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ABSTRACT
The goal of this paper is to gain insight into the problem-
solving practices and learning progressions by analyzing the
log data of how middle school and college players navigate
various levels of Baba Is You, a puzzle-based game. In
this paper, we first examine features that can capture the
problem-solving practices of human players in early levels.
We then examine how these features can predict players’
learning progressions and their performance in future levels.
Based on the results of the current quantitative analyses
and grounded in our previous in-depth qualitative studies,
we propose a novel metric to measure the problem-solving
capability of students using log data. In addition, we train
artificial intelligence (AI) agents, particularly those utilizing
Reinforcement Learning (RL), to solve Baba Is You levels,
contrast human and AI learning progressions, and discuss
ways to bridge the gap between them.
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1. INTRODUCTION
1.1 Problem-solving & Log Data
There is ubiquitous agreement that problem-solving is an
important goal of STEM education [8, 4, 3]. However, there
is little agreement as to what features compose effective
problem-solving or how to teach and measure these features
[14]. Advancements in AI and human behavior analysis
introduce the possibility of identifying these features, cap-
turing problem-solving performance in rich detail, and con-
sequently providing problem-solvers with just-in-time feed-
back and scaffolding [16]. Several works have tried to ac-
complish this using log data generated from interaction with

∗kumiko.nakajima5221@gmail.com

a digital environment. For example, Wang et al. [17] have
examined how to engineer features from log data to cap-
ture the efficacy of problem-solvers’ data collection when
solving electric circuit problems. Bumbacher et al.[2] and
Perez et al. [13] have used log data to determine how de-
liberately a person engages in problem-solving related to
physics. Here we continue this line of work by using log
data of problem-solvers interacting with the puzzle-based
game Baba Is You. We also compare the problem-solving
processes of human problem-solvers with a standard rein-
forcement learning agent and discuss the potential underly-
ing causes of these differences.

1.2 Reinforcement Learning & Human Com-
parisons

It has long been noted human learning behaviors in game
environments differ significantly from those of standard Re-
inforcement Learning (RL) algorithms, with much attention
paid to the sample inefficiency of the latter [11]. Tsividis
et al. [15] study human learning behaviors in the Arcade
Learning Environment (commonly referred to as Atari [1]),
and hypothesize a range of mechanisms for their differences
with RL algorithms. Human and reinforcement learning be-
havior and attention [9] as well as neural activity [5] have
been also compared within the Arcade Learning Environ-
ment. Works have investigated the inclusion of object rep-
resentations [6] and linguistic grounding [10] so as to close
the gap between human and RL behaviors. Dubey et al.
[7] compare human and RL algorithm behavior in environ-
ments specifically designed to limit the usefulness of human
visual priors. Our work, while preliminary, eventually seeks
to characterize the sorts of representations and motivations
RL systems need in order to engage in human-like problem-
solving behaviors in challenging problem-solving environ-
ments.

2. METHODS
2.1 Baba Is You
Baba Is You is a puzzle game where players can change the
rules by which they play. In Baba Is You, players move
Baba, a small sheep-like creature, by pressing keys or but-
tons/joysticks on a controller to make Baba move up, down,
left, or right; players can also reverse their actions in a level
or restart the level completely. At every level, the rules
themselves are present as text blocks that players can inter-
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Proceedings of the 16th International Conference on Educational
Data Mining, pages 529–533, Bengaluru, India, July 2023. Interna-
tional Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115768

https://doi.org/10.5281/zenodo.8115768


Figure 1: Screenshots from the video game Baba Is You.
In this example, Baba can pass through the wall when the
“WALL IS STOP” rule is broken (right screenshot).

act with, and by manipulating them, they can change how
the level works (see Fig. 1).

The game has various levels, with similar levels grouped into
one map. In the beginning, there is a map with 7 tutorial
levels that players are required to finish at least 4 of them
in order to proceed. Players can then go to the Lake map,
which contains 13 normal and 2 extra challenge levels. For
all following maps, to unlock the next map, players have
to finish at least 8 levels. Map 1 (The Lake) can only be
followed by Map 2 (Solitary Island); Map 2 by both Map 3
(Temple Ruins) and Map 4 (Forest of Fall). Finally, after
Map 3, players can proceed to all the other maps.

2.2 Participants
Middle school students (n = 54) and college students (n =
113) were recruited via online flyers to participate in the
study. We recruited both groups of players to capture a
potential range of prior problem-solving expertise. All par-
ticipants had never played Baba Is You before. Each partic-
ipant was asked to play the game for three separate sessions.
Sessions last up to 150 minutes, and during these sessions,
players played as many levels as they wished. They were not
required to finish each level they attempted, and they did
not have to play a fixed set of levels. Both middle school and
college students finished all tutorial levels and some levels
from early maps.

2.3 Dataset
2.3.1 Log Data
We extracted game log data, which has the timestamps of all
player inputs, all game events (e.g., rule-add, rule-remove,
no-you) that happened because of player inputs (e.g., left,
right, down, up), and the number of the levels completed by
each student at any given timestamp.

2.3.2 Survey Data
We surveyed participants about their age, grade, and general
computer gaming experience, as well as self-reported scores
on factors such as approach toward failure and self-efficacy
via an online survey after all play sessions ended.

2.3.3 Aggregated Data
We created one large aggregated dataset that stores the IDs
of the students, their survey answers, the length of their
play sessions, the average amount of time they spent on
each level, as well as some simple aggregated count features

extracted from the log data such as the overall number of
restarts, undo.

3. ANALYSIS
3.1 Exploratory Data Analysis
Our goal is to develop a model that predicts student perfor-
mance on later levels from interpretable variables on earlier
levels — such interpretability is crucial for future scaffold-
ing interventions which use this model. Standard feature
selection methods from all log data features for this pre-
dictive problem may sacrifice such interpretability. Hence,
we first explore what features from aggregated data are most
predictive of a simplified overall problem-solving progression
proxy: the number of levels completed. Then, for predicting
future problem-solving performance, we layer in additional
level-based features.

3.1.1 Predicting Overall Problem-solving Progres-
sion

To predict overall problem-solving progression, the aggre-
gated features used are: the number of levels tried, the
number of undo inputs, the number of restart inputs, the
number of “no you” states (when the player has no control-
lable representation in the game due to having dismantled
”X IS YOU”for all objects X and has no possible moves other
than restart or undo), the average session time, the player’s
game experience level, and their school grade. To exam-
ine which features significantly predict the learning progress
of students as operationalized by the number of levels com-
pleted, we implement k-fold cross-validated linear regression
with intercept:

Y = β0 + β1X + ϵ

Here, X denotes any single feature after standardization,(mean
0, sd 1) and Y denotes the number of completed levels. For
this k-fold cross-validated linear regression, we use cross-
validated R2 to measure the goodness of fit. For this anal-
ysis, we took k = 10. We then choose the most important
features, as measured by goodness of fit in this analysis, for
predicting future problem-solving performance in the subse-
quent logistic regression analysis as described below.

3.1.2 Predicting Future Problem-solving Performance
Because of the small sample size and the distribution of stu-
dents who tried each level (shown in Fig. 2), we only extract
input features from the initial levels for which at least 150
students have attempted (all levels before Lake-9). Then,
we build models predicting future performance based on in-
put features from three groups of initial levels: all finished
levels before level Lake-9 (‘all-previous’), the eight hardest
levels finished before level Lake-9 (‘8-hardest’), and from the
first and last levels before level Lake-9 (‘first-and-last’). We
use features found to be predictive in the preceding linear re-
gression analysis (Section 3.1.1), and use the performance of
students in these features in the selected initial levels to pre-
dict students’ problem-solving performance in future levels.
We use the selected features from overall problem-solving
progression prediction as model inputs for this future per-
formance prediction in two different ways: using averages
across previous levels, labeled as average values, or includ-
ing separately all the values of the selected features from the
previous levels, labeled as progressive values.



Figure 2: Number of students who attempted each level. Suc-
cessive levels were attempted less often.

To make future performance prediction tractable, we catego-
rize students into ‘high’ and ‘low’ performance and predict
these coarse-grained outcomes. To categorize students’ per-
formance in a given collection of future levels, we count the
number of those levels for which each student finishes within
the fastest 50%. We then cut the population along the 50th
percentile of this count distribution: students with a higher-
than-median count are labeled 1 (‘high’ performance), and
those with lower-than-median count are labeled 0 (‘low’ per-
formance). Note that these labels depend on the collection
of levels for which we predict performance.

We then use logistic regression on these inputs to predict
three future problem-solving performance measures sepa-
rately: performance in the immediate next level, perfor-
mance in all future levels in the same map, and performance
in all future levels in a different map. Logistic regression
is used in this analysis as it is a simple and interpretable
method that can be effective for binary classification prob-
lems, and it does not require any assumptions for the inde-
pendent variables. Hence, it is a good choice for this pre-
liminary attempt to gain insight into the prediction power
and weights of the features. Because of dividing both the
performance and the population by median, the random
performance of the model (performance by chance) would
be 50%. Therefore, we can compare our logistic regression
model accuracy relative to this 50% baseline performance.
We conduct a shuffle test to make this random prediction
rigorous. The shuffle test involves training a model to pre-
dict randomly permuted output labels (e.g., high vs. low
performance), giving us a “random”model baseline.

Overall, We have then 2 (average or progressive values) *
3 (all-previous, 8-hardest, or first-and-last initial levels) * 3
(to predict performance in the next level, all future levels in
the same map, or all future levels in a different map) = 18
fitted logistic regression models in total. For each of these 18
logistic regression models, we run a 10-fold cross-validation
on the data-set to estimate generalization of model accuracy.
We leave hyperparameters in the default settings for this
exploratory analysis.

Table 1: Mean R2 of linear regression on CV-dataset. no-
you count and tried-levels count seems useful for next step’s
feature extraction

Feature CV-R2

no-you count 0.317
tried-levels count 0.470

restart count 0.057
undo count 0.001

Game experience (hour) -0.187
Avg session time (hour) -0.159

Age group (Middle school=0, College=1) -0.136

3.2 Reinforcement Learning
We aim to compare the performance of Reinforcement Learn-
ing (RL) agents with human players. We selected three lev-
els (i.e. baba-is-you, out-of-reach, and volcano) with avail-
able human play data and trained RL agents on them. The
RL agents have a discrete action space of size 4, which in-
cludes left, right, up, and down. The state space, or map,
is represented by one-hot encodings. For instance, a 6 × 5
environment with 10 distinct tiles would be represented by
a floating point tensor in R10×6×5.

We implemented a DQN algorithm [12] with an epsilon-
greedy strategy to train the RL agents. The discount factor
gamma in the DQN algorithm is set to 0.99. The initial ex-
ploration rate epsilon is set to 0.9 and decays by a factor of
0.99 after every episode, with a minimum exploration rate
of 0.01. The neural network architecture consists of four 2D
convolutional layers, followed by batch normalization layers
and a linear feed-forward layer. We employed a batch size
of 128 and a replay buffer size of 10,000.

For the RL agents, an episode ends when the number of
actions taken exceeds 200, when no available action is left,
or when the level is solved. In the case of human players,
we considered the end of an episode when the player hits
the reset button, when no available action is left, or when
the level is solved. We devised a reward system to measure
the performance of both RL agents and human players. The
RL agents receive -100 points for failing to solve the level,
+200 points for completing the level, and -0.5 points for each
action taken, to incentivize the agent to find more efficient
solutions.

To compare human learning progress with the learning progress
of RL agents, we scored human play based on the same re-
ward system, even though such a scoring system is not vis-
ible to them. As human players typically only solve a level
once, we assumed that they can at least repeat their solu-
tions. In our visualizations, we maintained their scores at
their top scores after they stopped solving for a particular
level.

4. RESULTS
4.1 Important Features
The results of feature selection from aggregated data show
that (Table 1) while we initially hypothesized that the no-
you event is a major reason that students hit restart, the
count of no-you is more important than the count of restart
in predicting the number of levels completed. With R2 =



Figure 3: Results (Accuracy) for 10-fold cross-validated logistic regression, with shuffle test baseline (red dash line). The six
bars on the right show that using the average performance from all-previous (levels before Lake level 9) completed levels or the
eight hardest levels to predict the performance of far levels is accurate. When predicting future-same-map levels’ performance,
the model that using first-and-last levels from the current map is more accurate

Figure 4: Results for the Reinforcement Learning experiment. The light-colored area shows the standard deviation of all the
rewards obtained by all human participants. We find that RL agents can only solve the first level (a), but fail to solve levels (b)
and (c), whereas human participants can solve all with much better sample efficiency.

0.317 < 0.5, no-you, as a single feature, has a weak predic-
tive power. Thus, we introduce more features directly from
the game’s log data that improve the model fit significantly,
including the count of rules added, count of rules removed,
count of a single undo, count of blocks of undos, average
time between inputs, maximum time between inputs, and
the count of input signals. Overall, the three features that
can significantly predict problem-solving progression and the
number of initial levels completed are no-you count, tried-
level count, and restart count.

4.2 Predicting Future Performance
The results of cross-validated logistic regression to predict
future problem-solving performance are shown in Fig. 3.
The model that used the features from the first and last

previous levels in the current map has reached the high-
est accuracy when predicting students’ future performance
in the next single level or all future levels in the same map.
Also, there is no significant difference between using average
values of the selected features and using progressive values
of the selected features. When predicting performance in
the levels in a new map, the accuracy of all 3 models (all-
previous, 8-hardest, first-and-last) decreases. In addition,
it is interesting that for the levels in a new map, using all-
previous and 8-hardest models are more accurate than using
the first-and-last model while making predictions using the
average values of the selected features.

4.3 Reinforcement Learning Comparison



The results of the RL experiment are shown in Fig. 4. Three
levels of increasing difficulty (a — Tutorial1, b — Tuto-
rial2, and c — Tutorial3) were chosen for the experiment.
It was observed that RL agents were only able to solve level
(a), while human players could, on average, solve all lev-
els. Note that a positive reward always indicates that the
level has been solved since the only positive reward signal
is obtained from solving the level. For level (a), the RL
agent was trained to improve its policy, resulting in rewards
that increased with more training episodes. Human par-
ticipants, however, typically only solve each level once. To
visually compare the performance of humans with that of
the RL agent, we aggregate human performance curves as if
they were to continue playing their best score after play had
ceased — hence, the human reward curve is flat after episode
10, as most humans solved these levels within 10 episodes.
Note that we are plotting these reward curves as a func-
tion of episode; as noted in analysis, these definitions differ
slightly between human and RL agents. The above plot is
our best attempt to compare human learning progress with
RL learning progress despite this discrepancy.

5. CONCLUSIONS
Our exploratory regression analysis identifies significant fea-
tures of human problem-solvers that help them succeed over-
all in the game as well as help them perform in future levels.
We found that features like the number of no-you and un-
dos can predict the problem-solver overall progression. One
can hypothesize that the frequency of these features cap-
ture the extent that a player explores the game mechanics,
and hence impact their overall problem-solving progression
in the game. Furthermore, we can predict problem-solving
performance in future levels using performance in these fea-
tures in the hardest previously attempted levels as well as
only the first and the last previously attempted levels.

While the RL agent’s performance fares similarly to human
problem-solvers in an initial level, their performance falls
significantly behind in the more challenging levels, and they
exhibit significantly different sample efficiency in arriving at
solutions. This is entirely expected, as we are training stan-
dard RL methods from scratch on these data. One inter-
esting challenge we hope to make progress on is in closing
this gap: the sorts of pre-training experience, subsequent
representations, agent motivations, and inter-level transfer
mechanisms that lead to more human-like problem-solving
performance.
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