground truth, i.e., the
actual response by the learners.

To set up the experiment, the data were randomly split into



80%/20% for training and test purposes, respectively. We
filtered out the learners who had answered less than 50 ques-
tions so that every learner could be diagnosed with enough
data. Like previous works [4, 34, 35], we use Prediction
Accuracy (ACC), Area Under Curve (AUC), Mean Abso-
lute Error (MAE), and Root Mean Square Error (RMSE)
as metrics. The larger the values of ACC and AUC, and the
smaller the values of MAE and RMSE, the better the results
are.

4.2.2 Comparison
We name our model as Vocabulary Proficiency Diagnosis
Model (VPDM) and compared our models using different
knowledge concept and skill definitions with several existing
models given below.

• DINA [6]: DINA is a cognitive diagnosis method that
models learner concept proficiency by a binary vector.

• IRT [9]: IRT is a classical baseline method that models
learners’ and questions’ parameters using the item response
function.

• MIRT [24]: Extending from IRT, MIRT can model the
multidimensional latent abilities of a learner.

• PMF [10]: Probabilistic matrix factorization (PMF) is a
factorization method that can map learners and questions
into the same latent factor space.

• NMF [17]: Non-negative matrix factorization (NMF) is
also a factorization method, but it is non-negative, which
can work as a topic model.

• NCD [33]: NCD is a recently proposed method that uses
neural networks to learn more complex non-linear learner-
question interaction functions.

Among these baselines, IRT, MIRT, and DINA are widely
used methods in educational psychology. PMF and NMF are
two matrix factorization methods from the recommendation
system and data mining fields. NCD is a recently proposed
model based on deep learning.

4.2.3 Parameter Settings
We implemented our model and other baselines in PyTorch.
The model was trained with a batch size of 256. We used
Adam optimizer with a learning rate of 0.001. The dropout
rate is set to 0.2, and early stopping is applied to reduce
overfitting.

5. RESULTS
5.1 Performance Prediction
The overall results on all four metrics are shown in Table
3 for all baseline methods and our models predicting learn-
ers’ performance. VPDM-Word, VPDM-Subword, VPDM-
Semantic, VPDM-FormatSkill, and VPDM-LangSkill are our
models using words, subwords, semantically similar words,
question formats, and language skills as knowledge concepts
/skills, respectively. We observe that our models perform
better than all other models, indicating the effectiveness of
our framework. Among other baseline models, we noticed

Table 3: Performance comparison.

Model ACC ↑ AUC ↑ MAE ↓ RMSE ↓
DINA 0.756 0.704 0.348 0.446
IRT 0.770 0.721 0.317 0.400
MIRT 0.768 0.728 0.311 0.399
NMF 0.768 0.722 0.355 0.405
PMF 0.771 0.731 0.328 0.398
NCD 0.772 0.734 0.316 0.397
VPDM-Word 0.773 0.736 0.309 0.396
VPDM-Subword 0.772 0.736 0.310 0.396
VPDM-Semantic 0.773 0.736 0.308 0.396
VPDM-FormatSkill 0.773 0.742 0.309 0.395
VPDM-LangSkill 0.773 0.742 0.308 0.395

that the performance of NCD is comparable to our mod-
els and better than educational psychology methods (i.e.,
DINA, IRT, and MIRT) and matrix factorization methods
(i.e., NMF and PMF), which demonstrates that leveraging
deep learning could model the learner-question interactions
more accurately than other conventional models.

In comparing our models, the performance of the VPDM-
Word, VPDM-Subword, and VPDM-Semantic models are
comparable, while VPDM-LangSkill and VPDM-FormatSkill
models obtain better performance than other models, indi-
cating that more broadly defined skills/knowledge concepts
of an item are better. We will introduce our investigations
to gain a deeper understanding of the difference among our
models in the following subsections.

5.2 Impact of Different Formats
Many assessments have a mixture of item types (same as
our dataset) since results based on a single format only re-
flect the knowledge unique to the specific format and might
be misleading. To illustrate the performance of our models
on different item formats, we separated the mixed-format
dataset into different parts that only include different spe-
cific item formats, so we could conduct experiments to eval-
uate questions with a specific format. The results are shown
in Figure 5 and the number of responses completed per
learner is shown in Figure 6. Note that we did not test
VPDM-LangSkill and VPDM-FormatSkill models here as
they are intended for the mixed-format dataset.

Overall, the results indicate that our model consistently out-
performs all other models. Furthermore, we observe that the
prediction performance is affected by the question format,
which highlights the fact that different question formats as-
sess different traits.

5.3 Ablation Study
To investigate how the guessing and slipping adjustment
layer affects model performance, we conducted some abla-
tion experiments to compare the results. Table 4 shows the
comparison results of the experiments on our mixed-format
dataset and different single-format datasets. We observed
that the performance improves when using the guessing pa-
rameter, and the model with guessing and slipping parame-
ters obtained the best performance. It is reasonable as many
items are multiple-choice in our dataset. In addition, we



Figure 5: Comparison among different question formats.

Figure 6: Distribution of the number of responses per learner.

Figure 7: Comparative performance of semantically
similar words as knowledge concepts via cosine sim-
ilarity.

noticed that adding the slip and guessing parameters sub-
stantially improves some models’ performance. This might
imply that the Q-matrix is not specified appropriately in
those models, though no formal rules exist to test this as-
sumption [7].

In the comparison of the models that remove the guessing
and slipping adjustment layer, the performance of the ba-
sic VPDM-Word model is the worst. As we expected, the
knowledge assessed by a word item is not just simply related

to the tested target word in the question. Moreover, the re-
sults confirm that the item’s format carries meaning and is
related to different traits, even though the questions with
different formats are all designed for the same word.

As for subword and semantic models which use additional
morphological or semantical knowledge concepts along with
the tested target word, we observed improvements compared
to the basic word-level model. One possible explanation
is that the use of additional morphological or semantical
knowledge concepts results in more items that share skills
with each other, enabling the model to capture more interac-
tions between learners and different words and reinforce the
knowledge related to gender agreement, prefixes, suffixes,
compound words, etc. [38]. For example, a closer inspec-
tion of the items revealed that even learners who are famil-
iar with the word ‘break’ but do not know ‘breakthrough’
still have a good chance of answering some ‘breakthrough’
related items correctly. Figure 7 shows that varying the
threshold parameter α in the VPDM-Semantic model does
not influence the performance drastically. However, when we
remove the guess and slip adjustment layer, we found that
the performance of the model increases with the decreases
of α, and the model performs best when α = 0, which means
that all other words that have non-negative similarity with
the current word are treated as knowledge concepts. This
result is in agreement with previous works, that an item de-
signed to measure one trait may also require some level of
other traits [37], and the proficiency of similar knowledge
concepts can affect each other [11]. Specifically for language
learning settings, it is important to focus not only on the
interactions with the same word but also on interactions
with other semantically similar words when predicting the
degree of mastery of the target word [21]. We also noticed
an intriguing finding for format 4, where VPDM-Subword
and VPDM-Semantic outperformed the VPDM-Word model



Table 4: Results of the ablation study.

Model Adjustment
All F1 F2 F3 F4 F5

AUC ↑ AUC ↑ AUC ↑ AUC ↑ AUC ↑ AUC ↑

VPDM-Word
- 0.655 0.668 0.669 0.685 0.628 0.715

Guess 0.735 0.711 0.705 0.731 0.736 0.730
Guess & Slip 0.736 0.713 0.706 0.732 0.736 0.731

VPDM-Subword
- 0.661 0.683 0.679 0.703 0.698 0.716

Guess 0.734 0.711 0.703 0.729 0.731 0.729
Guess & Slip 0.736 0.715 0.708 0.732 0.737 0.730

VPDM-Semantic
- 0.705 0.674 0.672 0.699 0.699 0.711

Guess 0.734 0.713 0.706 0.730 0.732 0.731
Guess & Slip 0.736 0.715 0.707 0.732 0.745 0.732

VPDM-FormatSkill
- 0.733

Guess 0.740 - - - - -
Guess & Slip 0.742

VPDM-LangSkill
- 0.735

Guess 0.741 - - - - -
Guess & Slip 0.742

significantly after the guess and slip adjustment layer was
removed. This finding is particularly noteworthy because
format 4 requires learners to type the word, and the re-
sults are more likely to be influenced by related morpho-
logical and semantic knowledge concepts such as prefixes,
suffixes, and compound words. This result highlights the
critical role of the item’s format and how it influences the
required knowledge in the question. Understanding this re-
lationship between item format and knowledge requirements
could potentially inform the design of more effective and ef-
ficient language learning assessments and improve learners’
overall performance.

Finally, VPDM-LangSkill and VPDM-FormatSkill models
obtain better performance than other models, indicating
that more broadly defined skills and knowledge of an item
are better in this task. For VPDM-FormatSkill model, one
prevalent hypothesis is that items with different formats
measure different traits or dimensions, and factors could be
hypothesized to form on the basis of item format [31]. That
is, the item’s format might also be important and related
to different traits or dimensions as suggested by previous
works [7]. For VPDM-LangSkill model, the results show that
learners’ knowledge acquisition is influenced by high-order
features (language abilities in this case). It greatly reduces
the complexity of the model in cases where it is reasonable to
view the examination as measuring several general abilities
in addition to the specific knowledge states.

5.4 Interpretation of the Diagnosis
We visualize the diagnostic reports and evaluate the inter-
pretation of the VPDM-LangSkill model as it is the most
practical one with good performance. This visualization
helps learners recognize their knowledge state intuitively
and assists test developers to design question items effec-
tively. As shown in Figure 8, we randomly sampled a learner
and depict the proficiency diagnosed by IRT and VPDM-
LangSkill. Each point on the radar diagram represents the
mastery level of a certain trait. The red and blue lines de-

Figure 8: Visualization of a sample diagnostic re-
port.

note the proficiency diagnosed by IRT and VPDM-LangSkill
(scaled to (0, 1)), respectively. From the results, we can
see that IRT only provides an overall unidimensional latent
trait, the proficiency for all concepts is identical, therefore, it
is not explainable enough to guide learners’ self-assessment.
As for the VPDM-LangSkill model, it is able to provide bet-
ter interpretable insight for multidimensional traits (i.e., in
our case, recognition, listening, spelling, and reading).

6. CONCLUSION
In this work, we proposed a framework for vocabulary pro-
ficiency diagnosis, which could capture the learner-question
interactions more accurately using neural networks. In ad-
dition, we proposed a series of methods based on our frame-
work, that uses different linguistic features to define skills
and knowledge concepts in the context of a language learn-
ing task. Experimental results of cognitive diagnosis on real-



world second-language learning dataset showed that the pro-
posed approach outperforms existing approaches with higher
accuracy and increased interpretability. We also provided
empirical evidence with ablation testing to prove that our
knowledge concept and skill definitions are reasonable and
critical to the performance of our model.

There are some limitations in this work. Firstly, the learner
base of the dataset is limited to learners of the same language
background and thus might decrease the generalize of this
work. We plan to test other datasets in future work. In ad-
dition, we only consider the target word that is tested in the
question, however, some questions are multiple-choice, and
some questions test contextual usage as the learner needs to
fill in a sentence with the correct target word. Therefore,
additional features such as context information and distrac-
tors in the question should also be considered as they also
influence the learner’s performance. We expect that this
work will provide useful implications for language-learning
applications that focus on vocabulary learning, and we will
test more question formats and include additional linguistic
skills to expand the capabilities of our model in future work.
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