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ABSTRACT

Language learners are underserved if there are unlearned

meanings of a word that they think they have already learned.

For example, “circle” as a noun is well known, whereas its use
as a verb is not. For artificial-intelligence-based support sys-
tems for learning vocabulary, assessing each learner’s knowl-
edge of such atypical but common meanings of words is de-
sirable. However, most vocabulary tests only test the typical
meanings of words, and the texts used in the test questions
are too short to apply readability formulae. We tackle this
problem by proposing a novel dataset and a flexible model.
First, we constructed a reliable vocabulary test in which
learners answered questions regarding typical and atypical
meanings of words. Second, we proposed a simple but pow-
erful method for applying flexible and context-aware masked
language models (MLMs) to learners’ answers in the above-
mentioned vocabulary test results. This is a personalized
prediction task, in which the results vary among learners for
the same test question. By introducing special tokens that
represent each learner, our method can reduce the personal-
ized prediction task to a simple sequence classification task
in which MLMs are applicable. In the evaluation, item re-
sponse theory (IRT)-based methods, which cannot leverage
the semantics of test questions, were used as baselines. The
experimental results show that our method consistently and
significantly outperformed the IRT-based baselines. More-
over, our method is highly interpretable because one can
obtain the learners’ language abilities from the first princi-
pal component scores of the token embeddings representing
each learner.
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1. INTRODUCTION

In intelligent tutoring systems, it is important to accurately
identify what is known and what is unknown to the learner
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to recommend learning items according to the learner’s char-
acteristics, such as the learner’s ability. When there are
many learning items, it is difficult to test them all. In this
case, only some of the knowledge is tested, and the test re-
sults are used to predict the other held knowledge.

This is especially fitting to vocabulary learning support sys-
tems for foreign languages. Because of the large vocabulary
of a foreign language, research has been conducted in the
fields of natural language processing (NLP) and applied lin-
guistics to test only some words and to predict the held
knowledge of other words based on the test results [19, 15,
10, 9, 8, 16]. As a result, standardized test questions have
been developed to test learners’ knowledge.

However, for polysemous words, where a word has multi-
ple meanings, the task of testing knowledge of only typical
meanings and predicting the held knowledge of unexpected
meanings from only the test results is a challenge. Because
polysemous words are especially common in high-frequency
words (words with high frequency in large corpora) that for-
eign language learners learn early on, it is also important
for learners to properly grasp and understand the meaning
of these words in context. However, many studies on for-
eign language learning support have focused on vocabulary
size, and this area has been relatively unexplored. To the
best of our knowledge, standardized questions that test the
meanings of polysemous words have not been developed.

In the case of polysemous words, it is difficult to test for
meanings other than the most typical ones. This can be at-
tributed to the large number of words that must be learned;
testing a learner’s knowledge of a single word more than once
would impose a greater testing burden on learners. Hence,
learners may often fail to learn word meanings other than
the most representative meaning.

To improve learners’ language abilities, it is important to
ensure that they learn all major meanings of polysemous
words. In the development of artificial intelligence (AI)-
based systems that support language learners by identifying
and recommending such unlearned meanings, it is essential
to identify the meanings of polysemous words that a given
learner already knows. However, considering the testing bur-
den, sufficient time is available to test only a few additional
word meanings. Given that vocabulary tests use numerous
words to measure a learner’s overall vocabulary, most typical
vocabulary tests query only the major meanings of polyse-
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It was a difficult period.
a) question

b) time

¢) thing to do

d) book

(a) An example question in the vocabulary size test [3],
which tests typical meanings of words.

She had a missed .
a) time

b) period
¢) hour

d) duration

(b) An example of a question that tests atypical
meanings of a word.

Figure 1: Outline of the task. Our goal is to predict whether a learner knows this word (i.e., can correctly answer the question)
from the results of typical meanings of words to prevent these meanings from being left unlearned.

mous words. Therefore, it is desirable to be able to predict
the extent to which a learner knows the non-representative
meanings of a word by using existing test results for major
word meanings. For example, it should be possible to pre-
dict whether a learner who knows the meaning of “figure”
referring to a number also knows the meaning of “figure”
referring to a person.

Intuitively, one can easily think of a two-step approach in
which one first predicts the meaning of a polysemous word
in a running sentence and then assigns the difficulty of each
meaning of a word. However, this approach is impracti-
cal because the categorization of meanings by linguists is
not typically designed for language learning. For example,
Figure 1 show examples of the word “period” used in dis-
tinctly different contexts. However, linguistic categorization
can be too fine-grained for language learners. For example,
WordNet [12], one of the most carefully designed thesauri
for the English language, separately lists “period” as a geo-
logical period as being a different meaning from “period” as
a timespan. This is counter-intuitive for language learners
and impractical for estimating the difficulty of “period” as a
geological period separately from that as a timespan. Hence,
another approach is necessary in which one directly predicts
how likely it is that the language learner understands the
meaning of a word used in an input sentence.

To the best of our knowledge, no existing datasets or meth-
ods have been provided in the literature to evaluate the ex-
tent to which such problems can be solved. Because it is
presumably difficult to capture the meanings of words in
running texts, these types of questions have not been exten-
sively studied in vocabulary testing studies in applied lin-
guistics [19, 15, 20]. Therefore, in this study, we propose
a dataset and methods to evaluate how well these prob-
lems can be solved. Figure 1 are examples of the dataset.
To this end, we used deep transfer learning state-of-the-art
neural language models (MLMs), namely masked language
models such as bidirectional encoder representations from
transformers (BERT) [5]. Deep-learning-based NLP tech-
niques cannot simply be applied to this personalized predic-
tion problem in which different predictions must be made
for each learner, even for the same given input sentence. Al-
though recent educational Al studies also used BERT [24,
23, 25], they did not address this issue because they do not
deal with personalized prediction tests.

In the proposed method, we demonstrate a simple approach
to reduce this personalized prediction problem to a typi-
cal sequence classification problem in NLP by adding spe-

cial tokens that represent learners in language models. In
our experiments, the prediction performance of the proposed
method was superior to that of other methods such as item
response theory (IRT) by a statistically significant margin.

Our method also showed high interpretability matching that
of the IRT models: one merit of using IRT models is that
they are highly interpretable, e.g., capable of extracting the
ability estimates from the model, which BERT models can-
not do. We showed that the first principal component scores
of the embedding of the tokens representing each learner had
a statistically significant correlation with the learners’ abil-
ity values obtained using the IRT.

The contributions of this paper are as follows.

e We focused on the importance of predicting whether
language learners know the atypical meanings of a word
and developed an evaluation dataset for this purpose.

e In addition, we proposed a simple method for apply-
ing deep transfer learning techniques to the aforemen-
tioned personalized prediction problem by introducing
tokens that represent learners. The prediction perfor-
mance of the proposed method is superior to that of
IRT by a statistically significant margin.

Finally, we demonstrated that with the proposed method,
we can easily obtain learners’ ability values by using
the first principal component scores of token embed-
ding. This indicates that our method is highly inter-
pretable, and hence suitable for educational use.

2. RELATED WORK

In educational data mining, [4] models the spaced repetition,
or students’ memorization of learning items repeatedly, by
extending statistical models. While [4] focuses on the tem-
poral aspect in the process of learning second language vo-
cabulary, we focus on predicting each learner’s knowledge of
atypical meanings of words from the test results of typical
meanings of words, considering text semantics and contexts.
In Al in education, [1] addressed a case study of the per-
sonalized English vocabulary learning of 37 Syrian refugees
using a language learning application called SCROLL. This
study did not address the methodology or algorithm used in
SCROLL but the case study of using it. While [7] applied
BERT to readability prediction, [7] was not personalized.

Vocabulary test datasets were previously published via self-
report testing [11, 18], or multiple-choice testing [6]. How-
ever, to the best of our knowledge, no reliable vocabulary



test datasets in which typical and atypical meanings of words
have both been tested have been published.

Other datasets seemingly similar to our dataset include the
SLAM dataset [22], which is based on responses to ques-
tions on the language learning application Duolingo, and
the Complex Word Identification (CWI) dataset [26], where
a large number of language learners were asked to annotate
unfamiliar words in a sentence. The difference between these
datasets and ours is that each subject answered only a small
portion of the many questions.

3. VOCABULARY TESTING DATASETS

This section elaborates on our dataset. [6] is a publicly avail-
able dataset of vocabulary test results of language learn-
ers. However, it does not include questions regarding any
typical/atypical meanings of words. Nevertheless, for com-
parability, we adopted their settings to build our dataset.
Our dataset was compiled from the crowdsourcing service
Lancers . To find learners who had some interest in learn-
ing English, only learners who had taken the Test of English
for International Communication (TOEIC) test ? in the past
were permitted to take the vocabulary test. As a result,
235 subjects responded to the questionnaire. Because most
learners in Lancers are native Japanese speakers, the native
language of the learners was also assumed to be Japanese.

For typical vocabulary test questions, we used vocabulary
size test (VST) [3], as [6] did. However, unlike [6], our focus
is highly frequent words. In VST, the questions are ordered
by the frequency of the corpus that [3] used for making VST.
To reduce the test burden on the participants and to eas-
ily collect accurate answers, we eliminated 30 low-frequency
words from the test. The remaining 70 questions were used
for a typical vocabulary test. An example of these ques-
tions is shown in Figure 1 (a). The word(s) being tested are
underlined in the sentence. The subject is asked to choose
the option that is closest in meaning to the original sentence
when the word(s) being tested are replaced. All options were
designed to be grammatical when replaced.

We developed 13 questions that tested atypical meanings
of words as follows. First, a computer science researcher,
who was a non-native but fluent English speaker, drafted
the questions. Second, English professors, namely two na-
tive English speakers (i.e., an American English speaker and
an Australian English speaker) and a non-native speaker,
checked and edited the questions for validity. In the actual
examples of these two test sets in Figure 1 (b), the word “pe-
riod” has a physiological meaning in addition to the usual
meaning as a timespan. The subjects were asked to answer
13 questions, such as Figure 1 (b) before the 70 lexical test of
typical usage. We included one question with an unexpected
meaning but without a corresponding question on the group
of typical word meaning questions. Therefore, the number
of question pairs was 12. More details of our dataset are
provided in the Appendix.

4. ITEM RESPONSE THEORY

https://lancers.co. jp/
’https://www.ets.org/toeic
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Figure 2: Deep transfer learning procedure
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(“[USR3] It was a difficult period.”, 1)

)

(“[USRS3] She had a missed period.”, 0)

Figure 3: Proposed method to enable personalized prediction
using BERT

This section briefly describes the IRT models. Let the num-
ber of subjects be J and the number of questions (or items)
be I. For simplicity, we identify the index of the subject with
the subject and the index of the item with the item. For ex-
ample, the I-th item is simply written as I. We assume that
yi; is 1 when subject j answers item 4 correctly, and 0 when
the subject answers incorrectly. Given the test result data
{yijli € {1,...,1},5 € {1,...,J}}, the 2PL model models
the probability that subject j answers item ¢ correctly with
the following equation

P(yi; = 11i,j) = o(ai(0; — di)) (1)

Here, o is the logistic sigmoid function defined as o(z) =
m. where the o is a monotonically increasing func-
tion with (0,1) as its value range and o(0) = 0.5. The o(z)
is used to project real numbers into the range of (0,1) and
treat them as probabilities. In (1), 6; is called the ability
parameter, and is a parameter that represents the ability of
the subject. d; is the difficulty parameter representing the
difficulty of the item. From (1), when 6; is greater than d;,
the probability of the subject answering correctly is higher
than that of answering incorrectly. The value a; > 0 is usu-
ally positive and is called the discrimination parameter. The
larger this value, the more §; — d; affects the probability of
correct or incorrect answers. It is called “discrimination” be-
cause 0; — d; makes it easier to distinguish whether subject
j will answer question ¢ correctly or not. More intuitively,
this indicates that question ¢ is a good question in that it
can accurately distinguish between learners with high ability
and those with low ability.

S. PROPOSED METHOD

5.1 Deep Transfer Learning

In this section, we describe our proposed method. The pro-
posed method is based on Transformer models such as BERT
[5]. Transformer models employ transfer learning to cap-
ture the semantics of texts written in natural language Fig-
ure 2. First, a pre-trained model is prepared using large raw
(i.e., unannotated) texts. This model can be trained using
raw texts written by native English speakers, such as the
Wikipedia text. This procedure is called pre-training. Typ-
ically, pre-training incurs high computational costs. Hence,
we downloaded and prepared publicly available pre-trained



models. Each model is identified by an ID such as bert-large-
cased, which denotes that the model was trained on a large
Wikipedia corpus in a case-sensitive manner. Importantly,
a pre-trained model can be used for many tests depending
on the fine-tuning.

Then, an additional fine-tuning is performed to train the
pre-trained model to the intended task. To this end, a small
annotated corpus must be prepared for use in a supervised
learning procedure. Such corpora are generally costly to
construct; in this case, the corpus comprised the results of
a vocabulary test. After the model is fine-tuned, it can be
used to make predictions based on new input sentences.

5.2 Reducing the Personalized Prediction into

Sequence Classification

Given a language learner taking a test and a word in a
sentence, as shown in Figure 1 (b), our goal is to predict
whether the test-taker knows the word. Notably, this is a
personalized prediction; the prediction results differ among
individual learners. In contrast, deep transfer learning does
not support personalized predictions. Publicly available pre-
trained models are preferable because pre-training is costly.
Moreover, designing a new model that can achieve high per-
formance using the available pre-trained models is relatively
difficult. Thus, reducing the personalized prediction prob-
lem to a typical NLP task can be a practical solution, instead
of developing a novel neural model for this task.

We reduced the personalized prediction task into a sequence
classification task as shown in Figure 3. Sequence classi-
fication is a task in which a classifier takes a sequence or
text as the input and predicts its label. Hence, to train
the classifier, pairs of text and associated labels are used
to constitute a small corpus for supervised learning in the
fine-tuning phase. Thus, to use sequence classifiers in this
task, we first need to convert the original vocabulary test
result dataset into a sequence classification dataset so that
sequence classifiers can handle the dataset.

In the example of Figure 3, USR3, the test-taker whose ID
was 3 answered correctly on a multiple-choice question of
the typical meaning of the word “period,” but incorrectly
answered a question on the atypical meaning. To convert
this record into a format that accepts a sequence classifier,
we added special tokens: [USRn].

Here, [USRn], where n is replaced by the test-taker ID, rep-
resents each test-taker, or learner (user). By placing this at
the beginning of the sequence, we notify the classifier that
we want to predict the response of the test-taker specified by
this token. Therefore, the example in Figure 3 shows that
we aim to predict the response of USR3 to the sequence “It
is a difficult period.”. In this example, as USR3 answered
the multiple-choice question correctly, the label for the ques-
tion was set to 1. The rationale behind this conversion is
that the test-taker could read the sentence if the test-taker
answered the question correctly. Hence, the label denotes
that the test-taker was able to successfully read the short
sentence “It is a difficult period.”

Likewise, USR3’s answer to an atypical question can be con-
verted to the sequence on the right-hand side of Figure 3. In

this example, as USR3 answered incorrectly, the label for the
question was set to 0. The option that is incorrectly chosen
by USR3 (“hour” in the example of Figure 3) is ignored in
the sequence. This ensures a fair and accurate comparison,
because IRT-based methods also do not consider the incor-
rect options or distractors chosen by the test-taker. Rather,
they only consider whether a test-taker chooses the correct
option. As each of these tokens represents a test-taker, there
are as many tokens as the number of test-takers, starting
from [USR1].

Thus, the dataset can be converted into a sequence classifi-
cation format. In the transformers library, the tokens used
for Transformer models can be added using the add_tokens
function. After conversion, we simply use the AutoMod-
elForSequenceClassification to construct sequence classifiers.
Note that this conversion enables BERT to handle personal-
ized prediction by introducing [USRn] tokens. We introduce
special tokens for each user and insert the token into the
beginning of the sentence.

6. IRT-BASED ANALYSIS

To obtain the difficulty and discrimination parameters for
IRT, we used the pyirt Python library ®. This library was
developed to conduct IRT analyses using marginalized max-
imum likelihood estimation (MMLE) [2, 21]. For the dataset
described above, we used the 2PL model to obtain the above-
mentioned parameters. The dataset includes 12 pairs of
questions, such as Figure 1. The difficulty parameters for
the usual and unexpected examples are shown on the hor-
izontal and vertical axes, respectively, and plotted at the
same scale and range on the horizontal and vertical axes in
Figure 4. Each point represents a single word.

A dotted diagonal line is shown from the lower left to the
upper right of Figure 4. The horizontal and vertical axes of
Figure 4 represent the values of the difficulty parameter; the
higher the value, the more difficult the task was judged to be.
The point to the upper left of the diagonal line indicates that
the difficulty level of an example that seemed unexpected to
the learner was higher than that of the typical example.
Moreover, the word was judged to be more difficult for the
learner to correctly answer questions from the vocabulary
test data. The results of the Wilcoxon test showed that the
column of values on the vertical axis was larger than that
on the horizontal axis by a statistically significant margin
(p < 0.01), suggesting that the vertical-axis questions were
more difficult than the horizontal-axis questions.

Discrimination was also analyzed. The plot is omitted for
space limitation. Atypical meanings are expected to be less
discriminating than typical meanings, because even high-
ability learners may not know the correct answers of atypi-
cal meanings, whereas low-ability learners may know them.
This tendency was observed as follows: For all words, it was
estimated that the discrimination of typical examples was
higher than that of unexpected examples. This result was
found to be statistically significant using the Wilcoxon test
(p <0.01).

7. EXPERIMENTS OF PREDICTIONS

3https://github.com/17zuoye/pyirt
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Figure 4: Plot of the difficulty of a typical meaning (horizon-
tal) vs. that of an atypical meaning (vertical) for each word.

7.1 Item Response Theory-Based Settings

A naive method to deal with the difficulty of an atypical
meaning of a word is to simply regard its difficulty as being
the same as that of its typical meaning. Hence, we mea-
sured the negative effects of substituting the difficulty of
the atypical meanings of a word with the difficulty of its
typical meanings on predicting the subjects’ responses.

To investigate this, we conducted the following experiment,
as shown in Figure 5. First, we divided 235 subjects into
135 and 100 subjects. We estimated the parameters with-
out using the responses of the latter 100 subjects for the
12 questions (1,200 responses). The parameters of the 12
atypical example questions were estimated only from the re-
sponses of the former 135 subjects, while the parameters of
the 70 typical example questions were estimated from the
responses of all 235 subjects. From (1), we can see that the
estimated values of subject ability §; and the difficulty of
the example d; are sufficient to predict if subject j answers
question ¢ correctly or not by checking if §; > d; or not, re-
spectively. Hence, once all theta; and d; can be estimated,
we can make predictions. For the 12 typical and atypical
question pairs, we have two prediction methods: one that
uses the difficulty parameters of the typical examples of the
pairs for d; and one that uses that of atypical examples of
the pairs. Thus, we compared the prediction accuracy of
these 1,200 responses.

Several methods are conventionally used to estimate the pa-
rameters of IRT models. As in the previous sections, we used
the pyirt library, which implements MMLE, for parameter
estimation. MMLE assumes that the ability parameter can
only take several values to marginalize. This causes stepwise
shapes in the resulting ability parameter plots.

7.2 Our Settings

We constructed a BERT-based personalized predictor [5].
For the neural classification, we used the same settings de-
scribed in Section 5.2. As described in Table 1, we compared
the pre-trained Transformer models, all of which were pub-
licly available from the HuggingFace website *. Then, we
conducted a fine-tuning by using our own data.

“https://huggingface.co/
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Figure 5: Experiment setting. Filled areas are training data,
i.e., used for estimating the parameters. All methods are eval-
uated based on the accuracy of the responses of the dashed
area, i.e, the responses for atypical words of the 100 test
learners.

Table 1: Transformer Models Used for Experiments

Model Name Model cased/uncased
bert-base-cased BERT [5] cased
bert-base-uncased | BERT [5] uncased
bert-large-cased BERT [5] cased
roberta-base RoBERTa [17] | cased
albert-base-v2 ALBERT [14] | uncased

Here, we describe how we converted the personalized predic-
tion of whether a learner knew a given word into the task of
sequence classification and its fine-tuning. Sequence classi-
fication is a supervised classification task in which the goal
is to predict labels by using a sequence as an input. Here,
the label is 1 if the learner knows the meaning of the word,
i.e., answered the question about the meaning of the word
correctly; otherwise, the label is 0.

Because the aim is to make personalized predictions, it is
necessary to incorporate learner test-takers in the sequence.
Thus, we added special tokens to represents individual learn-
ers. For example, if the sequence starts from “[USR3]”, this
means that we want to predict whether the learner with ID
3 can read the sentences that follow. Hence, “[USR3] It was
a difficult period.” asks if the learner with ID 3 could read
the sentence “It was a difficult period.”. The goal of the task
is to predict 1 or 0, where 1 indicates that the learner could
read the specified sentence, and 0 indicates that the learner
was unable to do so. We fine-tuned the pre-trained BERT
model in this manner using the “training” data shown in
Figure 5. For the estimation, we used the Adam optimizer
[13], in which the batch size was 32.

7.3 Results

Table 2 shows the predictive accuracies of all methods. The
results showed that the prediction accuracy of the direct
method was 64.4% and that of the alternative method was
54.4%, a difference of 10 points. This difference was signifi-
cant at p < 0.01 in the Wilcoxon test. This result indicates
that estimating the difficulty of atypical meanings of words
from those of typical words is a challenging task.



Table 2: Predictive Accuracies of the Dashed Area

Base Method Accuracy
IRT (ability - diffcl. of typical word) | 0.544
IRT (ability - diffcl. of atypical word) | 0.644
OURS (bert-large-cased) 0.674 (**)
OURS (bert-base-cased) 0.688 (**)
OURS (bert-based-uncased) 0.655
OURS (roberta-base) 0.681 (**)
OURS (albert-base-v2) 0.671 (*)

Our model achieved the best performance among the listed
models. The name in () indicates the pre-trained model used
for the experiments. In particular, our model significantly
outperformed the IRT models with the best accuracy. This
result was also statistically significant using the Wilcoxon
test (p < 0.01). This is denoted by (**) in Table 2. As BERT
considers the semantics of the question, this result suggests
that the traits of each learner test-taker was captured via
the embeddings of the [USR] tokens during the fine-tuning.

Table 2 showed the best performance for bert-base-cased.
bert-base-cased achieved a performance better than bert-
large-cased. The reasons of this are presumably as follows.
Although the word embeddings of Transformer models are
trained by many examples in their pre-trained corpus, the
word embedding vectors of learner tokens, which represent
learners’ characteristics, such as their abilities, were trained
solely on a relatively small training data in the fine-tuning
phase. Obviously, no learner tokens appeared in the pre-
trained corpus. Hence, it could be possible that bert-large-
cased has too many parameters to be tuned using the small
training data in fine-tuning compared with bert-base-cased.

Table 2 also shows that a model must be cased to achieve a
good accuracy, considering that roberta-base is cased whereas
albert-base-v2 is uncased. This is presumably because the
model needs to recognize the start of a sentence, which starts
with a capitalized word, since each question consists of a
short sentence in this experimental setting.

8. EXTRACTING ABILITY VALUES

As stated above, our method handles learners as tokens.
Transformer-based methods internally use “word embeddings”
that represents the meaning of the tokens in the form of
vectors. Hence, by obtaining the word embeddings of the
learner tokens that we introduced, it was possible to analyze
learners’ characteristics, such as their language abilities.

As word embeddings are typically multi-dimensional, dimen-
sion reduction methods such as principal component analysis
(PCA), can be used to obtain abilities from the embeddings
of learner tokens. Figure 6 shows the plot of a PCA of
the ability parameters of test-takers of the vocabulary test
dataset against the first principal component scores of each
token of the token embeddings in the case of bert-large-cased
in Table 2. A clear correlation can be observed between the
two. The correlation coefficient was 0.72, and was statisti-
cally significant (p < 0.01). In this manner, learners’ abili-
ties can be obtained through PCA of the test-taker tokens
in our method, which means that our method is equipped
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Figure 6: Relationship between IRT ability parameters esti-
mated by pyirt (horizontal) and the first principal component
of the learner token embeddings (vertical)

with the interpretability of IRT models.

In Figure 6, we used pyirt for estimating the ability param-
eters. To check the correlation using IRT software other
than pyirt, following a standard textbook for educational
psychology [21], we also conducted experiments using the
R “Itm” package, which was developed completely indepen-
dently of pyirt. Unlike pyirt, which uses MMLE, Itm uses
the expected a posteriori (EAP) method for parameter esti-
mation. Again, a statistically significant correlation was ob-
served: the Pearson’s correlation was also 0.72, (p < 0.01).

9. CONCLUSION

In this study, we tackled the task of predicting whether lan-
guage learners know the atypical meanings of a word and
developed an evaluation dataset for this purpose. We pro-
posed a simple method for applying MLMs to the afore-
mentioned personalized prediction problem by introducing
tokens that represent learners. The prediction performance
of the proposed method was superior to that of IRT by a
statistically significant margin. We also showed that, with
the proposed method, one can easily obtain learners’ ability
values using the first principal component scores of token
embeddings. This result indicates that our method is highly
interpretable and, hence, suitable for educational use.

The learner token embeddings that we introduced are multi-
dimensional. While we showed that the first principal com-
ponent score significantly correlated with the test-taker’s
ability parameter, the other components may encode the
learner’s other types of ability. In IRT, there is a similar
idea to model the learner’s ability as a multidimensional
vector, called “multidimensional IRT”. Our future work is
to compare the other principal components of learner token
embeddings with multidimensional IRT.
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APPENDIX

A. DATASETS

The dataset used in this paper will be publicly available.
Details of the dataset will be available at http://yoehara.
com/ or http://readability.jp/. Some previous datasets
such as [6] are available at http://yoehara.com/.

B. DISCUSSION

In this paper, we have made two important suggestions.
The first is to introduce learner tokens to apply Transformer
models to the personalized prediction task. The second is
that the learner ability can be extracted from the first prin-
cipal component of the learner token embedding vectors.

A research question that directly follows from this result
is: Is it always possible to extract learner ability from the
Transformer models? We provide our views on this topic.

An important point of the experimental settings shown in
Figure 5 is that all learner tokens are trained using the same
70 test questions. (Strictly speaking, as for the 100 learners
in Figure 5, their learner tokens were trained without test
questions for atypical words.) The word embeddings, other
than the learner token embeddings, were already trained us-
ing the pre-trained model. Therefore, although words other
than the learner token in a sentence had a strong influence
on the training of learner token embeddings, they were all
trained in a similar way except for the response of the learner
to the test question text: correct/incorrect. Hence, it is
natural that learner token embeddings mainly reflect the re-
sponse of the learner to each question text.

Hence, in a setting in which each learner responds to com-
pletely different test question texts, it is expected that ex-
tracting the learner’s ability values using the first principal
score of the learner token embedding vectors will be diffi-
cult. This setting can also be seen in the case where the
matrix Figure 5 is sparse because each column, i.e., each
test question, was filled by a small number of learners.

C. SCATTER PLOTS
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Figure 7: The horizontal axis shows the discrimination pa-
rameters and the vertical axis shows the difficulty parame-
ters.
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Figure 8: The horizontal axis shows the discrimination pa-
rameter of the typical meanings and the vertical axis shows
the discrimination parameter of atypical meaning.
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Figure 9: Relationship between the learner ability parameter
estimated by the pyirt software (horizontal) and the second
principal component of the learner token embeddings (verti-
cal)
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Figure 10: Relationship between IRT ability parameters es-
timated by ltm on the R language (horizontal) and the first
principal component of the learner token embeddings (verti-
cal)



