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ABSTRACT

The value of an instructor is that she exactly recognizes what
the learner is struggling with and provides constructive feed-
back straight to the point. This work aims at a step towards
this type of feedback in the context of an introductory pro-
gramming course, where students perform program execu-
tion tracing to align their understanding of Java instructions
with reality. The students’ submissions are analyzed for re-
peating mistakes across different exercises by representing
the context surrounding the error by a graph and applying
graph mining techniques to discover their common grounds.
The patterns need to be annotated only once and help to
address misconceptions of individual students. They may
also be used to select follow-up exercises automatically, that
contain the same intricacy.
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1. INTRODUCTION

Automatized grading is integrated (to varying extent) in
many educational systems. It is often limited to compar-
ing a correct answer against the submission (or applying
unit tests), but is nevertheless welcomed by both, students
and instructors, for different reasons: While students appre-
ciate immediate feedback, instructors are relieved that the
burden of manual grading is lifted. But a student who has
missed the point of some problem and thus repeatedly gets
the answers wrong would benefit much more from personal
feedback from an instructor who is capable of recognizing
and directly addressing the student’s problem. And if none
of the submissions is inspected manually any more, the in-
structor withholds his diagnostic skills that may otherwise
have been proven useful to identify misconceptions of sev-
eral course members. In this work we investigate — for a
particular type of exercises in programming courses — how
this situation may be improved.
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We consider an introductory programming course in Java for
students who have no programming experience yet. While
students may struggle with programming for a large number
of reasons (e.g. fighting with the development environment,
getting a grip on computational thinking, etc.), in this work
we concentrate on a single aspect only: instruction compre-
hension. Especially for students who have no experience in
programming, we observe in lab discussions that their per-
ception of an instruction often deviates from reality. Sticking
to a wrong mental model of program execution makes it dif-
ficult to write correct programs. A human advisor can (1)
discover the misconception (even if it did not occur before),
(2) explain the problem (and link it to the course mate-
rial), and (3) challenge the student afterwards (to monitor
progress). The research question of this paper is how such
an ideal instructor might be mimicked (in the given con-
text). In particular, is it possible to support the instructor
in the discovery of new misconceptions without falling back
to time-consuming manual inspection of all submissions?

2. RELATED WORK

The importance of dedicated feedback has been acknowl-
edged by many researchers ([5] gives a review). In the con-
text of programming, several approaches derive precise com-
mands to fix the mistakes of a submitted solution (e.g. [9,
11]). While being helpful to fix a technical problem, apply-
ing detailed instructions mechanically will unlikely trigger a
change of the students’ mental model — the same mistake
might be made again if nothing can be learned from the
feedback (e.g. because it is lacking explanations). Different
hint levels are offered as a solution in [10]: On the first level,
a hint points to the problem but still requires the right stu-
dent action, while a hint on the second level enables them
to fix the problem mechanically. When misconceptions are
known beforehand, their discovery in a submission turns into
a classification problem. Recently a number of deep learning
approaches have been proposed to predict whether a student
will complete an exercise [14], the code exhibits certain logic
errors [6], or some free-text answer hints towards a common
misconception [7]. For all those misconceptions a dedicated
feedback may be prepared only once (manually by the in-
structor) and whenever it is predicted in a new submission
the feedback can be provided automatically. This is effective
for known misconceptions, but such approaches do not help
to discover new misconceptions.

One of the few approaches that may also help to discover
new problems (and is therefore close to what we have in
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mind) is suggested in [8], where the focus is on program-
ming bugs. Common coding errors (for the same exercise)
are discovered by finding subtrees (in the submissions’ ab-
stract syntax trees' (AST)) that correlate with failed unit
tests, hinting at typically wrong code fragments for the given
exercise. As with other approaches, an instructor provides
feedback for a buggy subtree that will be delivered later
whenever a similar subtree occurs again. The focus of these
explanations is, however, restricted to the exercise at hand
— a buggy subtree in one exercise may be correct in another.

3. PROGRAM EXECUTION TRACES

When an instructor explains some concepts in class it is dif-
ficult to verify that the students perceive the concepts in the
intended way. This holds in general and for instructions of
a programming language in particular. If a student has only
vague ideas about stack and heap, call-by-value/reference,
array organization, etc., programming errors will happen
sooner or later. But since code will be executed by man-
made machines, we know the ground truth (just find a de-
bugger) and can ask students to simulate program execution
(to some extent). Paper-based analysis of variable tracing
exercises have been used to investigate misconceptions in the
literature [1, 2, 4, 12]. Gaining an understanding of the me-
chanics how the language implementation worked, was also
identified as a key issue in [13]. Employing tracing exercises
in class has been reported to increase the students’ perfor-
mance in [3]. We thus consider execution traces as a helpful
tool to align mental models and encourage students to verify
their understanding by filling out traces: for every executed
code line the content of all variables has to be documented.

Fig. 1 shows a Java code snippet on the right that uses a
mixture of language elements for demonstration purposes.
We ask the students to fill out an execution trace as shown
on the left, which is basically a large table where each line
corresponds to a complete memory snapshot — ordered in
time from top to bottom. For each row, the student has to
provide the line number that is executed next (e.g. execu-
tion starts with the first line 11 of the main function). The
state of all variables must be entered for each row after the
corresponding code line has been executed. For instance,
when line 12 got executed there is a new variable x on the
stack which points to the heap address 0x0, where an array
of length 2 has been instantiated and initialized with null
references. Students enter such traces in a web application,
which marks erroneous lines but not the exact error posi-
tion to make the students think about their input and make
trial and error strategies less attractive. The downside of
this practice is that students may get stuck at some point
because they are simply not aware of what they are doing
wrong. A lab advisor, pointing them to the nature of their
problem, would be appreciated by them.

4. OUTLINE OF THE APPROACH

Although a full trace may consist of a considerable num-
ber of inputs (cf. Fig. 1), most of the student’s input is not
very informative because it (hopefully) corresponds to the
already known solution. The valuable sources of information
are the deviations alone, because they may hint to miscon-

!An AST is build by a parser and represents the syntactical
structure of code while omitting some less relevant details.

ceptions. A wrong value in the trace alone does not tell us
anything about possible reasons why this error was made.
This can only be judged if more context is given, that is,
the situation in which the error occured. If errors re-occur
in similar situations, the likelihood of a misconception rises
— otherwise it just might be a typo. The context is the Java
program itself. However, similar situations do not neces-
sarily correspond to identical source lines. For the sake of
simplicity, let us consider the case of a student who is con-
fused by assignments where the same variable occurs on the
left and the right hand side of the assignment. (Sometimes
beginners read instructions with = as a mathematical equa-
tion rather than an assignment.) Fig. 2 shows a simplistic
code example together with the correct trace. Can we tell
from the student’s input if he is affected by this misconcep-
tion? There are two places in the trace (marked in yellow)
which we can associate with this misconception: the value
of variable b after executing line 7 and the value of variable
a after executing line 9 as both lines exhibit the discussed
kind of assignment. If both places — or similar places in
other traces — are wrong, chances rise that assignments have
not yet been understood correctly. We have identified these
two places in the trace because we knew what kind of mis-
conception we were looking for. At these places the proba-
bility P(error|misconception) of an faulty input rises, given
the misconception holds. As it may be difficult to come up
with an operational definition of misconception, we retreat
to P(error|context) and will define context as a situation
or pattern that can be matched against the traces and the
source code.

Recalling the research question, we seek a mechanism that
identifies both, the context (of a potential misconception) as
well as the positions affected by it. If the context is easily
understandable, such a mechanism would enable us to mim-
ick the behaviour of a valuable instructor with only little
manual intervention: (1) discovery: if errors in an (auto-
matically derived) context accumulate substantially (across
all students), it is likely the context captures a problem-
atic situation. The instructor inspects the context once and
decides what a likely root cause might be. Once it got ac-
cepted as a misconception in this way, it can be discovered
in subsequent submissions automatically. If the errors ac-
cumulate for some individual student, we conclude that he
suffers from this misconception. (2) feedback: The instruc-
tor writes a short explanation when the problem was discov-
ered for the first time (or may link it to existing material).
As with other approaches, this feedback can be delivered in
subsequent occurrences. (3) challenge: Beyond the textual
feedback, we need a challenge to check for an improved un-
derstanding. We characterize a student by a set of pending
misconceptions and, in the same way, we characterize exer-
cises by the contexts they contain. A suitable challenge is
thus a challenge that matches the students profile best (in
the fashion of an adaptive recommendation system).

A context must address properties of the source code and the
trace: We want to align errors in the trace to properties of
the source code. The plain code (Fig. 2(right)) is therefore
transformed into a graph as shown in Fig. 3 as follows: The
first step is the creation of an abstract syntax tree, which
already provides most of the nodes in the graph. Starting
from the top node we can see the method declaration (of
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1 package test;
2public class Demo {
3 static int ic;

4 int a,b;

5 public Demo() {

6 ic++;

7 a=ic; b=icx*ic;

s }

9 public static void main(String[] args) {
10 int v = 42;

11 Demo[] x = new Demo[2];

12 x[0] = new Demo(); x[0].a=4;
13 x[1] = x[0]; x[1].b=7;
1} }

Figure 1: For the example code on the right, the corresponding execution trace is shown on the left. The different memory
areas stack, heap, and static data are shown in blue, yellow, and red, resp.

4 10 1 1 package test;
2public class Assign2 {

5 10 12 2 3 public static void main(...){
6 3 4 int a = 10;

0| 10 s dint b = 12;
7 10 Q 4 6 b = a;
s - 7 b=>b- a;

8| ? s a=42 +b;
9 @ 0 6 9 a=a/2+3;

Codeline Stack Step 10} }

Figure 2: Code (right) and corresponding trace (left). Yellow
marks indicate where the misconception may be observed.

main), which contains a body (instruction block {}) with
6 statement nodes, two declarations and four assignments.
But the AST does not yet suit the trace, it represents the
static structure of the code, but the trace is concerned with
the dynamic evolution of the variables during code execu-
tion. We bridge this gap by two changes:

1. Every occurrence of the same variable in the code in-
troduces a new node in the AST, but it has a unique
position in memory (and thus a unique position in the
trace). Therefore all AST nodes that refer to the same
variable are united to a single node, turning the tree
into a graph. In Fig. 3 both nodes for the variables a
and b are shaded in gray. Every incoming edge into
one of these variable nodes correspond to the use of
the variable in the code.

2. The content of the trace is aligned with the code lines,
but by looking at an AST graph one cannot tell which
instruction comes from which code line. So we intro-
duce a new node for each code line (shown in blue in
Fig. 3) and link them with all instructions from this
code line. (For instance, the rightmost assignment
node in Fig. 3 occurs in line 9 of Fig. 2.) We cap-
ture the program flow by connecting code line nodes
that may get executed in sequence. In the example we
have no loops or conditional statements, so the nodes
connect linearly (Line 5 to Line 6, Line 6 to 7, etc).

This graph combines information from code and trace, but
does not yet encode where the student entered a wrong
value. The error position in the trace is identified by row

and column (cf. yellow circles in Fig. 2): The column cor-
responds to the variable and the row corresponds to a time
step during execution, which always refers to a specific code
line. An additional focus node (orange in Fig. 3) thus en-
codes the error position by connecting to both, the variable
for which an erroneous value has been entered in the trace?,
and the code line node whose execution has been traced.

We denote such a graph G as a code graph. A context may
now be represented as a subgraph C' of G. In Fig. 3 such
a subgraph has been highlighted with red lines. We read
the subgraph as follows: We focus on a code line (here: line
7) that contains an assignment where the variable (here: b)
on the left hand side also occurs in the expression on the
right hand side of the assignment. The context graph is
also shown isolated in Fig. 4(left). If this context accumu-
lates a high number of student errors, it can be shown to
the instructor and should be reasonably simple to interpret.
The instructor may then decide that this context represents
a misconception and writes a short explanation for the con-
text pattern as indicated in Fig. 4(right). The text template
may refer directly to nodes in the context graph (e.g. [var-
name_2]). These references are replaced with the true line
numbers or variable names from the real exercise the stu-
dent is currently working on. This links the feedback text
very tight to the exercise just submitted by the student.

To match such a subgraph to other occurrences, it has to
be anonymized, for instance, the variable names have to be
replaced by placeholders 'varname’ (as we have already seen
in Fig. 4). Variables have unique nodes in the graph and
we no longer need the variable’s name for disambiguation.
Other graph transformations may be applied to compensate
structural differences in the AST that are not helpful for
our purposes. For instance, we want the context to match
twice in the example code of Fig. 2, but the subtree for
the expression on the right hand side of b=b—a is less com-
plex than that of a=a/2+3, so the code graph is structurally
different. To ensure that a context can still match both
occurrences, we apply two measures: Firstly, the graph is
transformed to simplify some technical details (we collapse
a tree of expression nodes into a single expression node).
Secondly, we extend the expressiveness of a context: Rather
than only simple edges we allow, e.g., for transitive connec-

Z2only if there is one; line number errors do not have an
associated variable
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Figure 3: A graph that fuses information from the abstract syntax tree (black), the execution trace (blue) and a potential error
position in the trace (orange). A potential misconception can be characterized as a subgraph (red).
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Figure 4: Context graph and excerpt from a text template
to deliver meaningful feedback to a student with a potential
misconception.

tions (a path of arbitrary length from the expression node
to the variable node instead of a direct neighbour).

S.  ERROR CONTEXT DISCOVERY

In this section we briefly sketch a graph mining approach to
discover context patterns automatically from data.

5.1 Code and Context Graphs

Our input consists of various Java sources, the correct so-
lution trace and the student’s input. The example graph
shown in Fig. 3 focusses on a specific position in the trace
(row/column as encoded by the codeline and varname
nodes linked to the focus node). We create corresponding
graphs for every position (row/column) in a trace. At first
glance, this affects only the edges of the focus node while
the rest of the graph remains unaltered (for a given trac-
ing exercise). However, the relevant context for entering a
wrong value in the trace can be narrowed down to the al-
ready passed code lines: The reason for a mistake cannot
be found in source code lines yet to come. Knowing which
code line we are focussing at, we remove all AST nodes that
correspond to code beyond the focus line.

Apart from the transformations already mentioned in Sect. 4
(renaming variable nodes, flattening expressions), we intro-

duce extra edges from an instruction block to the very first
and last statement of the block (labelled first and last).
Other transformations replace numbers by a literal label,
or re-insert information about variable names: whenever two
variables have the same name (before replacing them) we
add a samename-edge between them. A code graph is then
defined as follows: A triple G = (V,E,)\) is called code
graph, iff V' is a non-empty set of nodes, E C V x V is a
set of directed edges between nodes, A : (VUV xV) — L
is a function that assigns labels (from a set of labels L)
to nodes and edges, and there is exactly one v € V with
A(v) = focus € L.

We assume that a set G of all code graphs is given. Having
a graph G € G for every individual cell (of every trace), we
associate counters with them to track how often the respec-
tive cell has been entered correctly or not in the submissions.
We denote the (absolute) frequencies of correct and incor-
rect entries by pos(G) and neg(G), resp. For a given context
C' the core operation is to decide whether C' can be found
in a given code graph G, which is abbreviated as C C G.
Then we define

neg(G
P(error|context C) = Leg.cce o8(C) (1)

B > ceg.orq Pos(G) + neg(G)

The graph mining algorithm then searches for a context C
that maximizes P(error|context C'). Formally, we define a
context pattern as follows: A tuple P = (V, E, A\, 1) is called
context graph, iff V' is a non-empty set of nodes, £ C V' xV is
a set of directed edges between nodes, A : (VUV xV) — LU
{x} assigns labels to nodes and edges (where * is a wildcard
label), there is exactly one v € V with A(v) = focus, and
7:E— {N,X,T,W} classifies edges into one of four types:
normal (N), excluding (X), transitive (T) or wildcard (W).

The semantics of the edge types and the wildcard label
(which matches any other label) is defined along with the
definition of graph inclusion C as follows: A context graph
C = (Vo,Ec, ¢, 7¢) is contained in a code graph G =



(Va,Ec, @), C C G for short, iff there is a bijective
function o : Vo — Vg such that all node labels match
(Mv € Ve @ Ac(v) = Ag(o(v))) or the context label is a
wildcard (Ac(v) = x), and for all edges in C there are cor-
responding edges in G. An edge (u,v) € Ec has a cor-
responding edge if: (1) for normal edges (7((u,v)) = N)
we have (o(u),0(v)) € Ec A Ae((u,v)) = Aa((o(u),o(v))),
(2) for transitive edges (7((u,v)) = T) there is a path
(w1, wa,...,wg) in G with o(u) = w1, o(v) = wk, and
Vi : Ac((u,v)) = Ag((wi—1,w;s)), (3) for wildcard edges
(t((u,v)) = W) we have (o(u),0(v)) € Eg, (4) for ex-
cluding edges (7((u,v)) = X) we have (o(u),0(v)) € Eg A
Mo () # A ((o(w), o(v)).

5.2 Mining Algorithm

In contrast to other graph mining algorithms, our notion of
subgraph inclusion (C) is more complicated due to the differ-
ent edge types. But we benefit from the fact that we have
a clear starting point for inclusion tests because a unique
focus node is required in both, code graphs and context
graphs. The out-degree for many nodes is limited by the
fixed syntax of Java instructions, but this does not hold for
nodes like instruction blocks or expressions.

From a context graph that may serve as an indicator for
a misconception we expect a higher rate of faulty student
inputs than on average. A context graph C' matches various
cells in the traces, but the total number of correct inputs
is usually much larger than the total number of incorrect
answers. To account for this imbalance, we normalize the
correct (and incorrect) number of answers in context C:

_ 2geg.oca Pos(@) _ > ceg.orq neg(G)

pC - k) nC -
Zceg pos(G) Zceg neg(G)
We define an objective function f to rate context C as:
max! n,
€)™ og, (12 @)
pc

If the fractions nc and pc are about the same, the answers
in context C' do not distinguish from the average rate over
all cells and we obtain f(z) =log,(1) = 0. If we manage to
find a context C that covers twice as many erroneous cases
(than on average) and half as many correct cases (than on

average), it evaluates to log, (%) = 2. We perform a beam
2

search in the space of context graphs to identify the context
that maximizes (2). Details about the search algorithm are
given in the appendix A.

6. EXPERIMENTAL EVALUATION

When the students filled out the execution traces, the sub-
mitted solution may contain multiple errors. It is likely that
the first error in the trace causes subsequent faults: If the
student enters a wrong value in some cell, but this vari-
able is not altered in subsequent code lines, the wrong value
remains and invalidates multiple trace lines. Therefore we
consider only the first error from each submission, which
most likely contains its root cause. In total, there were
roughly 100 accounts (some were used only a few times)
and all traces together consisted of |G| = 7128 different in-
put cells. All students together pressed the ’evaluation’ but-
ton almost 92000 times. The total number of correct and
incorrect entries in the submissions was 2.4M and 64k, resp.

6.1 Discovered Contexts

In this section we present and discuss a few of the context
graphs that were automatically discovered by the algorithm
from Sect. 5. The objective is to investigate meaningful-
ness and interpretability of the discovered contexts. In the
figures, the node labels carry unique numbers for easier ref-
erence (e.g. focus_0 denotes node #0) and the edges have
a suffix indicating their edge type (e.g. N for normal edge)
and a varying line style (N : solid, W : dotted, X : red).

The context in Fig. 5 addresses the lifetime of local vari-
ables. Many students have a superfluous entry on the stack
in this context. The variable #2 has been declared #3 in an
instruction block #6, whose last statement is an assignment
(#5, connects to #6 with edge labelled last). This is the
last statement of the block #6 and the superfluous variable
has been observed in the next executed line (#1, connected
to #4 with an edge labelled prevex (previously executed)).
This code line is thus the first after the end of block #6 and
variable #2 should have vanished because its lifetime ended.

A somewhat surprising context is shown in Fig. 6, which
describes a code line #1 with an if-statement #5, where
the focussed variable #2 is somehow involved in the control-
expression #6 of the if-statement. An inspection of the sub-
mitted traces reveals that some students stored the boolean
result of the control expression on the stack. (Probably the
students thought that the evaluation result must be traced
somehow, but as it does not affect any variable it is not.)?

Fig. 7 captures a context where local variables and attributes
are mixed up. The focus is on a local variable #2 (local
because of its path to #6) in a function #6 of a class #7
that also contains a field declaration #8. The local variable
has a samename-edge to another variable, which causes the
confusion. Although the equally named variable #4 is not
connected to the field declaration #8, it corresponds to it
in all matching code graphs. So the student was not aware
which variable was addressed in the code and picked the
wrong one.

Some contexts may not really relate to code understanding,
but point at pitfalls when starting to use the web applica-
tion. Programs usually start with some variable declaration,
so the attention is initially on the stack — and filling out the
line number is easily forgotten: In Fig. 8 the expected code
line (whose line number was not entered correctly) contains
a declaration #2, which is the first instruction in the body
#3 of a function #8 — it thus most likely corresponds to the
very first code line that has to be traced.

Discussion: The graph mining approach delivered various
meaningful context patterns that correspond well to our ex-
pectations as well as some unexpected patterns. Once an
instructor gets used to them, the graphs are comparatively
easy to interpret, which was a requirement for the envisaged
approach to solve the research question in Sect. 4 — although
sometimes it may be necessary to have a look at the submis-
sions to get an idea what types of error were made. Not all
of the discovered patterns were useful, some are too general
in nature or mix up several problems. But compared to the

3We consider it unlikely that they tried to mimick the JVM-
internal evaluation of expressions.
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Table 1: Based on the performance over a series of exercises,
the students are classified in three groups S, S, S—. The
table shows how many students belong to which group (per-
centage) and the median number of exercises per group.

group size % practise #
context St St S_ | Sy S+ S-
line number 39.6 279 324 |52 26 25
missing stack 29.8 51.8 182 (26 19 19

wrong heap value | 18.8 64.1 169 | 48 27 20
expected reference | 50.2 36.1 13.6 | 44 31 23
Fig. 5 33.3 444 222 |16 12 13
Fig. 7 20.0 40.0 40.0 | 23 16 19

time spent on inspecting many raw submissions manually, it
takes an instructor much less time to select useful patterns
and write an accompanying explanation.

6.2 Evaluating Demand and Progress

Whenever a new concept or instruction has been introduced
during the lecture, one group of students (S+) will have no
problems at all with the new instruction type and will enter
the traces flawlessly. The second group, which experiences
problems, splits up further: the group of reflective students
(St) will notice the knowledge gap, may read the course
material or offered help text again, and will at some point
close the gap — in the future this type of mistake will happen
only occassionally and incidentally. We expect a significant
reduction in the error rate for this group of students. The
remaining group (S-) does, for some reason, not improve.
We can distinguish these three groups on the level of individ-
ual misconceptions as follows: For a given error context, we
collect all submissions of a student and order them in time.
For any given point in time ¢t we may characterize the stu-
dents performance before and after t by counting how often
the student got the trace in this context right or not. If we
can find a point in time ¢ such that there is a significant im-
provement in the distribution of mistakes before and after ¢,
we say that this student belongs to group S;. We assign stu-
dents with a rather low error rate (say, consistently < 10%)
to group S+ (at such a low error rate it is very difficult to
improve significantly). The remainder belongs to group S_.

named variable and attribute.

Declaration_2
If N

rst |

nethdec]
typename_7

Confusing equally Figure 8: Line number is missing
at start of an exercise.

Table 1 shows the size of the groups (percentage) and the
median number of exercises per group. The rows aggregate
a few different context graphs related to line number errors,
missing values on the stack, wrong values on the heap, and
situations in which a reference was expected but a number
was entered. The numbers for the context patterns of Fig.
5 and 7 are also shown. The table shows that members of
St have traced more exercises than any other group (some-
times more than twice as many as group S—), so the success
is correlated with the gained practice. It is not surprising
that the median number of practised exercises per context
in group S+ is more similar to group S— than to S;: If they
do it right from the beginning, there is less need for further
practising.

The experiments show that we can measure (by means of
the statistical test) whether an individual student performs
significantly worse on a context patterm than the course on
average and whether he has improved over time. Similar to
feedback from a lab advisor, which is rare but to the point,
we may provide feedback to detect misconceptions only if
the students make mistakes in the error context significantly
more often than the course average (rather than annoying
a student with hints at the first incidental mistake). The
numbers from Tab. 1 also show that there is demand for
support, a relevant fraction of the course did not manage to
significantly improve on their own.

7. CONCLUSION

A considerable fraction of the participants did not manage
to overcome tracing difficulties on their own, which shows
the demand for constructive feedback that goes beyond a
right/wrong classification. The automatically discovered
context graphs can be assessed by an instructor with com-
paratively low effort, because they are quite easy to inter-
pret and meaningful. This paves the way for identifying
even new misconceptions in reasonable time. The context
graphs allow us to analyse the students’ state of knowledge
and consequently deliver purposeful feedback when needed.
It also enables us to recommend suitable exercises to check
an improved understanding afterwards. Just like a human
advisor, we may congratulate the student if the error rate
decreased significantly. This will bring us, in response to the
research question, quite close to a human advisor.
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APPENDIX
A. MINING ALGORITHM

We incrementally explore the space of all possible context
graphs by extending it step by step (add an edge and/or
node). To evaluate which extension improves the objective
function most, we need to match a new context C’ to the
graphs G € G, that is, we have to make sure that a bijective
mapping o exists. Finding the possible mappings o each
time from scratch would imply substantial computational
cost (especially as we have matched the first n — 1 of the n
nodes in the previous expansion already), so we keep track
of the mappings o that have been used for the current con-
text so far. The bookkeeping is illustrated in Fig. 9. On the
top left a context graph and on the top right excerpts from
a code graph are shown. The node sets V' consist of natural
numbers, which are shown in subscript next to the assigned
labels. Initially we start with a context graph Cy that con-
sists of a focus node alone (V = {1}, A\(1) = focus). At
that time, the mapping o¢, needs to map only node #1 to
node #3. Below the two graphs, the row o¢, shows the
mapping (1 — 3 or o(1) = 3). Suppose Cy is extended
by a codeline node to context Ci. Now o¢, needs to map
two nodes, but rather than starting from scratch, we assume
that the previous n—1 nodes have been assigned already and
only the new node #2 has to be assigned. There is only one
possibility in the code graph of Fig. 9, we map 2 — 5. In
the figure o¢, corresponds to a list of length 1, with a single
entry (2 — 5). This entry, however, also points (vertically)
to the previous assignment 1 — 3: Following the pointers in
vertical direction reconstructs the full mapping oc, (1 — 3,
2 — 5). So the o-mapping of a new context is based on an
existing successor node mapping and we only supplement
the assignment of the latest node to complete it.

codelines

assignment] o

codelineg
varnamey
assignmentg

Co = ({1},..) 0Cy

assignmentg

3

1

C = ({1,2},..) loge
C2=({1,2,3},.) 002*%3;9}—&3%12}%
Cs = ({1,2,3,4},..) 003*{4;8 ]4;8}—1
Cs=({1,2,3,4},..) 0oy 48

Figure 9: Efficient data structure to keep track of node as-
signments during the search. As a context pattern evolves
(node by node) we re-use all mappings o of successor graphs.

The main algorithm is shown in Alg. 1, which takes the set
G of code graphs and a start context Cy (usually consisting
of the focus node alone). In line 1 we initialize the search
front S, which is a priority queue of limited size (we used
1000) ordered by (2). By Xy we denote the set of all valid
initial mappings %o = {{o5'} |G € G}, where ¢§ maps the
unique focus node in the context to the unique focus node
in the code graph G.

In line 2 we initialize a set X of explored nodes: it may hap-
pen at some point of the search that we re-consider a context
graph we have visited earlier, simply because the nodes and
edges of the same context graph could have been inserted
in a different order. To avoid wasting time on examining
graphs that were already explored, we store a hash code of
all explored context graphs in X (set of explored graphs). In
our implementation, we use a hash of the Weisfeiler-Lehman
kernel [15] for this purpose. The remainder of Alg. 1 repre-
sents the search loop: we pick the best-so-far context graph
C, expand it, check for an improvement and return the best
found context C* in the end.

Algorithm 1 ContextMining(G,Co)
1: S ={(Co,%0)}
2: X =0; (C*,¥*) = (L, 1) b visited nodes, best context
3: while S # () do > queue not empty
4: (C,%) = top(S) > pick best context from queue
5: S = expand(C, %, S, X) > expand context
6: if C*=1vV f(C)> f(C*) then > improvement?
7.
8
9
0
1

> search front as priority queue

Cr=C;2"=X% > update best-so-far
end if
: X =XU{r(C)}
: end while
: return (C*,X%)

> save hash of explored graph

> return best context graph

Algorithm 2 expand(C,%,S,X)

1: Q = explore(C,Y); E=10

2: for e € Q do > for all possible extensions
3: apply extension e to context C' and obtain C’

4: if h(C") € X Asize(C') < limit then

5: ¥" = prolong-and-filter(C’,%)

6: if C’ is substantial improvement of C' then

7 C’.momentum = 2 > restore to max
8: else

9: ¢’ .momentum = C.momentum — 1
10: end if

11: if f(C") > worst(S) A C'.momentum > 0 then
12: S=Su{, %)}

13: end if

14: end if
15: end for

16: return S

The node expansion is shown in Alg. 2. It calls a func-
tion explore(.) in line 1, which provides a priority queue
(size:60) of the best possible extensions of the current con-
text C' (which includes all mentioned types of edges). This
allows us to concentrate on the best extensions before we
actually expand the context in the search front S. We ex-
clude a new context if it has been explored earlier (line 4)
or it becomes too large (max. 12 nodes per context). If the
extended context passed all checks, we prolong or adapt the
o-mappings (line 5) to reflect newly inserted nodes. We as-
sign a momentum to each context, which is initialized to a
small number (here: 2) and reduced by 1 for each extension
that did not lead to a substantial improvement in the object
function (2). If the momentum has reached 0, the context
graph will not be considered further in the search front. We
use a statistical test (G-test) on the 2x2 contingency table
of positive and negative cases before and after the extension
to decide whether the extension was substantial.



