
Characterizing joint attention dynamics during collabora-
tive problem-solving in an immersive astronomy 

simulation

Yiqiu Zhou 
University of Illinois Urbana–Champaign  

yiqiuz3@illinois.edu 

Jina Kang 
University of Illinois Urbana–Champaign  

jinakang@illinois.edu 
  

ABSTRACT 
The complex and dynamic nature of collaboration makes it chal-
lenging to find indicators of productive learning and quality 
collaboration. This exploratory study developed a collaboration 
metric to capture temporal patterns of joint attention (JA) based on 
log files generated as students interacted with an immersive astron-
omy simulation using augmented reality headsets and tablets. JA is 
defined as the ability to coordinate attention, which thus plays an 
important role in collaborative problem-solving to build the com-
mon ground for knowledge co-construction. We first developed a 
JA metric consisting of six distinct but closely relevant states as a 
measure of the collaboration process. We then conducted descrip-
tive statistics to compare frequency and temporal pattern of JA 
states across three learning performance groups. Our results 
showed that high-learning-gain groups demonstrated visual coordi-
nation behaviors more frequently and utilized this collaboration 
strategy in the early stage. We then investigated sequences of these 
JA states, focusing on one key behavior: long and consistent shared 
view as a proxy for collaboration. This sequential analysis revealed 
two different collaboration profiles: attention follow-leader and 
turn takers, suggesting the existence of asymmetrical participation. 
Our findings indicate the potential of JA metric to predict overall 
collaboration quality, identify undesirable collaboration behaviors, 
and serve as an early warning to provide just-in-time guidance. 
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1. INTRODUCTION 
Collaborative problem-solving (CPS) is considered a core compe-
tency of the 21st century [14]. CPS refers to the capacity of an 
individual to solve a problem by sharing their knowledge, skills, 
and efforts with two or more people [26]. CPS provides opportuni-
ties for learners to develop the cognitive and social skills required 
for effective collaboration. Computer-supported collaborative 
learning (CSCL) environments are thus designed to facilitate this 
joint activity by allowing individuals to monitor collaborative pro-
gress, accommodate different perspectives, and develop a solution 
(e.g., [24]).  

As more advanced technologies such as augmented reality (AR) 
emerged, there have been challenges to understand how students 
use these technologies and further how technological features need 
to be designed to support the students’ CPS process [17]. Such 
learning platforms provide immersive learning experiences in a 
classroom setting; yet it is challenging to understand their collabo-
ration process due to the complexity (e.g., [38]). Exploring novel 
ways to understand collaborative learning in immersive learning 
environments becomes critical. In this regard, this exploratory 
study investigates joint attention (JA) as a proxy for collaborative 
behaviors in a multi-device collaborative learning platform. 

JA has been studied to understand how students coordinate atten-
tion to build shared understanding in collaborative tasks. Existing 
studies have focused mainly on joint visual attention (JVA) using 
eye-tracking data and showed correlations between JVA and col-
laboration quality [33, 34]. However, most studies considered 
moments of joint visual attention (JVA) as a binary variable, which 
may be insufficient to capture the complex process of collaboration. 
We therefore developed a JA metric consisting of six distinct but 
closely relevant states as a measure of the collaboration process. 
More specifically, we investigated JA states as preliminary evi-
dence to understand how students coordinate attention across 
different types of devices (AR headsets, tablets) and identify col-
laboration patterns that may contribute to learning gains in CPS.  

2. RELEVANT WORK 
2.1 CPS in immersive learning environments 
CPS refers to the process when students attempt to form a shared 
understanding and co-construct knowledge by working on a com-
mon problem or project known as the joint problem space [32]. 
Advanced educational technologies like AR emerged as a medium 
for immersive collaborative simulations [11]. This technology 
brings new affordances and challenges for students to participate in 
CPS and for researchers to understand CPS behaviors.  

Studies have suggested that immersive learning environments en-
hance face-to-face interaction and collaboration [39], support 
collaborative inquiry learning [37], and facilitate collaborative 
knowledge construction [21]. Pervasive AR headsets and mobile-
AR systems enhance social interactions in the sense that students 
can collaborate through both digital devices and face-to-face inter-
actions [4]. Immersive technologies also create a sense of 
immersion [9] that contributes to an authentic learning experience 
[39]. From this perspective, immersive learning environment fos-
ters collaborative learning and problem-solving as it affords a dual 
interaction space: (1) the social interaction space through both face-
to-face communication and interactions enabled by the device, and 
(2) the cognitive problem space by proving a simulated or 3D ob-
ject that students can respond to and build knowledge on.   
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However, an immersive learning environment also brings chal-
lenges when it comes to understanding students’ learning and 
collaboration processes. Given the immersive nature of this envi-
ronment, it often requires expensive monitoring devices such as eye 
trackers, motion trackers, and video cameras to understand how 
students utilize these technologies [10]. How students navigate 
multiple representations in such an environment remains unex-
plored, and there is limited evidence suggesting how the navigation 
and exploration patterns generate learning opportunities [1]. An-
other challenge lies in the lack of peer awareness in immersive 
learning environments [7, 17], in which students are not aware of 
their peers’ actions when they explore and solve tasks. An analysis 
of how they coordinate their attention to build close connections 
between social and cognitive problem space is fundamental to the 
understanding of the CPS in immersive learning. 

2.2 Understanding CPS Using Log Data 
Log data offers a particular advantage to examine the complex na-
ture of human interactions in CSCL environment. While traditional 
quantitative methods rely on outcome variables and static variables 
from subjective measures, log data enables the analysis of collabo-
ration as a dynamic process. It can capture sequences of actions and 
events, and thus provide an opportunity to examine collaborative 
learning from a process perspective. A common and significant 
characteristic of sequential analysis is its emphasis on the interrela-
tions between actions over time instead of the presence or absence 
of the actions in isolation [20]. The application of sequential mining 
approaches has proven successful to identify interaction patterns 
differentiating low and high-achieving groups [22, 40], discover 
problem-solving modes in pair programming [31], identify naviga-
tion behavior patterns in the CPS process [19], and understand how 
regulation processes unfold over time in group work [12].  

The benefits of sequential analysis are further reflected by Han et 
al. [15]. The authors point out the necessity to examine time-related 
factors when implementing collaboration analytics, as characteris-
tics of collaboration such as coordination between group members 
may differ over time. Temporal aspects like sequence provide a 
unique perspective to understand CPS as a complex and dynamic 
process. However, most research efforts focused on exploring CPS 
supported by single platform (e.g., online learning platforms, ITS, 
multi-touch tablets, interactive whiteboard). There is much less re-
search on how to discover and analyze patterns of interactions when 
students collaborate across multiple devices [10]. 

2.3 Joint Attention and Collaboration  
One of the potential proxies for collaboration is JA, which is de-
fined as “the ability to coordinate attention toward a social partner 
and an object of mutual interest” [3, 25]. Solving problems together 
requires students to share ideas and build a mutual understanding 
of problem-solving rules, in which students help each other think 
through the problem [7, 15, 28]. If JA is not achieved between part-
ners, it is less likely for them to regulate their attention and build 
the necessary common ground for further discussion, and actively 
contribute to problem-solving. In this regard, JA is closely related 
to productive collaboration [27]. A prototypical example of JA in-
volves visual synchronization, which refers to JVA—the mutual 
coordination of eye gaze [6]. JVA was first introduced by Scaife 
and Bruner [6] to study the focus of attention in infants and has 
been studied to understand collaboration dynamics. Previous re-
search mainly used mobile eye-trackers to measure JVA and found 
correlation between JVA and dyad productivity [18], collaboration 
quality [33], and other outcome measures like learning gains and 
task performance [34]. Although these findings demonstrated the 

potential of JVA to serve as a proxy for quality collaboration, high-
level JVA moments may hide unbalanced participation known as 
the free-rider effect, suggesting the partner dominance in terms of 
gaze initiation [34]. Schneider and Pea [33] categorized this dyad 
as leader and follower, inspired by four collaboration profiles that 
students assume [35]: turn takers, driver-navigator, driver-passen-
ger, and independent. This asymmetrical collaborative pattern was 
found negatively correlated with learning gains, as students who 
less frequently initiate and respond to joint objects benefit less from 
JVA moments. This finding points out limitations of JVA as it may 
hide undesirable collaboration mode and thus insufficient to meas-
ure collaboration quality.  

Another limitation of existing literature is the perception of JVA as 
a binary and momentary event that students are either in or not in 
this state [18, 33, 34]. Relying on this binary classification, JVA 
may not accurately or sufficiently represent the process of collabo-
ration considering its complex and dynamic nature. Siposova and 
Carpenter [36] argued that the jointness of attention comes in de-
grees rather than as arbitrary, discrete, and uniform events. They 
developed a systematic framework containing four levels of social 
attention (monitoring, common, mutual, and shared). According to 
their framework, attention levels are nested hierarchically and exist 
on a scale of jointness. It is important to distinguish between these 
levels as they may support different interactions and communica-
tions. To achieve a more comprehensive understanding of 
collaboration, it is necessary to investigate JA as a process consist-
ing of interrelated states rather than a binary phenomenon. 

2.4 Research Aim 
To fill in these gaps, we conducted an exploratory study to investi-
gate JA in a CPS process based on fine-grained log data in a multi-
device immersive environment. We hope to go beyond the previous 
binary classification of JVA and provide insights into how students 
coordinate attention in the CPS process. Therefore, we designed a 
JA metric that consists of six different states, inspired by the spec-
trum of jointness framework [36]. We then explored the sequences 
of these states to characterize the process of attention coordination 
in CPS. Using a sequential analysis approach, we investigated the 
relationship between groups’ JA states and their learning gains. Our 
goal is to understand how CPS unfolds over time using a sequential 
analysis method. By extracting key collaboration patterns that po-
tentially lead to quality collaboration and better learning 
performances, we hope to characterize dynamics of JA in the con-
text of CPS. The research questions guiding our analysis are: (1) 
What are temporal patterns of joint attention that are indicators of 
collaborative problem-solving? and (2) How do these joint atten-
tion patterns vary across groups with different learning gains?  

3. METHODS 
3.1 CEASAR 
Connections of Earth and Sky with Augmented Reality (CEASAR) 
employed a digital planetarium simulation software designed to in-
vestigate collaborative learning in immersive augmented reality. 
CEASAR allows the exploration of the night sky through three 
scenes: Horizon (default), Earth, and Star. It simulates a first-per-
son view of the night sky from a specific location and time. The 
Earth scene allows users to observe the entire Earth from space. 
Users can drop a pin on any location of the Earth’s sphere to change 
their location or obtain its coordinate. The Star scene provides ac-
cess to the complete celestial sphere and cataloged western 
constellations. Users can shift between these three views, manipu-
late the location and simulation time, or change their direction of 
view to explore the sky. Since this platform was designed to support 



collaboration, annotations (e.g., mark a constellation) made in one 
device will be simultaneously visible to all users in the same group. 

3.2 Participants and Tasks 
This study involved 77 undergraduate students enrolled in an intro-
ductory astronomy course from a mid-western university in the 
United States. Students participated in three weekly one-hour ses-
sions. The first two sessions helped students familiarize themselves 
with the simulation platform using gesture-controlled AR headsets 
(Microsoft HoloLens 2) and touch-based tablets. In the third ses-
sion, 25 self-assigned groups of three to four solved a CPS task 
called “Lost at Sea”. Each group was provided with one AR device 
and two tablets. Students were expected to leverage these digital 
devices determine the location of a space capsule that has crashed 
somewhere on Earth. To complete the task, groups need to identify 
the hemisphere of their location, find the correct cardinal directions 
by identifying key stars or constellations as reference points, and 
estimate their latitude and longitude. Aside from the group task, 
students were required to complete individual pre- and post-paper-
based assessments to measure their conceptual knowledge relevant 
to the task’s topic. Each assessment took about five minutes. 

3.3 Data Source 
This study explores the students’ collaboration patterns using data 
collected from video recordings of group work, screen recordings 
from the devices (Figure 1), and interactions with the simulation in 
the form of logs obtained from both AR and tablets. The interaction 
logs were recorded as rows of events, where event = {Username, 
Groupname, Device, Activity, Event, UTC time, Heading vectors, 
Simulation time, Crashsite, Location, Scene, Selected object, Se-
lected star}. A new event was generated each time students moved 
their devices to change the direction of view, selected a star or con-
stellation, chose a different scene, or manipulated the simulation 
time within the platform. In this study, we only focused on log fea-
tures relevant to the identification of JA. The pre-/post-assessments 
contain one open-ended question to measure the students’ under-
standing of latitude and longitude calculation, which was scored by 
researchers from 0 to 2 based on the completeness and accuracy of 
students’ responses.  

 
Figure 1. Screen overlap in Horizon scene across three devices–
MS HoloLens2 (top right) and tablets (bottom right and left). 

3.4 Data Processing 
The following describes a multiple-step process of extracting JA 
states from raw log data.  

Step1: Individual Inactivity Extraction This step filtered active ep-
isodes and prepared for further analysis at a second granularity. We 

defined 20 seconds as the threshold to distinguish active and inac-
tive episodes. This time frame was chosen based on classroom 
recordings and previous study [22] showing that elapsed time be-
yond this threshold should be differentiated, beyond which the set 
of actions were perceived less relevant and supposed to belong to a 
different action episode. If students did not trigger any event within 
this 20-second time gap, subsequent seconds (i.e., from the 21st 
second) were labeled as inactivity until the next event. It is worth 
noting that during inactivity students may participate in off-task be-
haviors like idling or engage in task-relevant activities without 
using the devices, like paper sheet filling.  

Step 2: Device Pair We then labeled the scene for each second, 
yielding a time series containing four types of scene values (Hori-
zon, Earth, Star, and inactivity). Next, we combined the individual 
scene values to code the JA state of each device pair as inactivity, 
no overlapping, or scene overlapping. Inactivity means that neither 
device triggered any event within the 20-seconds time gap. No 
overlapping contains two possible situations: (1) two students ex-
plore the simulation in two different scenes (2) one student explores 
the simulation while the other is inactive. Both situations suggest a 
lack of JA as students engage in different activities or scenes. Scene 
overlapping represents that both students are in the same scene and 
observe the simulation from the same perspective. This initial cod-
ing created a state sequence for each dyad within a group, resulting 
in a total of three device pairs for each group (i.e., tablet1-tablet2, 
tablet1-HL2, and tablet2-HL2). We observed a tendency for groups 
to only use two devices most of the time. Considering all the dyad 
sequences may lead to misleading results as one device may not be 
used consistently and may look like a student was not engaging in 
the task and JA. Thus, we picked one dyad sequence that represents 
the whole group based on the level of participation (i.e., a dyad with 
the least number of inactivity and no overlapping states).      

Step 3: Pair Scene Overlapping Coding This step extracted higher-
level JA behavior (i.e., scene overlapping) in the horizon scene us-
ing the shared view (SV) metric (see details in [10]). SV metric 
tracks whether two devices’ screens overlapped, indicating students 
were looking at the same area of sky or celestial objects. This con-
tinuous value ranges from 0 to 1, representing the screen overlap 
ratio, where 1 indicates a perfect shared screen, and 0 means no 
overlap. By watching screen capture recordings (see Figure 1), we 
found that a SV value larger than 0.35 allows students to look at the 
same area and was thus used as the threshold to filter shared view 
state in Horizon scene. We also incorporated more contextual in-
formation to this state by characterizing it as ‘short’ and ‘long’ 
based on state duration. We chose 15 seconds as the delimiter based 
on our observations in terms of whether students were having a 
quick or in-depth longer discussion with their partners. 

Step 4: Consistent State Extraction We then extracted consistent JA 
episodes longer than 5 seconds. Previous research pointed out that 
students need around 2 seconds to focus their attention on the object 
mentioned by their peers [30]. Considering our simulation platform 
requires students to manually move their screens and find the ref-
erence points or shift the scene, we set the threshold as 5 seconds. 
A state lasting 5 seconds or less was not sufficient to be counted as 
a consistent state as it may be generated by accident.  

Finally, six mutually exclusive states (shown in Table 1) were iden-
tified. These states were ordered according to levels of participation 
and attention coordination; that is, three hierarchical levels. Each 
level may require varying amounts of effort to achieve attention 
coordination and visual synchronization. At the top level, we uti-
lized a previously developed SV metric [10] to capture consistent 
screen overlapping behavior in Horizon. In the subsequent level, 



we focused on scene overlapping behavior in the Earth or Star 
scenes. The lowest level included no overlapping and inactivity 
state, which could be perceived as lack of JA. JA states in Horizon 
was differentiated from the other two scenes and perceived as the 
higher level for the following reason. The current calculation 
method of SV metric only applies to Horizon scene, which captures 
the moments when students looked at the same region of the simu-
lated sky. This is typically achieved with the help of a reference star 
or constellation (see the marked constellation in Figure 1). Students 
need to move their screens or AR headsets to find the reference 
object first before achieving the visual synchronization in Horizon. 
For the other two scenes (Star and Earth), however, students only 
need to click the button to select the same scene. Therefore, the 
extra efforts required in Horizon may indicate more verbal commu-
nication to coordinate the screens to achieve synchronization. 
Considering the fact that JA states differ in the level of attention 
and coordination, overlapping in Horizon scene is more likely to 
represent a high-level, intentional coordination behavior to build a 
shared problem space.  

Table 1. JA states description 

JA State Scenes Description 
Inactivity  
(INACT) 

N/A Both students do not 
trigger any event 
within the 20 seconds  

No scene overlapping  
(NO) 

All Students explore in 
different scenes OR 
one is inactive  

Scene overlapping in 
Earth or Star 
(SO_Earth/Star) 

Earth and 
Star  

Both students stay in 
Earth or Star scene 

Scene 
over-
lapping 
in 
Hori-
zon 

No shared view 
in Horizon 
(SO_HZ_NO) 

Horizon Both students stay in 
the Horizon scene but 
no screen overlap 

Short-shared 
view 
(SO_HZ_SRT) 

Horizon a quick screen overlap 
(<15 seconds) 

Long-shared 
view 
(SO_HZ_LNG) 

Horizon a long and consistent 
screen overlap behav-
ior (>15 seconds) 

 
3.5 Group Exclusion and Classification 
We used pre- and post-assessment scores as an outcome measure 
of learning performance. Students wrote a short response explain-
ing the multiple steps to complete the location calculation given the 
visible stars and constellations, which was graded as 0, 1, or 2 based 
on a rubric developed during a pilot study. We computed individual 
normalized gains (i.e., post - pre / post-max - pre) to obtain each 
group’s average normalized learning gains. Among 25 groups, the 
mean of normalized learning gains was 0.283 (SD = 0.290), and the 
median was 0.313. Six groups earned no or negative learning gains. 
For the rest, we conducted a median split and ended up with three 
performance groups: no-learning-gain (n = 6), low-learning-gain (n 
= 9), and high-learning-gain (n = 10). One group in no-learning-
gain began with a full score in the pre-assessment and was removed 
given the ceiling effect. Four groups were removed as the students 
frequently shared only one device, making the logs unable to cap-
ture their collaborative behaviors. As such, a total of 20 groups 
were included for the further analyses: no-learning-gain (n = 4), 
low-learning-gain (n = 9), and high-learning gain (n = 7). 

3.6 Analysis 
Our analysis consists of two parts. First, we conducted descriptive 
analysis to compare aggregated values of JA states across the three 
learning performance groups. Examining the distribution of screen 
overlapping states across groups with different learning gains 
yields a preliminary understanding of the association between 
screen overlapping behaviors (i.e., JA states) and learning perfor-
mance. Then we applied sequential analysis to search for patterns 
that characterize JA from a process perspective. Specifically, we 
looked at the transition probabilities between the six JA states to 
uncover more interesting patterns of collaboration dynamics. Two 
transition metrics were utilized to explore the state sequences: the 
Markov-chain model (MCM) and the L* metric.  

MCM is a transition metric that calculates the conditional probabil-
ity of one state following another based on the assumption that the 
occurrence probability of one state depends on the previous state. 
We used the TraMineR and seqHMM packages in R to build Mar-
kov models for our sequence data [13, 16]. Two important 
parameters in MCM are (1) the transition probabilities between the 
states and (2) the initial probabilities for each state. Transitions with 
higher probability within the sequence can be interpreted as com-
mon collaboration patterns to characterize the groups' JA dynamics. 
However, one limitation of MCM is the failure to take base rates 
into account (i.e., the initial probability of each state in the se-
quence). This may impact how we interpret transition probabilities 
and understand the relationship between states in the sequence. 

We therefore applied L* metric as a complementary method. L* 
was chosen as the best metric for sequences without consecutive 
repetitive states according to the discussion in [5]. L* compares the 
actual occurrence probability with a calculated base rate, which is 
the transition probability assuming the states in the sequence are 
randomly ordered [23]. The use of base rates in the calculations of 
the L* metric makes it well suited for between-group comparison, 
while MCM is better suited for within-group comparison (i.e., com-
parison between two transitions of the same group). L* illustrates 
the degree to which transition between two states is more likely 
than in a randomly ordered sequence of states, given the base rates 
of each. The range of L* is (−∞, 1] where the negative value repre-
sents the specific transition is less likely to occur compared to the 
chance level, and 0 means this transition occurs as often as expected 
in a randomly ordered sequence.  

4. RESULTS 
4.1 Descriptive Analysis 
Table 2 presents the distribution of each state across three learning 
levels. It suggests no-learning gain group stayed either inactivity or 
no overlapping states most of the time. Comparably, high-learning-
gain groups had more scene overlapping states. This difference sug-
gests that high-learning-gain groups are more likely to demonstrate 
JA behaviors such as screen coordination to maintain mutual atten-
tion and construct a shared problem space for in-depth discussion. 
We also examined the temporal aspect of data. One interesting find-
ing was the early adoption of collaboration strategies of high-
learning-gain group. We compared the long-shared view state dur-
ing the first 30 states, which roughly corresponds to the first twenty 
minutes. While five out of seven groups in the high-learning-gain 
groups demonstrate long-shared view in the early stage, only one 
in the no-learning-gain groups and three in the low-learning-gain 
group demonstrate long-shared view. These results suggest that 
high-learning-gain groups not only demonstrate more high-level JA 
behavior such as screen coordination but also tend to demonstrate 
this behavior in the early stage of collaborative problem-solving. 



Table 2. JA state descriptions in each learning gain group 

State No Gain 
(n=4) 

Low Gain 
(n=9) 

High Gain 
(n=7) 

INACT a19.00 
b(29.8%) 

14.78 
(25. 2%) 

14.57 
(23.9%) 

NO 30.50 
(47.7%) 

28.00 
(47. 2%) 

27.71 
(45. 2%) 

SO_HZ_NO 9. 25 
(14.5%) 

9.67 
(16.8%) 

12.14 
(19.7%) 

SO_Earth/Star 2.75 (4. 2%) 3.11 (4.7%) 2.14 (3.3%) 
 SO_HZ_SRT 1.00 (1.6%) 2.11 (3.5%) 2.00 (3.1%) 
SO_HZ_LNG  1.50 (2.3%) 1.44 (2.6%) 3.00 (4.9%) 

Note. aAverage number of states; bAverage proportion of each state 
within each group sequence.  

4.2 Sequential Analysis 
We further looked at transition probabilities between states to iden-
tify collaboration patterns able to differentiate learning groups (see 
Figure 2). We particularly focused on the transitions relevant to the 
long-shared view state (SO_HZ_LNG), which is a key collabora-
tive behavior. An interesting difference was found in the transition 
probabilities between the long-shared view and the other two states: 
no overlapping (NO) and scene overlapping in Horizon 
(SO_HZ_NO). These two transition sequences represent two dif-
ferent JA patterns, indicating to what extent groups engage in 
collaborative participation (e.g., symmetrical to asymmetrical par-
ticipation).  

SO_HZ_LNGàNO indicates that only one student remained ac-
tive and interacted with the platform after the end of a higher-level 
JA state (i.e., long-shared view). Meanwhile, another student no 
longer triggered any event. By looking at the session video record-
ings, we found this transition typically occurred when one student 
initiated the screen coordination and dominated the problem-solv-
ing processes, while another student was less engaged. 
SO_HZ_LNGàSO_HZ_NO suggests a more positive collabora-
tive behavior where pairs remained in the same scene and actively 
interacted with the simulation platform after leaving the screen 
overlapping state. Although these pairs no longer looked at the 
same area of simulated sky, they both continued individual explo-
ration in a shared problem space (i.e., the same scene). We observed 
that this transition typically occurred when students ended discus-
sion around the reference stars and went back to individual 
exploration in the same scene.  

   
Figure 2. Markov-chain model of JA states 
As shown in Figure 2, MCM presented transition probabilities 
within the same learning gain group. Results revealed that low-
learning-gain groups showed a much higher probability for transi-
tion SO_HZ_LNGàNO (0.83) among all other potential 
transitions. Although this transition probability became smaller for 
low-learning-gain groups (0.5), it still remained larger compared to 
SO_HZ_LNGàSO_HZ_NO (0.33). Comparably, high-learning-
gain groups showed an opposite trend. They had a higher 

probability for SO_HZ_LNGàSO_HZ_NO (0.52) compared to 
SO_HZ_LNGàNO (0.43).  This means the long-shared view state 
is more likely to be followed by no shared view in Horizon for high-
learning-gain groups. Recall that SO_HZ_LNGàSO_HZ_NO 
suggests both students continued individual exploration after the 
long-shared view state, creating opportunities for information ex-
change and screen coordination later in the session.   

Additionally, we applied the L* metric [23] to account for differ-
ences in base rates, thus allowing for between-group comparisons. 
When interpreting L* values, a larger absolute value indicates a 
stronger dependence between two consecutive states, while the 
value’s sign (positive or negative) indicates the direction of de-
pendence. As shown in Table 3, for SO_HZ_LNGàSO_HZ_NO, 
the high-learning-gain groups showed the highest L*, while the no-
learning-gain groups showed the lowest L*. This positive value 
means given the previous state is SO_HZ_LNG, students in this 
group are more likely than chance to enter the SO_HZ_NO state. 
Interestingly, SO_HZ_LNGàNO showed the opposite trend, and 
the only negative value was detected in high-learning-gain groups. 
This means that, given SO_HZ_LNG as the previous state, the cur-
rent state is less likely than chance to be NO. 

In summary, L* metric can detect transitions occurring more or less 
frequently than random chance, providing insights about when stu-
dents intentionally engage those transitions. The overall results 
suggest that when high-learning-gain groups exit the long-shared 
view state, they are more likely than chance to follow this state by 
entering the scene overlapping in Horizon. Similarly, when this 
group exit the long-shared view state, they are less likely than 
chance to follow this state with no shared attention at all. In con-
trast, this transition is around chance level (0.06) for low-gain 
groups or more likely than chance (0.85) for no-gain groups. 

Table 3. L* Transition probabilities between long-shared view 
and the other states  

Transition Group L* 
SO_HZ_LNG à NO  No Gain 0.85 

Low Gain 0.06 
High Gain -0.15 

SO_HZ_LNG à SO_HZ_NO No Gain -0.11 
Low Gain 0. 23 
High Gain 0.35 

5. DISCUSSION 
Our exploratory analysis identified six JA states to investigate the 
dynamics of JA, which provide insights into how groups coordinate 
their attention and solve the simulation task during a CPS process. 
The results revealed that groups with higher learning gains demon-
strated a higher frequency of long and consistent shared view in the 
early stage. These preliminary findings support the previous studies 
that showed joint visual attention is associated with quality collab-
oration and contributes to learning gains (e.g., [18, 33]).  

The examination of the sequence of states allowed us to identify 
different collaboration profiles. We observed an undesirable behav-
ioral pattern that after a group exited a long-shared view state only 
one student remained active and interacted with the simulation, 
while another student no longer triggered any event. We perceived 
such different tendencies as a visual attention leader (the former) 
and a visual attention follower (the latter) [34, 35]. These two pro-
files (i.e., leader and follower), captured by the JA state sequence, 
illustrate the imbalanced responsibility to initiate discussion and 
level of engagement within the simulation. On the contrary, another 
sequence transited to individual exploration, which was more likely 



to occur in the high-learning-gain groups, suggested more balanced 
engagement and equal responsibility of exploring the simulation 
environment. This transition aligns with the profile of turn takers 
[35], which is a more effective collaboration behavior as both par-
ticipants actively engage in and maintain a joint focus on the task 
to solve the problem. Overall, high-learning-gain groups were most 
likely to demonstrate balanced, mutual collaboration while no-
learning-gain groups demonstrate imbalanced participation. This 
detection of asymmetrical participation suggests interesting lines of 
follow-up inquiry on transitions of other JA states to gain a better 
understanding of various collaboration profiles in CPS.  

The novelty and contributions of this paper lie in the following two 
aspects. First, we presented an exploratory study of utilizing logs 
to capture JA to uncover how students collaboratively solve a group 
task in an immersive learning environment. Understanding how 
students interact with immersive learning environments can be 
challenging due to its open-endedness, leading to unstructured in-
teractions. This unconstrained nature of interactions makes it 
difficult to understand how students navigate the environment and 
collaborate, leading to limited evidence suggesting what collabora-
tion patterns are associated with learning opportunities [1]. Our 
study contributed by developing JA metric to investigate how stu-
dents coordinate their attention across devices. This method allows 
us to look for dynamic and fine-grained patterns of JA that charac-
terize successful CPS and productive collaboration.  

Second, we investigated JA from a process perspective, which was 
typically studied as aggregative values of a binary event (i.e., 
whether students have or not have JA) [18, 33, 34]. Our approach 
revealed that temporal characteristic also matters as high-learning-
gain groups demonstrate visual coordination in the early stage of 
task session. This finding suggests that early visual coordination 
behavior patterns have the potential to inform the following collab-
oration quality. Lack of such behaviors in the beginning stage can 
serve as a signal for early interventions to prevent persistent unde-
sirable or unproductive collaboration. Studies are needed for 
further explorations of the relationship between early collaboration 
patterns and following collaboration quality. Sequential analysis al-
lows us to detect asymmetrical participation. This finding supports 
previous studies [34] that although high-level JVA is correlated 
with quality collaboration, it may also hide a free-rider effect and 
thus requires a finer-grained examination on this feature. 

6. DESIGN IMPLICATIONS  
One implication is to design learning environments in a way that 
facilitates the process of obtaining JA, considering the potential of 
JA to enhance productive collaboration. For example, we can sup-
port peer awareness by adding visual pointers like an arrow to 
pinpoint the direction their peers are looking at, or a coordination 
shortcut allowing students to synchronize the screens or scenes in 
the simulation quickly. Such design can facilitate coordination and 
visual synchronization and consequently yield quality collabora-
tion. This is especially the case when students do not have sufficient 
domain knowledge to communicate the correct direction to move 
their screens for a shared problem space for further discussion. 
Given the nature of the learning environment with immersive tech-
nologies, gaze visualizations are more likely to be utilized in 
linguistically complex environments where it is difficult to describe 
reference objects or directions to look at [8]. Moreover, visual at-
tention awareness provides evidence that other group members are 
engaged and indeed getting the information communicated [29]. 
Such awareness contributes to an improved feeling of presence [2] 
and encourages learners to maintain JA.   

7. LIMITATIONS AND FUTURE RE-
SEARCH 

This work has several limitations that we plan to address in future 
studies. First, we have a small sample size containing 20 groups. 
Although our analysis shows interesting patterns across groups, the 
comparison test does not have enough statistical power to identify 
significant difference. Second, the L* metric has a typical bias that 
inflates transition probability as our state sequence does not contain 
self-transition loops, which impacts the estimation of the base rate. 
To the best of our knowledge, transition metric for original se-
quences without self-transition loops is still an open issue. Current 
methods require the original sequences to contain self-transition 
loops to calculate base rates before loop removal. We also com-
puted different transition metrics and found that MCM and L* are 
the most meaningful metrics for our dataset. Our work is explora-
tory in nature and still in its early stage. Future research will include 
more participants and combine multiple data sources like video re-
cordings and qualitative codes to better understand how 
collaboration unfolds. 

8. CONCLUSION 
This exploratory study focused on JA, a cornerstone of productive 
collaboration, to better understand how students regulate and coor-
dinate their attention during CPS in an immersive learning 
environment. We identified different JA states and key collabora-
tion patterns associated with learning. Specifically, we were 
interested in long and consistent screen overlapping across devices 
(i.e., long-shared view state). To advance the understanding of 
CPS, we applied the following approaches: (1) descriptive analysis 
(2) sequential analysis on JA state transition utilizing the Markov 
chain model and L* metric. This preliminary exploration provides 
evidence that long-shared view state, representing the highest level 
of JA state, is closely related to students’ positive collaborative 
learning experiences. More specifically, high-learning-gain groups 
demonstrate a higher frequency of long and consistent shared view 
in the early stage. A closer examination of the JA state sequence 
revealed two different collaboration profiles: attention follow-
leader and turn takers. Overall, our findings unravel the complex 
process of attention dynamics and yield a better understanding of 
attention coordination during CPS in an immersive learning envi-
ronment. This understanding consequently informs the design of 
computer-supported collaborative learning tools and environments 
to enhance learning. 
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