
Admitting you have a problem is the first step: Modeling
when and why students seek help in programming

assignments.

Zhikai Gao
North Carolina State

University
zgao9@ncsu.edu

Bradley Erickson
North Carolina State

University
bericks@ncsu.edu

Yiqiao Xu
North Carolina State

University
yxu35@ncsu.edu

Collin Lynch
North Carolina State

University
cflynch@ncsu.edu

Sarah Heckman
North Carolina State

University
sarah_heckman@ncsu.edu

Tiffany Barnes
North Carolina State

University
tmbarnes@ncsu.edu

ABSTRACT
In computer science education timely help seeking during
large programming projects is essential for student success.
Help-seeking in typical courses happens in office hours and
through online forums. In this research, we analyze students
coding activities and help requests to understand the inter-
action between these activities. We collected student’s help
requests during coding assignments on two different plat-
forms in a CS2 course, and categorized those requests into
eight categories (including implementation, addressing test
failures, general debugging, etc.). Then we analyzed the pro-
portion of each type of requests and how they changed over
time. We also collected student’s coding status (including
what part of the code changed and the frequency of com-
mits) before they seek help to investigate if students share a
similar code change behavior leading to certain type of help
requests.

Keywords
Help Seeking, Categorization, Data Mining, CS2, Computer
Science Education

1. INTRODUCTION
Help seeking is a complex cognitive skill involving metacog-
nition and self-evaluation to identify the need for assistance,
identification of problems for support, and formulating re-
quests [1, 16, 15]. Help seeking is essential for learners to
develop a better understanding of assignments or class con-
tent that they do not understand [15]. Effective help-seeking
is a key part of learning and is associated with a capacity for
self-regulated learning through monitoring and goal-setting
among other aspects [22, 24]. Motivation in help-seeking has

been analyzed by a number of authors [19, 4, 25, 5, e.g] .
These researchers have noted that learners who felt comfort-
able and skillful in relating to others were more likely to ask
for help. Further studies of specific help-seeking behaviors
(e.g. [17, 18, 21]) has included analyses of the interaction be-
tween help-seeking and instructor feedback. However, most
of this prior research focused only on students’ help seeking
behaviours in isolation or in the context of relatively focused
problem solving. It has not typically exampled that help-
seeking responds to prior problem-solving, and how these
help requests affect their subsequent work.

In this study, our goal is to explore the motivations, help-
seeking, and problem solving actions of computer science
students seeking help for their programming projects. We
chose to focus on coding for two reasons. First, computer
science skills have become an increasingly important domain
at all levels with increased demand at all grade levels and
coding is an essential part of that [2]. Second, program-
ming is a complex task that involves students in long-term
complex problem solving which offers multiple opportunities
for help-seeking and for a complex interrelationship between
problem-solving, assistance, and outcomes. In contrast to
prior research, we combined different types of student help
seeking behaviours including attending office hour and post-
ing on a public class forum. We analyze how students change
their code when trying to receive help from others. Thus, in
this work, we answer the following research questions.

• RQ1: What types of help are students seeking in online
forums and office hour settings and how do they differ?

• RQ2: How does the frequency of help-seeking change
over the course of students’ complex assignments, and
can we use the project stages or sub-goals to predict
this help-seeking?

• RQ3: What types of coding behaviors do students en-
gage in before seeking help?

In order to address these questions we began by identifying
common help requests and coding behaviors. We manually

Z. Gao, B. Erickson, Y. Xu, C. Lynch, S. Heckman, and T. Barnes.
Admitting you have a problem is the first step: Modeling when and
why students seek help in programming assignments. In A. Mitrovic
and N. Bosch, editors, Proceedings of the 15th International Confer-
ence on Educational Data Mining, pages 508–514, Durham, United
Kingdom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853173

https://doi.org/10.5281/zenodo.6853173


labeled help seeking requests from two different platform
from a blended course. We then analyzed how these differ-
ent types of help seeking requests changed during the cod-
ing project lifespan. Finally, we compared students’ coding
changes based on the commit frequency and the number of
their passed test cases before and after they seek help.

2. RELATED WORK
2.1 Help Seeking Behaviours
As prior researchers have shown self-regulation of learning
through modulation of affective, cognitive, and behavioral
processes is an essential component of learning across do-
mains [23]. This regulation and essential help-seeking is
driven in part by students personal motivations [13, 14, 12],
and by their general attitude toward learning [19]. In general
students who have better performance in an educational en-
vironment tend to have better metecognitive skills and tend
to seek help more frequently [10]. Ryan et al. [19], for ex-
ample, investigated motivational influences on help seeking
behavior in math classrooms, focusing on early teenagers’
perception of the benefits and threats associated with such
behaviour. They designed a survey for 203 seventh and
eighth graders on perceptions of social and cognitive com-
petence, achievement goals, attitudes, and avoidance of and
adaptive help seeking behaviour. There finding indicates so-
cial competence had an indirect effect on avoidance of help
seeking. And the results illustrate the importance of linking
cognitive and social characteristics of students to provide a
full understanding of teenager help seeking.

Help seeking is an important factor to success in learning
programming. Bumbacher et al. [3], for example, devel-
oped novel models to predict student learning gains based
upon their semantic and structural features of their coding
submissions. They found that these code features extracted
from a single assignment can be used to predict whether
or not students got help. Marwan et al. [11] focused on
analyzing and classifying students’ help-seeking behaviors.
Based upon an analysis of student-system logfiles they pro-
posed a taxonomy of unproductive help seeking behaviour
in a programming environment. They then used these find-
ings to design a hint interface that scaffolded appropriate
help-seeking. Students using their platform were ultimately
less than half as likely to produce unproductive help-seeking
and thus improved overall.

2.2 Student Help Seeking Behaviour Analysis
Unlike in-person environments online help-seeking is far more
open and produces a higher volume of data [9]. Prior studies
of online learning have typically shown a positive relation-
ship between help seeking behaviours and academic perfor-
mance.

In-person or small-group online office hours are an impor-
tant venue for support in traditional and blended courses.
Guerrero et al. [8] noted that students fail to take advantage
of office hours when they are available despite the fact that
the use of office hours correlates with performance. Griffin
et al. [7] extended this work by working to identify distinct
factors that influence students’ use of office hours. To that
end they developed a survey with 625 valid responses from
undergraduate students at a large public university. The re-
sults revealed that factors that significantly affect student

use of office hour vary with one exception: usefulness of in-
structional staff feedback. Thus, in this study, they suggest
instructors provide more efficient feedback to solve students
problems to encourage students to engage in office hour.

3. DATASET
3.1 Course Background
The data for this work originates from the Fall 2020 offering
of a CS2 course at a research intensive university in the
Southeast United States. Students in the course complete
two projects, each worth 22% of their overall grade. Each
project consists of two parts: 1) designing the system and
creating a testing plan and 2) implementing the teaching
staff (TS) UML diagram. Our focus will be on the second
part of each project.

The course initially offered both online and in-person sec-
tions; however, due to the COVID-19 pandemic, all under-
graduate courses covered in our dataset were moved online
a few weeks into the semester. The overall structure of the
course as well as the task deadlines remained the same with
interactions including office hours moving to individual web
meetings but retaining their overall structure.

As a first step in their course projects the students are re-
quired to develop UML diagrams for the problem task. How-
ever for the later coding stage the students must all follow
the instructor-provided UML diagram. This allows them
to fit a shared model for testing and evaluation. Students
manage their repository using a Github1 enterprise server.
Whenever they push code, Jenkins2, a continuous integra-
tion system, runs an Ant-driven build. Each build compiles
the code, runs static analysis tools (Checkstyle3, PMD4,
SpotBugs5), compiles the teaching staff test cases against
the code to ensure it abides by the provided UML diagram,
runs student-written tests to check for coverage metrics, runs
teaching staff tests, and finally provides feedback to the stu-
dent based on their status. For the purposes of our analysis
we recorded the state of their code on each commit along
with a record of the unit test results.

Over the course of the project, there are two intermediate
milestones, or Process Points, for students to follow. Achiev-
ing the first two milestones provide a fraction of their project
grade, while the final milestone defines the requirements to
receive full credit.

• Milestone 1 - Process Points 1: students complete a
compiling skeleton, at least one test case, and fully
Javadoc (i.e. no Checkstyle notifications) their code.

• Milestone 2 - Process Points 2: students achieve 60%
statement coverage on their self-written tests.

• Milestone 3 - Done: students achieve 80% statement
coverage, have no static analysis notifications, and all
tests are passing (both teaching staff and student writ-
ten).

1https://github.com/
2https://www.jenkins.io/
3https://checkstyle.sourceforge.io/
4https://pmd.github.io/
5https://spotbugs.github.io/

https://github.com/
https://www.jenkins.io/
https://checkstyle.sourceforge.io/
https://pmd.github.io/
https://spotbugs.github.io/


After achieving each of the milestones, the students receive
feedback on their code based upon the shared tests. At the
start, students only receive information about their com-
piling status and Checkstyle notifications related to devel-
oping Javadocs for their code. Once a student completes
Milestone 1, they begin to see feedback about the remain-
ing static analysis notifications. For completing Milestone
2, they begin seeing feedback regarding teaching staff test
case failures. This feedback includes the number of tests
passing or failing and for the failing tests it provides a hint
to reproduce locally. For the purposes of our analyses we
defined four project stages based upon these milestones. At
the beginning of the project students are in stage 0, they
then move to stage 1 after completing Milestone 1, and so
on.

3.2 Help Seeking
Students in this course had two options for help, general
questions could be posted to Piazza an online question and
answer forum that was monitored by the instructors and
took answers from other students; and office hours which
were accessed via a help request system called My Digital
Hand.

Piazza: At any time during the semester, students are able
to post questions or comments on Piazza, an online forum
for the class. When posting, students are required to select
a category for their question. These categories correspond
to logistics or each assignment, lab, or project. Students are
able to make their posts private to instructors, but they are
encouraged to post publicly so other students are able to
answer questions or receive similar help. The teaching staff
also uses Piazza as a place to post updates or announce-
ments. We remove the teaching staff posts and filter posts
down to only the second part of each project. We focus our
attention only on the initial posting and remove all replies.

Office Hours During teaching staff office hours, students re-
quest help by filing a help ticket using My Digital Hand
(MDH) an online support system [20]. Students seeking
help through MDH fill out a form listing the tasks they are
working on, what question they have or problem they are
struggling with, and what steps they have taken thus far.
The students are then placed in a queue which is monitored
by the teaching staff. The teachers prioritize students to
help based upon their questions and may help them individ-
ually or in small groups. After the interaction is complete
the teachers will close the ticket and both they and the stu-
dent can enter followup information to describe the advice
given, rate the outcome, and any potential followups. Stu-
dents who require more assistance may have their tickets
re-opened or, more commonly, make a new ticket with addi-
tional questions. In our analysis, we first remove all tickets
that were not related to the second part of the projects.
Next, we remove any follow-up tickets or tickets that were
re-opened with the same content.

3.3 Commit mining
After the semester concluded, we ran the BuildDataCol-
lector6. This tool iterates over each commit from each
repository and runs the Jenkins build. The output files are

6https://github.com/SOS-CER/BuildDataCollector

mined for relevant data. The data includes commit meta-
data, static analysis notifications, information about all test
cases, code counts, and coverage metrics. The data are
stored in a SQL database.

4. METHODOLOGY
4.1 RQ1: Categorization of Help Requests
In developing our analysis we held the initial expectation
that students’ coding behaviors would differ based upon the
type of help that they required. Thus, we began by classi-
fying the students’ help requests based upon their question
content. In general students begin the project by seeking to
understand the overall functionality of the system, and to
build the general structure. They typically turn to author-
ing their own test cases based upon the functional goals with
the goal of unlocking the instructor test cases on which their
grade is partially based. Once these are unlocked students
frequently use the test cases to drive their development pro-
cess, as intended, so they often focus their questions around
those tests. Across all of these stages they also face chal-
lenges with basic implementation errors and general static
analysis notifications. Our goal was to separate students
who were seeking to support with basic development tasks
(e.g. debugging) or with specific test cases from those who
were seeking to address deeper comprehension questions, or
general notifications.

We therefore classified student help requests as follows:

• General debugging and addressing issues: students in-
dicate they are receiving an error (i.e. null pointer ex-
ception) or describe unexpected behavior in their code.

• Implementation and understanding: students ask about
how to implement some portion of the project or ask
for clarification.

• Improving test coverage: students ask about how to
improve their code coverage to acheive the 60% or 80%
threshold.

• Addressing TS test failures: students indicate they are
failing specific teaching staff test cases.

• Addressing student-written test failures: students indi-
cate they are failing specific tests they wrote.

• Addressing general test failures: students indicate they
are struggling with testing, but do not specify which
type of test.

• Addressing static analysis notifications: students ask
about Spotbugs, Checkstyle, or PMD notifications they
receive.

• Others or unclear: students ask about unrelated topic
(i.e. coding environment setup, documentation) or
they are unclear with the type of help they need (i.e.
a method name without explanation).

Manual Annotation To support our analysis we engaged three
experienced TAs to manually tag the student questions across
the two help contexts. We began by developing a shared cod-
ing process using a subset of Piazza and MDH posts. An

https://github.com/SOS-CER/BuildDataCollector


initial round of grading yielded a Fleiss’ Kappa agreement
of 0.73 for MDH data and 0.69 for Piazza data. After one
round of iterative evaluation and agreement we achieved a
final agreement of 0.81 for MDH data and 0.72 for Piazza.
The primary area of disagreement in the Piazza data lies be-
tween questions in the Implementation and General Debug-
ging categories. We therefore opted to perform additional
segmentation based upon whether or not students showed
evidence of code execution.

4.2 RQ2: Timeline analysis
After the categorization was complete, we examined the fre-
quency of the students’ help requests by type and the change
in those frequencies over time. Our hypotheses in this anal-
ysis were:

• Hypothesis 1: At the early stages of the project (before
the Milestone 2 deadline), students mainly ask Imple-
mentation questions.

• Hypothesis 2: After achieving Milestone 2, students
mainly asked about General Debugging and TS Test
Failure questions.

We believe that, consistent with instructor guidance, the
students will try to understand the requirements of the project
and how to implement each function first. Moreover, since
Milestone 2 requires students to achieve 60% test coverage,
it indicates that students need to finish most of the imple-
mentation to develop corresponding tests and reach Mile-
stone 2. Therefore, we believe that prior to the Milestone
2 deadline, the most frequently asked questions should be
Implementation related.

Moreover, after Milestone 2, students unlocked the TS test
cases and also needed to develop more self-written tests to
reach 80% code coverage. We believe that during this pro-
cess, the students’ main goal will be to correct their im-
plementation based on the feedback of error messages and
testing failures. Therefore, later in the projects, questions
related to General Debugging and TS Test Failures should
be more prevalent.

4.3 RQ3: Pre-help code analysis
In order to analyze the precursors of students’ help requests
we analyzed the state of the students’ code on the last com-
mit before they post a question to Piazza or file a ticket on
MDH. We define these as the pre-help commit states. In
analyzing these precursors we began by analyzing how fre-
quently students made commits within 1 hour before their
pre-help commit. We believe that a higher volume of pre-
help commits indicate that the students are unlikely to be
working on higher level implementation and are more fo-
cused on small-scale debugging or test passing.

In addition to the commit frequency, we also examined where
code changes were made prior to help requests. Prior to re-
quests for implementation help we imagine that most com-
mits include changes to the core functionality, while help re-
quests for coverage focus on changes to the student-written
unit tests. This leads to the following hypotheses:

Category MDH Piazza Overall
Implementation 334 281 615
General Debugging 392 316 708
TS test failures 127 307 434
Self-written test failures 30 90 120
General test failures 103 64 167
Improving test coverage 21 31 52
static analysis notifications 9 38 47
Others/Unclear 314 75 389

Total 1330 1202 2532

Table 1: Categorization Results

• Hypothesis 3: Before an Implementation request, stu-
dent commit frequency is low and before a TS test
failure request, the frequency is high.

• Hypothesis 4: Before an Implementation request, stu-
dents are making changes to their source code and be-
fore a Coverage request, students are making changes
to their test code.

5. RESULTS
5.1 RQ1
Table 1 lists the results of our final request categorization. In
both of the help platform, the most popular type of request
is General Debugging; We identified 392 (29.4%) MDH re-
quests and 316 (26.3%) Piazza requests in this category. For
office hours request, the next popular category is Implemen-
tation (25.1%), while for Piazza, there are more requests on
Addressing TS Test Failures (25.5%) than Implementation
(23.3%). The remaining categories are relatively uncommon
with a frequency lower than 10% on each platform, except
for the Others/Unclear category. We found a large amount
of MDH requests containing very vague descriptions, which
were categorized as Other/Unclear (23.6%). This is caused
by the nature of the office hours process, the description we
collected from MDH does not ask student to give very de-
tailed information and students do not rely on it for getting
the actual help; they would prefer to briefly describe their
problem on MDH and elaborate on the detail orally when
meeting with the teaching staff. This also matches with
Gao’s founding on the usage of MDH [6]. In piazza, since
students more reliant on the description to get help, the
amount of requests categorized as Others/Unclear is only
75 (6.2%).

5.2 RQ2
5.2.1 MDH Requests Timeline Analysis
Figure 1 shows how the student’s help request types changed
over time during office hours. Prior to the Milestone 1 dead-
line, students mainly asked the Implementation and General
Debugging questions; during the next stage, before the Mile-
stone 2 deadline, Implementation questions are dominating
the help requests and maintain a very high number every sin-
gle day. Then, after the Milestone 2 deadline, the amount
of Implementation questions suddenly drop to less than 10
each day; while we witness a great increase in both the Gen-
eral Debugging and TS Test Failures, especially the General
Debugging.



Figure 1: Project 1 Office Hours request timeline for each
type.

Figure 2: Project 2 Office Hours request timeline for each
type.

Similarly, Figure 2 provides the project 2 office hour re-
quests. This also contains a high number of Implementation
questions leading up to the Milestone 2 deadline, while after
the deadline, Implementation instantly becomes less com-
mon. However before Milestone 1, the General Debugging
is also one of the dominating categories, with roughly the
same amount as Implementation. After Milestone 2, Gen-
eral Debugging stays as the most common request while the
amount of TS Test Failure requests increase similar to the
first project.

Furthermore, both project 1 and project 2 have the most
requests at the exact date of each deadline. The project
deadlines have more requests than the Milestone 2 deadlines,
which have more requests than the Milestone 1 deadlines.
This observation shows that most students are completing
their work on the deadline date and require more help.

5.2.2 Piazza Requests Timeline Analysis
Figures 3 and 4 show the number of help requests student
made on Piazza each day during the two projects. The
three vertical lines represent the milestones and final dead-
line dates.

Figure 3 shows the number of requests in Piazza that stu-
dents made during project 1. We observed that the General
Debugging category reaches the peak at all deadlines; the
Implementation category is prominent during the first few
stages;and the TS Test Failure category increases after the
first milestone deadline and reaches its peak during the final
deadline.

Figure 3: Project 1 Piazza request timeline for each type.

Figure 4 shows the number of requests in Piazza that stu-
dents made during project 2. We observed that the General
Debugging category always peaks at each deadline; the Gen-

Figure 4: Project 2 Piazza request timeline for each type.

Implementation Coverage Overall
src change 79.65% 60.78% 73.25%
test change 64.25% 84.31% 70.12%

Table 2: Percentage of pre-help commits with source or test
code changes

eral Testing and Self-Testing categories peak at the project
deadline; the TS Test Failure category raises rapidly from
the Milestone 2 deadline to Project deadline; and the Imple-
mentation category increase before each deadline, but over-
all decreases after each subsequent deadline.

5.3 RQ3
5.3.1 Frequency of pre-help commits
When comparing the frequency of commits, we find that stu-
dents who ask about TS Test Failures are on average making
more commits in the last hour than students making other
help-seeking requests, 4.6 commits and 2.9 commits respec-
tively (p-value < 0.0001). Similarly, we see that students
who seek help on Implementation requests are on average
making fewer commits in the last hour than students who
make any other request, 2.4 and 3.4 commits per hour re-
spectively (p-value < 0.0001).

5.3.2 Code changes of pre-help commits
For the Implementation pre-help commits, 490 (79.65%) of
those commits contains source code changes. Our chi-square
test proves that Implementation requests have a significant
higher number of pre-help commits with source code change
(p-value < 0.05). For the Coverage pre-help commits, we
found 43 (84.31%) of those commits contains test code changes.
Similarly, we proved that this high number of commits with
test code changes is significant than the rest of commits (p-
value < 0.01).

6. DISCUSSION AND CONCLUSIONS
Our goal in this work was to investigate what kinds of re-
quests students make when they seek help and what precur-
sors exist in their code state before such requests are made.

In addressing RQ1, we categorized the help requests based
on student’s purpose. Our results shows that students are
mostly asking questions about General Debugging, Imple-
mentation, and Addressing TS Test Failures. For office
hours, General Debugging is the most popular category fol-
lowed by Implementation followed by Addressing TS Test
Failures. For Piazza requests, General Debugging are also
the most common type, but Addressing TS Test Failures are
more common than Implementation.

In RQ2, we analyzed the amount of help request each day
and observed how it changed during different stages of the



project. We proved both of our hypothesis. Before Milestone
2, Implementation is the most common request (Hypothesis
1). After Milestone 2, General debugging is the most com-
mon request. We also see an obvious increase of TS Test
Failure requests after Milestone 2 (Hypothesis 2).

In RQ3, we examined students’ commits immediately prior
to each help-request and define it as the pre-help commit.
We firstly looked at how frequently students are making
commits 1 hour before seeking help. Our analysis shows
that the frequency of committing before an Implementation
request is significantly lower and for TS Test Failures, it’s
significantly higher. Then, we analyzed where the students
change their code right before the help request. We find that
most students change their source code before Implementa-
tion requests and change their test code before Coverage-
related requests.

Our current results shows student’s coding behavior is quite
predictable and it does change when they need different
types of help. Instructor can use our conclusion as a start,
and think about how to lead students to an efficient path
when they encounter different types of difficulty throughout
the projects.

7. LIMITATIONS AND FUTURE WORK
Our study only analyzed the data from a single CS2 course
in a single offering. Additional analysis of future semesters
and other courses would enhance our understanding of how
stable these behaviors are across cohorts and projects. Ad-
ditionally the quality of our analysis is limited by our post
annotations. The high rate of disagreement for the Oth-
ers/Unclear category was driven in part by how little infor-
mation students included in their MDH requests. In future
semesters we plan to address this problem by refining our
analysis and addressing potential changes to the MDH plat-
form to enforce more complex comments.

Additionally, our examination of the pre-help commits was
focused on both general frequencies and gestalt features. In
future studies we will conduct a more detailed analysis of
the code status and align the contents of the help requests
to specific code features and file locations. Finding such link
of code features and request content would improve our un-
derstanding of when students seek help and potentially lead
to an automotive model for detecting and predicting stu-
dents who need help. Such a model would help instructors
to actively and efficiently intervene student’s behavior, and
support a much effective help management for the course.

Besides the pre-help commits, we also plan to analyze changes
that the students make to their code during and after help
requests to get a better assessment of how they process and
implement guidance. This work has long-term potential to
guide automated feedback and to assist in general triage for
help responses. For example, after we figure out an accu-
rate way to measure the success of commits, we can com-
bine it with this work and evaluate the effectiveness of each
help-seeking interaction by monitoring when student make
an successful commit after the help. The instructor can use
this information to quickly identify which students need fur-
ther guidance or analyze why the help is ineffective.

8. ACKNOWLEDGEMENTS
This material is based upon work supported by NSF under
grants #1821475“Concert: Coordinating Educational Inter-
actions for Student Engagement” Collin F. Lynch, Tiffany
Barnes, and Sarah Heckman (Co-PIs).

References
[1] Vincent Aleven et al. “Toward meta-cognitive tutor-

ing: A model of help seeking with a Cognitive Tutor”.
In: International Journal of Artificial Intelligence in
Education 16.2 (2006), pp. 101–128.

[2] Theresa Beaubouef and John Mason. “Why the high
attrition rate for computer science students: some thoughts
and observations”. In:ACM SIGCSE Bulletin 37.2 (2005),
pp. 103–106.

[3] Engin Bumbacher et al. “Student coding styles as pre-
dictors of help-seeking behavior”. In: International Con-
ference on Artificial Intelligence in Education. Springer.
2013, pp. 856–859.

[4] Yuk Fai Cheong, Frank Pajares, and Paul S Oberman.
“Motivation and academic help-seeking in high school
computer science”. In: Computer Science Education
14.1 (2004), pp. 3–19.

[5] Zhikai Gao, Sarah Heckman, and Collin Lynch. “Who
Uses Office Hours? A Comparison of In-Person and
Virtual Office Hours Utilization”. In: Proceedings of
the 53rd ACM Technical Symposium V.1 on Computer
Science Education. SIGCSE 2022. Providence, RI, USA:
Association for Computing Machinery, 2022, pp. 300–
306. isbn: 9781450390705. doi: 10 . 1145 / 3478431 .

3499334. url: https://doi.org/10.1145/3478431.
3499334.

[6] Zhikai Gao et al. “Automatically Classifying Student
Help Requests: A Multi-Year Analysis.” In: Interna-
tional Educational Data Mining Society (2021).

[7] Whitney Griffin et al. “Starting the conversation: An
exploratory study of factors that influence student of-
fice hour use”. In: College Teaching 62.3 (2014), pp. 94–
99.

[8] Mario Guerrero and Alisa Beth Rod. “Engaging in of-
fice hours: A study of student-faculty interaction and
academic performance”. In: Journal of Political Sci-
ence Education 9.4 (2013), pp. 403–416.

[9] Stuart A Karabenick.“Classroom and technology-supported
help seeking: The need for converging research paradigms”.
In: Learning and instruction 21.2 (2011), pp. 290–296.

[10] Liisa Karlsson et al. “From novice to expert: Infor-
mation seeking processes of university students and
researchers”. In: Procedia-Social and Behavioral Sci-
ences 45 (2012), pp. 577–587.

[11] Samiha Marwan, Anay Dombe, and Thomas W Price.
“Unproductive help-seeking in programming: What it
is and how to address it”. In: Proceedings of the 2020
ACM Conference on Innovation and Technology in Com-
puter Science Education. 2020, pp. 54–60.

[12] Richard S Newman. “Adaptive help seeking: A strat-
egy of self-regulated learning.” In: (1994).

https://doi.org/10.1145/3478431.3499334
https://doi.org/10.1145/3478431.3499334
https://doi.org/10.1145/3478431.3499334
https://doi.org/10.1145/3478431.3499334


[13] Richard S Newman. “Children’s help-seeking in the
classroom: The role of motivational factors and at-
titudes.” In: Journal of educational psychology 82.1
(1990), p. 71.

[14] Richard S Newman. “Goals and self-regulated learn-
ing: What motivates children to seek academic help”.
In: Advances in motivation and achievement 7 (1991),
pp. 151–183.

[15] Richard S Newman.“The motivational role of adaptive
help seeking in self-regulated learning”. In: Motivation
and self-regulated learning: Theory, research, and ap-
plications (2008), pp. 315–337.

[16] Richard S Newman and Mahna T Schwager. “Stu-
dents’ help seeking during problem solving: Effects of
grade, goal, and prior achievement”. In: American Ed-
ucational Research Journal 32.2 (1995), pp. 352–376.

[17] Ido Roll et al. “Improving students’ help-seeking skills
using metacognitive feedback in an intelligent tutor-
ing system”. In: Learning and instruction 21.2 (2011),
pp. 267–280.

[18] Ido Roll et al. “The help tutor: Does metacognitive
feedback improve students’ help-seeking actions, skills
and learning?” In: International conference on intelli-
gent tutoring systems. Springer. 2006, pp. 360–369.

[19] Allison M Ryan and Paul R Pintrich. “” Should I ask
for help?”The role of motivation and attitudes in ado-
lescents’ help seeking in math class.” In: Journal of
educational psychology 89.2 (1997), p. 329.

[20] Aaron J. Smith et al. “My Digital Hand: A Tool for
Scaling Up One-to-One Peer Teaching in Support of
Computer Science Learning”. In: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education. SIGCSE ’17. Seattle, Wash-
ington, USA: Association for Computing Machinery,
2017, pp. 549–554. isbn: 9781450346986. doi: 10.1145/
3017680.3017800. url: https://doi-org.prox.lib.
ncsu.edu/10.1145/3017680.3017800.

[21] Bram E Vaessen, Frans J Prins, and Johan Jeuring.
“University students’ achievement goals and help-seeking
strategies in an intelligent tutoring system”. In: Com-
puters & Education 72 (2014), pp. 196–208.

[22] Barry J Zimmerman. “Attaining self-regulation: A so-
cial cognitive perspective”. In:Handbook of self-regulation.
Elsevier, 2000, pp. 13–39.

[23] Barry J Zimmerman. “Dimensions of academic self-
regulation: A conceptual framework for education”. In:
Self-regulation of learning and performance: Issues and
educational applications 1 (1994), pp. 33–21.

[24] Barry J Zimmerman. “Models of self-regulated learn-
ing and academic achievement”. In: Self-regulated learn-
ing and academic achievement. Springer, 1989, pp. 1–
25.

[25] Akane Zusho et al. “Contextual determinants of moti-
vation and help seeking in the college classroom”. In:
The scholarship of teaching and learning in higher edu-
cation: An evidence-based perspective (2007), pp. 611–
659.

https://doi.org/10.1145/3017680.3017800
https://doi.org/10.1145/3017680.3017800
https://doi-org.prox.lib.ncsu.edu/10.1145/3017680.3017800
https://doi-org.prox.lib.ncsu.edu/10.1145/3017680.3017800

