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ABSTRACT
Block-based visual programming environments are increas-
ingly used to introduce computing concepts to beginners.
Given that programming tasks are open-ended and concep-
tual, novice students often struggle when learning in these
environments. AI-driven programming tutors hold great
promise in automatically assisting struggling students, and
need several components to realize this potential. We inves-
tigate the crucial component of student modeling, in par-
ticular, the ability to automatically infer students’ miscon-
ceptions for predicting (synthesizing) their behavior. We in-
troduce a novel benchmark, StudentSyn, centered around
the following challenge: For a given student, synthesize the
student’s attempt on a new target task after observing the
student’s attempt on a fixed reference task. This challenge
is akin to that of program synthesis; however, instead of syn-
thesizing a {solution} (i.e., program an expert would write),
the goal here is to synthesize a {student attempt} (i.e., pro-
gram that a given student would write). We first show that
human experts (TutorSS) can achieve high performance
on the benchmark, whereas simple baselines perform poorly.
Then, we develop two neuro/symbolic techniques (NeurSS
and SymSS) in a quest to close this gap with TutorSS.
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1. INTRODUCTION
The emergence of block-based visual programming platforms
has made coding more accessible and appealing to beginners.
Block-based programming uses“code blocks”that reduce the
burden of syntax and introduces concepts in an interactive
way. Led by initiatives like Hour of Code by Code.org [10, 8]
and the popularity of languages like Scratch [41], block-
based programming has become integral to introductory CS
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education. Considering the Hour of Code initiative alone,
over one billion hours of programming activity has been
spent in learning to solve tasks in such environments [8].

Programming tasks on these platforms are conceptual and
open-ended, and require multi-step deductive reasoning to
solve. Given these aspects, novices often struggle when
learning to solve these tasks. The difficulties faced by novice
students become evident by looking at the trajectory of stu-
dents’ attempts who are struggling to solve a given task. For
instance, in a dataset released by Code.org [10, 8, 35], even
for simple tasks where solutions require only 5 code blocks
(see Figure 1a), students submitted over 50, 000 unique at-
tempts with some exceeding a size of 50 code blocks.

AI-driven programming tutors have the potential to sup-
port these struggling students by providing personalized as-
sistance, e.g., feedback as hints or curriculum design [37].
To effectively assist struggling students, AI-driven systems
need several components, a crucial one being student mod-
eling. In particular, we need models that can automatically
infer a student’s knowledge from limited interactions and
then predict the student’s behavior on new tasks. However,
student modeling in block-based visual programming envi-
ronments can be quite challenging because of the following:
(i) programming tasks are conceptual with no well-defined
skill-set or problem-solving strategy for mastery [23]; (ii)
there could be a huge variability in students’ attempts for a
task [52]; (iii) the objective of predicting a given student’s
behavior on new tasks is not limited to coarse-grained suc-
cess/failure indicators (e.g., [50])—ideally, we should be able
to do fine-grained synthesis of attempts for the student.

Beyond the above-mentioned challenges, there are two criti-
cal issues arising from limited resources and data scarcity for
a given domain. First, while the space of tasks that could be
designed for personalized curriculum is intractably large [1],
the publicly available datasets of real-world students’ at-
tempts are limited; e.g., the Hour of Code: Maze Challenge
domain has datasets for only two tasks [35]. Second, when
a deployed system is interacting with a new student, there
is limited prior information [15], and the system would have
to infer the student’s knowledge by observing behavior on a
few reference tasks, e.g., through a quiz [21]. These two is-
sues limit the applicability of state-of-the-art techniques that
rely on large-scale datasets across tasks or personalized data
per student (e.g., [50, 28, 29, 36])—we need next-generation
student modeling techniques that can operate under data
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def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnLeft

}
}

}

Datasets for
reference task

(a) Reference task T18 with solution code and datasets

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnLeft
move

}
}

(b) stu’s attempt for T18 (c) Target task T18x

?
(d) stu’s attempt for T18x

Figure 1: Illustration of our problem setup and objective for the task Maze#18 in the Hour of Code: Maze [9] by Code.org [8].
As explained in Section 2.2, we consider three distinct phases in our problem setup to provide a conceptual separation in terms
of information and computation available to a system. (a) In the first phase, we are given a reference task T18 along with its
solution code C?T18 and data resources (e.g., a real-world dataset of different students’ attempts); reference tasks are fixed and
the system can use any computation a priori. (b) In the second phase, the system interacts with a student, namely stu, who
attempts the reference task T18 and submits a code, denoted as CstuT18 . (c, d) In the third phase, the system seeks to synthesize
the student stu’s behavior on a target task T18x, i.e., a program that stu would write if the system would assign T18x to the
student. Importantly, the target task T18x is not available a priori and this synthesis process would be done in real-time.

scarcity and limited observability. To this end, this paper
focuses on the following question: For a given student, can
we synthesize the student’s attempt on a new target task af-
ter observing the student’s attempt on a fixed reference task?

1.1 Our Approach and Contributions
Figure 1 illustrates this synthesis question for a scenario in
the Hour of Code: Maze Challenge [9] by Code.org [8]. This
question is akin to that of program synthesis [20]; however,
instead of synthesizing a {solution} (i.e., program an ex-
pert would write), the goal here is to synthesize a {student
attempt} (i.e., program that a given student would write).
This goal of synthesizing student attempts, and not just so-
lutions, requires going beyond state-of-the-art program syn-
thesis techniques [3, 4, 25]; crucially, we also need to define
appropriate metrics to quantitatively measure the perfor-
mance of different techniques. Our main contributions are:

(1) We formalize the problem of synthesizing a student’s at-
tempt on target tasks after observing the student’s be-
havior on a fixed reference task. We introduce a novel
benchmark, StudentSyn, centered around the above
synthesis question, along with generative/discriminative
performance measures for evaluation.

(2) We showcase that human experts (TutorSS) can achieve
high performance on StudentSyn, whereas simple base-
lines perform poorly.

(3) We develop two techniques inspired by neural (NeurSS)
and symbolic (SymSS) methods, in a quest to close the
gap with human experts (TutorSS).

We provide additional details and results in the longer ver-
sion of the paper [47]. We will also publicly release the
benchmark and implementations to facilitate future research.

1.2 Related Work
Student modeling. For close-ended domains like vocabulary
learning ([42, 36, 22]) and Algebra problems ([12, 40, 43]),
the skills or knowledge components for mastery are typically
well-defined and we can use Knowledge Tracing techniques
to model a student’s knowledge state over time [11, 33].
These modeling techniques, in turn, allow us to provide
feedback, predict solution strategies, or infer/quiz a stu-
dent’s knowledge state [40, 21, 43]. Open-ended domains
pose unique challenges to directly apply these techniques

(see [23]); however, there has been some progress in this
direction. In recent works [28, 29], models have been pro-
posed to predict human behavior in chess for specific skill
levels and to recognize the behavior of individual players.
Along these lines, [7] introduced methods to perform early
prediction of struggling students in open-ended interactive
simulations. There has also been work on student modeling
for block-based programming, e.g., clustering-based meth-
ods for misconception discovery [18, 44], and deep learning
methods to represent knowledge and predict performance [50].

AI-driven systems for programming education. There has
been a surge of interest in developing AI-driven systems for
programming education, and in particular, for block-based
programming domains [37, 38, 51]. Existing works have
studied various aspects of intelligent feedback, for instance,
providing next-step hints when a student is stuck [35, 53, 31,
15], giving data-driven feedback about a student’s miscon-
ceptions [45, 34, 39, 52], or generating/recommending new
tasks [2, 1, 19]. Depending on the availability of datasets and
resources, different techniques are employed: using historical
datasets to learn code embeddings [34, 31], using reinforce-
ment learning in zero-shot setting [15, 46], bootstrapping
from a small set of expert annotations [34], or using expert
grammars to generate synthetic training data [52].

Neuro-symbolic program synthesis. Our approach is related
to program synthesis, i.e., automatically constructing pro-
grams that satisfy a given specification [20]. The usage of
deep learning models for program synthesis has resulted in
significant progress in a variety of domains including string
transformations [16, 14, 32], block-based visual program-
ming [3, 4, 13, 48], and competitive programming [25]. Pro-
gram synthesis has also been used to learn compositional
symbolic rules and mimic abstract human learning [30, 17].

2. PROBLEM SETUP
Next, we introduce definitions and formalize our objective.

2.1 Preliminaries
The space of tasks. We define the space of tasks as T; in
this paper, T is inspired by the popular Hour of Code: Maze
Challenge [9] from Code.org [8]; see Figure 1a. We define
a task T ∈ T as a tuple (Tvis, Tstore, Tsize), where Tvis de-
notes a visual puzzle, Tstore the available block types, and
Tsize the maximum number of blocks allowed in the solution



code. The task T in Figure 1a corresponds to Maze#18 in
the Hour of Code: Maze Challenge [9], and has been studied
in a number of prior works [35, 15, 1].

The space of codes. We define the space of all possible codes
as C and represent them using a Domain Specific Language
(DSL) [20]. In particular, for codes relevant to tasks consid-
ered in this paper, we use a DSL from [1]. A code C ∈ C has
the following attributes: Cblocks is the set of types of code
blocks used in C, Csize is the number of code blocks used, and
Cdepth is the depth of the Abstract Syntax Tree of C.

Solution code and student attempt. For a given task T, a
solution code C?T ∈ C should solve the visual puzzle; addi-
tionally, it can only use the allowed types of code blocks
(i.e., Cblocks ⊆ Tstore) and should be within the specified size
threshold (i.e., Csize ≤ Tsize). We note that a task T ∈ T may
have multiple solution codes; in this paper, we typically refer
to a single solution code that is provided as input. A student
attempt for a task T refers to a code that is being written by
a student (including incorrect or partial codes). A student
attempt could be any code C ∈ C as long as it uses the set
of available types of code blocks (i.e., Cblocks ⊆ Tstore).

2.2 Objective
Distinct phases. To formalize our objective, we introduce
three distinct phases in our problem setup that provide a
conceptual separation in terms of information and compu-
tation available to a system. More concretely, we have:

(1) Reference task Tref: We are given a reference task Tref

for which we have real-world datasets of different stu-
dents’ attempts as well as access to other data resources.
Reference tasks are fixed and the system can use any
computation a priori (e.g., compute code embeddings).

(2) Student stu attempts Tref: The system interacts with a
student, namely stu, who attempts the reference task Tref

and submits a code, denoted as CstuTref . At the end of this

phase, the system has observed stu’s behavior on Tref and
we denote this observation by the tuple (Tref, CstuTref).

1

(3) Target task Ttar: The system seeks to synthesize the stu-
dent stu’s behavior on a target task Ttar. Importantly,
the target task Ttar is not available a priori and this syn-
thesis process would be done in real-time, possibly with
constrained computational resources. Furthermore, the
system may have to synthesize the stu’s behavior on a
large number of different target tasks from the space T
(e.g., to personalize the next task in a curriculum).2

Granularity level of our objective. There are several differ-
ent granularity levels at which we can predict the student
stu’s behavior for Ttar, including: (a) a coarse-level binary
prediction of whether stu will successfully solve Ttar, (b)
a medium-level prediction about stu’s behavior w.r.t. to
a predefined feature set (e.g., labelled misconceptions); (c)
a fine-level prediction in terms of synthesizing CstuTtar , i.e., a
program that stu would write if the system would assign

1In practice, the system might have more information, e.g.,
the whole trajectory of edits leading to CstuTref .
2Even though the Hour of Code: Maze Challenge [9] has
only 20 tasks, the space T is intractably large and new tasks
can be generated, e.g., for providing feedback [1].

Ttar to the student. In this work, we focus on this fine-level,
arguably also the most challenging, synthesis objective.

Performance evaluation. So far, we have concretized the syn-
thesis objective; however, there is still a question of how
to quantitatively measure the performance of a technique
set out to achieve this objective. The key challenge stems
from the open-ended and conceptual nature of programming
tasks. Even for seemingly simple tasks such as in Figure 1a,
the students’ attempts can be highly diverse, thereby mak-
ing it difficult to detect a student’s misconceptions from ob-
served behaviors; moreover, the space of misconceptions it-
self is not clearly understood. To this end, we begin by
designing a benchmark to quantitatively measure the per-
formance of different techniques w.r.t. our objective.

3. BENCHMARK
In this section, we introduce our benchmark, StudentSyn.

3.1 STUDENTSYN: Data Curation
We begin by curating a synthetic dataset for the benchmark,
designed to capture different scenarios of the three distinct
phases mentioned in Section 2.2. In particular, each scenario
corresponds to a 4-tuple (Tref, CstuTref , T

tar, CstuTtar), where CstuTref

(observed by the system) and CstuTtar (to be synthesized by
the system) correspond to a student stu’s attempts.

Reference and target tasks. We select two reference tasks
for this benchmark, namely T4 and T18—they correspond to
Maze#4 and Maze#18 in the Hour of Code: Maze Chal-
lenge [9]. These tasks have been studied in a number of
prior works [35, 15, 1] because of the availability of large-
scale datasets of students’ attempts. For each reference task,
we manually create three target tasks—Figure 2b illustrates
target tasks for T18; the target tasks for T4 can be found in
the longer version of the paper [47]. These target tasks are
similar to the corresponding reference task in a sense that
the set of available block types is same and the nesting struc-
ture of programming constructs in solution codes is same.

Types of students’ behaviors and students’ attempts. For
a given reference-target task pair (Tref, Ttar), next we seek
to simulate a student stu to create stu’s attempts CstuTref

and CstuTtar . We begin by identifying a set of salient stu-
dents’ behaviors and misconceptions for reference tasks T4

and T18 based on students’ attempts observed in the real-
world dataset of [35]. In this benchmark, we select 6 types of
students’ behaviors for each reference task—Figure 2c high-
lights the 6 selected types for T18; the 6 selected types for T4

can be found in the longer version of the paper [47].3 For a
given pair (Tref, Ttar), we first simulate a student stu by asso-
ciating this student to one of the 6 types, and then manually
create stu’s attempts CstuTref and CstuTtar . For a given scenario

(Tref, CstuTref , T
tar, CstuTtar), the attempt CstuTtar is not observed and

serves as a ground truth for evaluation purposes; henceforth,
we interchangeably write a scenario as (Tref, CstuTref , T

tar, ?).

Total scenarios. We create 72 scenarios (Tref, CstuTref , T
tar, CstuTtar)

in the benchmark corresponding to (i) 2 reference tasks, (ii)
3 target tasks per reference task, (iii) 6 types of students’
behaviors per reference task, and (iv) 2 students per type.

3We note that, in real-world settings, the types of students’
behaviors and their attempts have a much larger variability
and complexities with a long-tail distribution.



def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnLeft

}
}

}

Datasets for
reference task

(a) Reference task T18 with solution code and datasets (b) Three target tasks for T18: T18x, T18y, and T18z

def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnRight

}
}

}

def Run(){
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

def Run(){
RepeatUntil(goal){
If(pathAhead){
turnLeft

}
Else{
turnLeft

}
move

}
}

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnLeft
move

}
}

def Run(){
move
If(pathAhead){
move

}
Else{
turnLeft

}
}

def Run(){
move
turnLeft
move
move
move
move
turnRight
move
move
move
move
move

}

(c) Example codes (i)–(vi) corresponding to six types of students’ behaviors when attempting T18, each capturing different misconceptions

Figure 2: Illustration of the key elements of the StudentSyn benchmark for the reference task T18 shown in (a)—same as
in Figure 1a. (b) Shows three target tasks associated with T18; these target tasks are similar to T18 in a sense that the set
of available block types is same as T18store and the nesting structure of programming constructs in solution codes is same as
in C?T18 . (c) Shows example codes corresponding to six types of students’ behaviors when attempting T18, each capturing a
different misconception as follows: (i) confusing left/right directions when turning or checking conditionals, (ii) following one
of the wrong path segments, (iii) misunderstanding of IfElse structure functionality and writing the same blocks in both the
execution branches, (iv) ignoring the IfElse structure when solving the task, (v) ignoring the While structure when solving
the task, (vi) attempting to solve the task by using only the basic action blocks in {turnLeft, turnRight, move}.

?
stu’s attempt for T18x
in Figure 1

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathRight){
turnRight
move

}
Else{
move

}
}

}

option (a)

def Run(){
move
move
turnLeft
move
move
move
move
turnRight
move
move
move
move

}

option (b)

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

option (c)

def Run(){
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

option (d)

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnRight
move

}
}

option (e)

def Run(){
move
move
turnLeft
If(pathRight){
turnRight
move

}
Else{
move

}
}

option (f)

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathRight){
move

}
Else{
move

}
turnRight

}
}

option (g)

def Run(){
move
turnLeft
move
move
move
move
move
turnRight
turnRight
turnLeft
move

}

option (h)

def Run(){
turnLeft
move
move
If(pathRight){
turnRight
move

}
Else{
move

}
}

option (i)

def Run(){
move
move
turnLeft
RepeatUntil(goal){
turnRight
turnLeft
turnLeft
move

}
}

option (j)

Figure 3: Illustration of the generative and discriminative objectives in the StudentSyn benchmark for the scenario shown
in Figure 1. For the generative objective, the goal is to synthesize the student stu’s behavior on the target task T18x, i.e., a
program that stu would write if the system would assign T18x to the student. For the discriminative objective, the goal is to
choose one of the ten codes, shown as options (a)–(j), that corresponds to the student stu’s attempt. For each scenario, ten
options are created systematically as discussed in Section 3.2; in this illustration, option (a) corresponds to the solution code
C∗T18x for the target task and option (e) corresponds to the student stu’s attempt as designed in the benchmark.

3.2 STUDENTSYN: Performance Measures
We introduce two performance measures to capture our syn-
thesis objective. Our first measure, namely generative per-
formance, is to directly capture the quality of fine-level syn-
thesis of the student stu’s attempt—this measure requires
a human-in-the-loop evaluation. To further automate the
evaluation process, we then introduce a second performance
measure, namely discriminative performance.

Generative performance. As a generative performance mea-
sure, we introduce a 4-point Likert scale to evaluate the
quality of synthesizing stu’s attempt CstuTtar for a scenario

(Tref, CstuTref , T
tar, ?). The scale is designed to assign scores

based on two factors: (a) whether the elements of the stu-
dent’s behavior observed in CstuTref are present, (b) whether
the elements of the target task Ttar (e.g., parts of its solu-
tion) are present. More concretely, the scores are assigned as



follows (with higher scores being better): (i) Score 1 means
the technique does not have synthesis capability; (ii) Score 2
means the synthesis fails to capture the elements of CstuTref and
Ttar; (iii) Score 3 means the synthesis captures the elements
only of CstuTref or of Ttar, but not both; (iv) Score 4 means the
synthesis captures the elements of both CstuTref and Ttar.

Discriminative performance. As the generative performance
measure requires human-in-the-loop evaluation, we also in-
troduce a disciminative performance measure based on the
prediction accuracy of choosing the student attempt from a
set. More concretely, given a scenario (Tref, CstuTref , T

tar, ?), the
discriminative objective is to choose CstuTtar from ten candidate
codes; see Figure 3. These ten options are created automat-
ically in a systematic way and include: (a) the ground-truth

CstuTtar , (b) the solution code C?Ttar , (c) five codes Cstu
′

Ttar from
the benchmark associated with other students stu′ whose
behavior type is different from stu, and (iv) three randomly
constructed codes obtained by editing C∗Ttar .

4. METHODOLOGY
In this section, we design different techniques for the bench-
mark StudentSyn. First, we consider a few simple base-
lines for the discriminative-only objective (RandD, EditD,
EditEmbD). Next, we develop our two main techniques in-
spired by neural/symbolic methods (NeurSS, SymSS). Fi-
nally, we propose performance evaluation of human experts
(TutorSS). Table 1 illustrates how these techniques differ
in required inputs and domain knowledge. Below, we pro-
vide a brief overview of these techniques; we refer the reader
to the longer version of the paper for full details [47].

Simple baselines. As a starting point, we consider simple
baselines for the discriminative-only objective; they do not
have synthesis capability. Our first baseline RandD simply
chooses a code from the 10 options at random. Our next two
baselines, EditD and EditEmbD, are defined through a dis-
tance function DTref(C, C

′) that quantifies a notion of distance
between any two codes C, C′ for a fixed reference task. For a
scenario (Tref, CstuTref , T

tar, ?) and ten option codes, these base-
lines select the code C that minimizes DTref(C, C

stu
Tref). EditD

uses a tree-edit distance between Abstract Syntax Trees as
the distance function, denoted as Dedit

Tref . EditEmbD extends
EditD by considering a distance function that combines
Dedit

Tref and a code-embedding based distance function Demb
Tref ;

in this paper, we trained code embeddings with the method-
ology of [15] using a real-world dataset of student attempts
on Tref. EditEmbD then uses a distance function as a con-
vex combination

(
α ·Dedit

Tref (C, C′)+(1−α) ·Demb
Tref (C, C′)

)
where

α is optimized for each reference task separately.

Neural synthesizer NEURSS. Next, we develop our technique,
NeurSS (Neural Program Synthesis for StudentSyn), in-
spired by recent advances in neural program synthesis [3, 4].
A neural synthesizer model takes as input a visual task T,
and then sequentially synthesizes a code C by using pro-
gramming tokens in Tstore. However, our goal is not simply
to synthesize a solution code for the input task T as con-
sidered in [3, 4]; instead, we want to synthesize attempts of
a given student that the system is interacting with at real-
time/deployment. To achieve this goal, NeurSS operates in
three stages, where each stage is in line with a phase of our
objective described in Section 2.2. At a high-level, the three

stages of NeurSS are as follows: (i) In Stage-1, we are given
a reference task and its solution (Tref, C?Tref), and train a neu-
ral synthesizer model that can synthesize solutions for any
task similar to Tref; (ii) In Stage-2, the system observes the
student stu’s attempt CstuTref and initiates continual training
of the neural synthesizer model from Stage-1 in real-time;
(iii) In Stage-3, the system considers a target task Ttar and
uses the model from Stage-2 to synthesize CstuTtar .

Symbolic synthesizer SYMSS. As we will see in experiments,
NeurSS significantly outperforms the simple baselines in-
troduced earlier; yet, there is a substantial gap in the per-
formance of NeurSS and human experts (i.e., TutorSS).
An important question that we seek to resolve is how much
of this performance gap can be reduced by leveraging do-
main knowledge such as how students with different be-
haviors (misconceptions) write codes. To this end, we de-
velop our technique, SymSS (Symbolic Program Synthesis
for StudentSyn), inspired by recent advances in using sym-
bolic methods for program synthesis [24, 52, 1, 26]. Simi-
lar in spirit to NeurSS, SymSS operates in three stages
as follows: (i) In Stage-1, we are given (Tref, C?Tref), and de-
sign a symbolic synthesizer model using Probabilistic Con-
text Free Grammars (PCFG) to encode how students of dif-
ferent behavior types M write codes for any task similar
to Tref [5, 27, 52]; (ii) In Stage-2, the system observes the
student stu’s attempt CstuTref and makes a prediction about
the behavior type Mstu ∈ M; (iii) In Stage-3, the system
considers a target task Ttar and uses the model from Stage-1
to synthesize CstuTtar based on the inferred Mstu.

Human experts. Finally, we propose an evaluation of human
experts’ performance on the benchmark StudentSyn, and
refer to this evaluation technique as TutorSS. These eval-
uations are done through a web platform where an expert
would provide a generative or discriminative response to a
given scenario (Tref, CstuTref , T

tar, ?). In our work, TutorSS
involved participation of three independent experts for the
evaluation—these experts have had experience in block-based
programming and tutoring. We first carry out generative
evaluations where an expert has to write the student at-
tempt code; afterwards, we carry out discriminative evalua-
tions where an expert would choose one of the options.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of different tech-
niques discussed in Section 4. Our results are summarized
in Table 1 and Figure 4. Below, we provide a brief overview
of the evaluation procedures and results; we refer the reader
to the longer version of the paper for full details [47].

Generative performance. As discussed in Section 3.2, we
evaluate the generative performance of a technique in the
following steps: (a) a scenario (Tref, CstuTref , T

tar, ?) is picked;
(b) the technique synthesizes stu’s attempt; (c) the gener-
ated code is scored on the 4-point Likert scale. The scor-
ing step requires human-in-the-loop evaluation and involved
an expert (different from the three experts that are part
of TutorSS). Overall, each technique is evaluated for 36
unique scenarios in StudentSyn—we selected 18 scenarios
per reference task by first picking one of the 3 target tasks
and then picking a student from one of the 6 different types
of behavior. The final performance results in Table 1 are re-



Method Generative Performance Discriminative Performance Required Inputs and Domain Knowledge
Reference task Reference task Reference task Reference task Ref. task dataset: Ref. task dataset: Student Expert Expert

T4 T18 T4 T18 student attempts similar tasks types grammars evaluation

RandD 1.00 1.00 10.0 10.0 - - - - -
EditD 1.00 1.00 31.5 48.9 - - - - -

EditEmbD 1.00 1.00 39.6 48.9 7 - - - -

NeurSS 3.00 2.83 43.8 57.2 7 7 - - -
SymSS 3.78 3.72 88.1 62.1 - - 7 7 -

TutorSS 3.85 3.90 89.8 85.2 - - - - 7

Table 1: This table shows results on StudentSyn in terms of the generative and discriminative performance measures. The
columns under “Required Inputs and Domain Knowledge” highlight information used by different techniques (7 indicates the
usage of the corresponding input/knowledge). The values are in the range [1.0, 4.0] for generative performance and in the
range [0.0, 100.0] for discriminative performance—higher values being better. Human experts (TutorSS) can achieve high
performance on both the measures, whereas simple baselines perform poorly. NeurSS and SymSS significantly improve upon
the simple baselines; yet, there is a high gap in performance in comparison to that of human experts.

?
(a) Attempt CstuT18x

def Run(){
move
move
turnLeft
RepeatUntil(goal){
If(pathRight){
turnRight
move

}
Else{
move

}
}

}

(b) Solution C?T18x

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnRight
move

}
}

(c) Benchmark code

def Run(){
RepeatUntil(goal){
move
move
turnLeft
move
move
move
move

}
}

(d) NeurSS

def Run(){
move
move
turnLeft
RepeatUntil(goal){
turnRight
move
move

}
}

(e) SymSS

def Run(){
RepeatUntil(goal){
move
move
turnLeft
move
move
turnRight
move
move

}
}

(f) TutorSS

Figure 4: Qualitative results for the scenario in Figure 1. (a) The goal is to synthesize the student stu’s behavior on the
target task T18x. (b) Solution code C?T18x for the target task. (c) Code provided in the benchmark as a possible answer for this
scenario. (d, e) Codes synthesized by our techniques NeurSS and SymSS. (f ) Code provided by one of the human experts.

ported as an average across these scenarios; for TutorSS,
each of the three experts independently responded to these
36 scenarios and the final performance is averaged across ex-
perts. The simple baselines (RandD, EditD, EditEmbD)
have a score of 1.00 as they do not have a synthesis capa-
bility. TutorSS achieves the highest performance; SymSS
also achieves high performance (only slightly lower than that
of TutorSS)—the high performance of SymSS is expected
given its knowledge about types of students in StudentSyn
and the expert domain knowledge inherent in its design.
NeurSS improves upon simple baselines, but performs worse
compared to SymSS and TutorSS. Figure 4 illustrates
the codes generated by different techniques for the scenario
in Figure 1—the codes by TutorSS and SymSS are high-
scoring w.r.t. our 4-point Likert scale; however, the code
by NeurSS only captures elements of the student’s behav-
ior in CstuTref but misses elements of the target task Ttar. We
provide additional details and statistical significance results
w.r.t. χ2 test [6] in the longer version of the paper [47].

Discriminative performance. As discussed in Section 3.2, we
evaluate the discriminative performance of a technique in
the following steps: (a) a discriminative instance is created
with a scenario (Tref, CstuTref , T

tar, ?) picked from the bench-
mark and 10 code options created automatically; (b) the
technique chooses one of the options as stu’s attempt; (c)
the chosen option is scored either 100.0 when correct, or
0.0 otherwise. For all techniques except TutorSS, we per-
form evaluation on a set of 720 instances (360 instances per
reference task); for TutorSS, we perform evaluation on a
small set of 72 instances (36 instances per reference task),
to reduce the effort for human experts. The final perfor-
mance results in Table 1 are reported as an average predic-

tive accuracy across the evaluated instances; for TutorSS,
each of the three experts independently responded to the in-
stances and the final performance is averaged across experts.
Results highlight the huge performance gap between the
human experts (TutorSS) and simple baselines (RandD,
EditD, EditEmbD). Our proposed techniques (NeurSS
and SymSS) have substantially reduced this performance
gap w.r.t. TutorSS. SymSS achieves high performance
compared to simple baselines and NeurSS; moreoever, on
the reference task T4, its performance is close to that of
TutorSS. The high performance of SymSS is partly due to
its access to types of students in StudentSyn; in fact, this
information is used only by SymSS and is not even available
to human experts in TutorSS (see column “Student types”
in Table 1). NeurSS outperformed simple baselines but its
performance is below SymSS and TutorSS. We provide
additional details and statistical significance results w.r.t.
Tukey’s HSD test [49] in the longer version of the paper [47].

6. CONCLUSIONS
We investigated student modeling in the context of block-
based visual programming environments, focusing on the
ability to automatically infer students’ misconceptions and
synthesize their expected behavior. We introduced a novel
benchmark, StudentSyn, to objectively measure the gen-
erative as well as the discriminative performance of differ-
ent techniques. The gap in performance between human
experts (TutorSS) and our techniques (NeurSS, SymSS)
highlights the challenges in synthesizing student attempts
for programming tasks. We believe that the benchmark will
facilitate further research in this crucial area of student mod-
eling for block-based visual programming environments.
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