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ABSTRACT 
Research into "gaming the system" behavior in intelligent tutoring 

systems (ITS) has been around for almost two decades, and detec-

tion has been developed for many ITSs.  Machine learning models 

can detect this behavior in both real-time and in historical data. 

However, intelligent tutoring system designs often change over 

time, in terms of the design of the student interface, assessment 

models, and data collection log schemas. Can gaming detectors still 

be trusted, a decade or more after they are developed? In this re-

search, we evaluate the robustness/degradation of gaming detectors 

when trained on older data logs and evaluated on current data logs. 

We demonstrate that some machine learning models developed us-

ing past data are still able to predict gaming behavior from student 

data collected 16 years later, but that there is considerable variance 

in how well different algorithms perform over time. We demon-

strate that a classic decision tree algorithm maintained its 

performance while more contemporary algorithms struggled to 

transfer to new data, even though they exhibited better performance 

on unseen students in both New and Old data sets by themselves. 

Examining the feature importance values provides some explana-

tion for the differences in performance between models, and offers 

some insight into how we might safeguard against detector rot over 

time. 
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1. INTRODUCTION 
Adaptive systems like intelligent tutoring systems (ITSs) depend 

on inferential models to understand and respond to individual stu-

dents. Some of these systems and models have now been applied to 

modeling knowledge and behavior for decades [7]. For instance, 

Bayesian Knowledge Tracing (BKT) models have been used in 

ITSs for almost 30 years [11]. Even the use of more complex ma-

chine-learned models now has an extensive history; for example, 

gaming the system models which predict when students are at-

tempting to find ways other than learning to advance through the 

system [2, 5, 26], have been in use for 18 years.  

Gaming the system models are used for several purposes, including 

evaluating the quality of content [13, 24], research on the longitu-

dinal impacts of disengagement [1, 34], and automated intervention 

[3]. Even as ITSs have become more adaptive and user interfaces 

have become more engaging, students have continued to find ways 

to disengage from these systems [38]. 

While BKT models are easily and frequently refit in industrial prac-

tice, models of constructs like gaming the system require 

supplementary data collection beyond the standard logged data 

stream, in order to create new training labels. As a result, they are 

expensive to fit and are not refit often. Is this a dangerous practice?  

An analogy can be made to code rot, a phenomenon in computer 

software where over time systems degrade in performance due to 

their reliance on aging library dependencies, hardware updates, and 

breakdown in the structural integrity of design patterns [18]. Mod-

els developed through machine learning and artificial intelligence 

(AI) may suffer a similar fate, “detector rot”, where a model stops 

functioning as expected over time. When a piece of code simply 

fails to work, it is obvious, but there may be less obvious failure 

modes for machine learned models. Machine Learning packages 

change in their functionality over time and become obsolete; just 

because a model is still runnable does not necessarily imply that it 

is functioning in the same way. This problem has been noted in 

machine learning research in general, where many past research re-

sults can no longer be reproduced [17]. 

Furthermore, even if a model is functioning the same way as it did 

a decade ago, that does not mean that it has not experienced a form 

of decay. There is more to decay in a model over time than just 

reproducibility. Take the Cognitive Tutor [31], the system which 

many of the first models detecting gaming were developed for [2, 

6]. The design and interface of Cognitive Tutors have gone through 

significant changes over the years (and the system has been re-

branded MATHia). The changes over time involve both cosmetic 

changes and changes in pedagogical strategies and content. We 

elaborate further on these changes in a dedicated section below. 

Students, teachers, and learning contexts also change over time. In 

1995, Janet Schofield reported many students in Pittsburgh skip-

ping lunch and staying after school to use ITSs [35], a behavior not 

commonly reported in U.S. classrooms today. ITSs are much more 

prevalent in classrooms than even 10 or 15 years ago, students and 

teachers are more familiar with instructional technology, and stu-

dents use technology at-home more often compared to an earlier 

focus primarily on classroom use [16]. Students today are also 

much more likely to be comfortable quickly locating information 

on the internet and may expect this same immediacy in their inter-

action with ITSs [36]. As such, detector rot may be as much a 

problem of generalizability as reproducibility -- the model might 

have been completely valid in 2008, and may even still function 

exactly the same way, but may not be valid anymore in 2021. As 

such, we can and should ask: will models trained on older data (in 

this case, 2005) maintain accuracy when tested on current data 

(2021)? Beyond this, has student gaming behavior changed over 

the last 15 years as indicated by different features becoming 

more/less important when detecting gaming behavior?  

This question seems on its surface to be a question about algorithm 

effectiveness today, based on historical models. But it is also im-

portant to ask, do we have any reason to believe our models will 

work tomorrow? One challenge in answering this question is that 

the algorithms we use today are different than those used fifteen 

years ago. Significant advances have occurred in machine learning 

algorithms over the last 16 years [20]. We can have somewhat more 

confidence in the potential of today’s algorithms to work tomorrow, 
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by conducting an anachronistic form of analysis -- applying current 

algorithms to older data and seeing how well they work on contem-

porary data. One class of algorithm that has seen recent success is 

gradient boosted descent trees. The eXtreme gradient boosting 

package (xgboost) [10] has met and surpassed state of the art results 

across a variety of machine learning applications including the de-

tection of gaming the system [30]. Contemporary machine learning 

algorithms generally achieve better predictive performance than 

older algorithms, as the proceedings of this conference over the last 

few years shows. Will contemporary machine learning models also 

be more robust over time than older algorithms?  

To answer these questions, this paper compares the functioning of 

gaming detectors over time, using data sets from 2005 and 2021. 

We will evaluate the effectiveness of a model trained on data from 

2005 and tested on data from 2021. We will also compare which 

features are most important within models trained on the Old data 

to which features are most important in models trained on the New 

data, to see whether the behaviors that are predictive remain con-

sistent over time. Additionally, we will then apply a variety of 

machine learning models including both classic algorithms and 

contemporary algorithms, to determine if each of these types of al-

gorithms is robust to changes over time. 

This paper will begin by discussing how the system being studied 

(MATHia/Cognitive Tutor) has changed over time, and how these 

changes may impact the manifestation of gaming behavior. In the 

methods section we describe the process of obtaining training la-

bels for newer data, the feature set implementation, and the 

modeling process. Next we present results, comparing models' per-

formance over time and dig deeper into the most important features 

of the most effective models. We discuss potential implications for 

practice in the use of detectors in real-world learning systems, and 

finally conclude with a synthesis of our findings and potential ave-

nues for future research. 

1.1 Mathia 
We studied the issue of detector rot using log data generated by 

Carnegie Learning’s MATHia (formerly known as Cognitive Tutor 

– [30]) ITS at two time periods separated by approximately 16 years 

(2005 and 2021). Throughout their histories, MATHia/Cognitive 

Tutor has been the software component of a typically blended core 

curricula for middle school and high school mathematics. In 

blended, core implementations, Carnegie Learning recommends a 

mix of collaborative classroom work guided by its paper worktexts 

(60% of instructional time) as well as individual student work (40% 

of instructional time) in the ITS. MATHia/Cognitive Tutor presents 

students with complex, multi-step math problems mapped to fine-

grained skills (often also referred to as knowledge compo-

nents/KCs; [23]. Within each problem, the ITS provides context-

sensitive help and feedback, sensitive, for example, to particular 

solution strategies a student might adopt (e.g., surfacing feedback 

that an incorrect answer reflects an inappropriate problem-solving 

strategy).Implementing mastery learning [33], the ITS tracks stu-

dents’ progress to mastery of KCs using an implementation 

of  Bayesian Knowledge Tracing (BKT; [11]) and presents prob-

lems to students until they demonstrate mastery of all KCs 

associated with each topical lesson or “workspace.” When a student 

has mastered all KCs in a workspace, they are moved on to the next 

workspace in an assigned sequence of workspaces, typically corre-

sponding to a course like Algebra I or Grade 6 Math. Within 

MATHia, the tutor judges a KC as mastered when the student 

reaches a 0.95 probability estimate for having mastered that KC.  

Timestamped log data track student actions (e.g., making a prob-

lem-solving attempt, requesting a hint) at each step of problems 

within each workspace, as well as feedback from the ITS (e.g., a 

correct response or that an error triggers just-in-time feedback be-

cause it reflects a common misconception, etc.). Data also track the 

input values provided by students, the KC to which a particular 

problem-step is mapped, and BKT’s ongoing estimation of a stu-

dent’s probability of having mastered the KC.  

1.2 Mathia Changes Between 2005 and 2021 
In general, the Cognitive Tutor Java application of 2005 was more 

compartmentalized (with multiple windows displaying problem-

solving elements) than the more contemporary web-based delivery 

of 2021. One prominent difference in the layout of the user inter-

face concerns the extent to which the “skillometer” for visualizing 

student progress to skill mastery has evolved from a display that 

was “expanded” by default (displaying skill names and progress to 

mastery) to a more visually compact representation (circles that 

“fill” as students make skill progress) that can be expanded by the 

student to see their progress in more detail. 

Changes have more recently been implemented in how BKT tracks 

student progress to skill mastery, especially related to how the stu-

dent’s use of hints impacts their knowledge estimates. First, hints 

are now delivered in MATHia with a delay between “hint levels.” 

After the student requests an initial hint, which typically re-states 

the goal for the current problem-solving step, there is a delay of a 

few seconds before the student can request another hint, which pro-

vides detail on how to accomplish the goal. This initial delay and 

short delays for each additional hint are designed to encourage re-

flection on the help requested and discourage students from rapidly 

seeking the “bottom out” hint, which provides the answer [2].In the 

Cognitive Tutor circa 2005 (and for many subsequent years), a stu-

dent’s request for a hint on a first attempt at a problem-solving step 

was treated as an incorrect response, resulting in a decrease in the 

ITS’s estimate of skill mastery. The 2021 version of MATHia only 

treats the “bottom out” hint that presents the student with the an-

swer as an incorrect attempt. Correct attempts after an initial hint 

are now credited (i.e., skill mastery estimates increase) like imme-

diate correct attempts, and correct attempts after mid-level hints 

now leave the skill mastery estimate unchanged. In addition, MA-

THia’s BKT parameter estimates for each skill (used to determine 

the models’ responsiveness to correct and incorrect answers) are 

now frequently set based on data-driven estimation techniques [32, 

39] as opposed to mostly being set according to expert judgment in 

earlier Cognitive Tutor versions.  

2. METHODS 

2.1 Labeling Gaming Behavior 
We obtained the data set used to develop the gaming detector in [6]. 

This original detector was a J48 (C4.5) decision tree classifier [29] 

built using training labels developed using text replays. Text re-

plays allow coders to directly label “clips” (segments of log data), 

presented as a sequence of actions and their context [4]. Text re-

plays have been used in a range of projects as a fast and accurate 

method to label a range of types of student behavior for classifier 

development within various types of learning systems [4, 6, 12, 

26].  

For the older data set [6], we obtained data from the PSLC 

DataShop [22], data set “Algebra I 2005-2006 (3 schools)”, includ-

ing both training labels derived using text replays and partially-

distilled log data. 18,737 training labels were included in that data 

set.  



The New data set was obtained directly from the Mathia team (this 

data set is not currently on DataShop, due to government-agency-

level contractual restrictions on data sharing). We conducted an 

identical text replay approach to [6], obtaining the original text re-

play software from the first author of that earlier work. We used a 

textual sequence of student activity of a duration of 20 seconds or 

8 actions (whichever occurred last) from MATHia’s log data as a 

clip for labeling. Every clip contained the student ID, timestamp of 

each action (in relation to the first action in clip), the problem name 

and step, student’s input, relevant knowledge/skill production and 

system estimate, and the outcome as assessed by system (correct, a 

misconception (bug), wrong answer, a request for hint (initial or a 

deeper level). This set of clips was then coded for gaming the sys-

tem behavior.  

“Gaming the system” behavior was defined as the learner misusing 

the system’s help and feedback to get correct answers and advance 

in their trajectory within the ITS [6]. A clip was labeled as gaming 

the system when a learner asked for hints in quick and repeated 

successions until the system revealed the answer, or systematically 

input answers rapidly until they got the correct one. For example, a 

student entering a sequence like "1,2,3,4,5,6,7,8" in rapid succes-

sion would be labeled as engaging in gaming behavior. For further 

detail on the behaviors treated as gaming the system in the coding 

process, please see [27]. 

For the more recent data set, two coders (2nd & 3rd authors) ini-

tially labeled 60 text replays to establish inter-rater reliability, and 

attained a kappa of 0.62, comparable to the original data set [6], and 

over the 0.6 cut-off often treated as standard for coding ill-defined 

constructs such as disengaged behavior [25]. Subsequently, the first 

coder labeled a total of 600 clips from which 6 were removed as 

unclassifiable. Out of the 594 labels, 31 were coded as ‘gaming’, 

and the remaining 563 as ‘not gaming’. Thus, around 5% of the 

total clips were coded as gaming for this data sample, which is in 

alignment with previously observed proportions of gaming behav-

ior in ITS [6]. 

2.2 Feature Engineering 
The features developed for this research are based on the original 

research published in [6]. In order to maintain fidelity with the orig-

inal work we followed the process of creating the original features 

as closely as possible, but in order to make sure the features were 

comparable across data sets, we re-distilled the features for the orig-

inal data set. The features are described in table 1. 

All features were engineered on the full data-set of student log data, 

and then aggregated for the labeled clips. Each clip consists of a 

series of actions so the features were aggregated together to create 

a single row of data labeled as either gaming behavior or not. The 

aggregate columns created for each feature were: Count of non-null 

values, Mean, Standard Deviation, Minimum, 25th percentile, 50th 

percentile (median), 75th percentile, Maximum, Sum. In total, 17 

features were distilled at the transaction level, and each of these 17 

features was aggregated in 9 ways in the final training data. The 

final training data had 17*9 = 153 features. 

 

 

 

 

 

 

Table 1. Gaming the System Features 

Feature Name Description 

assess_COR-

RECT 
correct answer 

assess_BUG  error tracked by MATHia for just-in-time 

context-sensitive feedback (e.g., a known mis-

conception, a number as input that appears in 

the problem but is incorrect); typically  

indicates a common  

mistake that the tutor knows how to respond 

to 

assess_ERROR error not tracked for feedback, i.e. less com-

mon mistakes 

assess_INI-

TIAL_HINT 
first-level hint provided 

as-

sess_HINT_LEV

EL_CHANGE 

a "deeper" level of hint provided 

pknow The probability estimate that the student 

knows this skill based on internal Bayesian 

Knowledge  

Tracing model of the  

student's mastery of this skill 

pknow_direct [8] If the current action is the student’s first at-

tempt on this problem step, then pknow-direct 

is equal to pknow, but if the student has al-

ready made an attempt on this problem step, 

then pknow-direct is -1. 

duration How many seconds the action took 

duration_sd duration expressed in standard deviations 

from the mean time taken for this problem 

step across all problems 

duration 

sd_prev{3,5} 
sum of duration_sd for  

previous 3 and 5 actions respectively 

wrong_attempts  total number of times a student has gotten this 

problem step wrong  

(including within past problems) 

error_perc percentage of past problems the student has 

made errors on this same  

problem step 

help_and_er-

rors_count 
number of times the student asked for help or 

made errors on this skill across all previous  

problems 

num_steps  count of attempts on this step for this problem 

help_at-

tempts_last8 
How many times has the student asked for 

help in their last 8 actions 

er-

ror_count_last5 
How many errors the  

student has made in the last 5 actions (in-

cludes both BUG and ERROR) 

prob-

lem_step_count_

last5 

how many of the last 5  

actions involved the same problem step 

2.3 Modeling 
As in [6], we modeled gaming detection as a binary classification 

problem - a clip with gaming the system was labeled as 1, and 



without as 0. We conducted three overall types of comparisons. 

First, we trained models on the Old data and tested them on the Old 

data (Old to Old). Second, we trained models on the New data and 

tested them on the New data (New to New). For the Old to Old and 

New to New comparisons, we used a 4-fold student-level cross val-

idation in which we left out 25% of students from each training set. 

We then tested each model on the left-out set of students, pooled 

the labels from each split, and calculated metrics on the pooled la-

bels. In our third comparison, we took a model trained using all of 

the Old data and tested it on all of the New data (Old to New), using 

the entire training set since there was no risk of any students being 

present in both data sets, given the 16 year gap. We did not train a 

model on the New data and test it on the Old data, as doing so would 

not answer our research questions. There are cases where it may be 

of interest to conduct the ahistorical analysis of training on newer 

data and testing on legacy data -- such as cases where labels cannot 

be obtained for past data -- but it is not relevant to this use case, 

since text replays can be conducted on legacy data.  

There was considerable imbalance between the classes in the la-

beled data. 5.5% of clips in the Old data set were labeled as gaming 

behavior, and 5.2% of clips in the New data set were labeled as 

gaming behavior. In order to account for this imbalance, we over-

sampled the minority class to achieve a 50-50 balance between the 

classes, in the training sets only (not in the test sets). For over-

sampling the minority class we used Synthetic Minority 

Oversampling Technique (SMOTE) [9] to synthesize new training 

data, without undersampling the majority class, to preserve all data. 

We used the area under the receiver operating characteristic curve 

(AUC ROC) to evaluate not just the predictive accuracy of our 

models but also the performance of our model at all classification 

thresholds. AUC ROC is thought to be better at evaluating classifi-

ers in cases with strong imbalance [19], as is seen here. Gaming 

detection probabilities are frequently used in research involving de-

tectors [28, 30] rather than using a single threshold; AUC ROC 

indicates how effective a model is across confidence levels.  

We applied a variety of classic (available at the time of the original 

publication of the gaming detector [6]) and contemporary machine 

learning models on both the Old and New data sets.  We were un-

certain that the specific original algorithm used in [6], the WEKA 

J48 implementation of C4.5 incorporated into RapidMiner 4.6, 

could be replicated exactly at this point, so scikit-learn’s Decision-

TreeClassifier, which implements the similar algorithm CART 

(Classification and Regression Trees), was selected as a close sub-

stitute. Scikit-learn’s implementations of Neural Networks, 

Random Forest, and XGBoost were also used. Of these, only 

XGBoost was completely unavailable in 2008 [10]. All code for 

this research is available for reference on github at https://anony-

mous.4open.science/r/CogTutorGamingDetectors-627E. 

3. RESULTS 

3.1 Model Performance 
The results of our analyses evaluating different classification mod-

els in our three training-testing scenarios are shown in Table 2. In 

the table columns, we can see the different combinations of training 

and testing. 

All of the classifiers performed well when trained on the Old data 

and also tested on the Old data (Old to Old). The best performance 

was obtained by Random Forest, achieving an AUC ROC of 0.784. 

XGBoost was second-best with an AUC ROC of 0.763, and Deci-

sion Tree was third-best, performing 0.048 worse than Random 

Forest. We evaluated the statistical significance of the difference 

between Random Forest and Decision Tree (the algorithm closest 

to the original paper), using the method outlined in [14] to conduct 

a Z test to compare the area under two ROCs. In this case, Random 

Forest was a statistically significant improvement over Decision 

Tree, Z = 2.334, two-tailed p < 0.05.  

When detectors were developed for the New data and tested on the 

New data (New to New), performance was generally higher than 

for Old to Old, rising above 0.85 for Random Forest, XGBoost, and 

Neural Network. However, for Decision Tree the improvement was 

negligible, rising from 0.736 to 0.738. Random Forest still obtained 

the best performance out of any of the models -- an AUC ROC of 

0.929 for New to New, statistically significantly better than the 

0.784 obtained in the Old to Old model, Z=3.764, two-tailed 

p<0.001. Decision Tree, the algorithm closest to the algorithm used 

in the original paper, was the only model which did not improve 

significantly in performance on the New to New data set, Z=0.03, 

two-tailed p=0.973.  

Table 2. ROC AUC for different models 

Model Trained on 

Old 

Tested on 

Old 

Trained on 

New 

Tested on 

New 

Trained on 

Old 

Tested on 

New 

Decision Tree 0.736 0.738 0.716 

Random Forest 0.784 0.929 0.509 

Neural Net 0.649 0.879 0.398 

XGBoost 0.763 0.921 0.333 

Our primary research question was whether gaming detector mod-

els would degrade over time. This would be shown if the Old 

models achieved poorer performance when applied to New data 

(Old to New), compared to the within-year Old to Old and New to 

New comparisons. All three newer models showed some degrada-

tion in performance, but there was substantial difference in 

degradation between algorithms. The Old to New performance for 

Decision Tree (AUC ROC = 0.716) appeared to have a small de-

cline in performance relative to Old to Old (AUC ROC = 0.738, a 

0.022 decline) but the difference was not statistically significant, 

Z=0.360, two-tailed p = 0.719. The Old to New performance for 

Decision Tree (AUC ROC = 0.716) was also not significantly lower 

than the New to New performance (AUC ROC = 0.736), Z=0.241, 

two-tailed p=0.810, though again there was some appearance of 

slightly poorer performance. 

By contrast, the Old to New performance for Random Forest (AUC 

ROC = 0.509) was statistically significantly worse than the Old to 

Old Performance (AUC ROC = 0.929), Z=6.948, two-tailed 

p<0.0001. It was also significantly worse than the New to New per-

formance for that algorithm (AUC ROC = 0.784), Z=3.380, two-

tailed p<0.001. The Old to New performance for Neural Network 

(AUC ROC = 0.398) was significantly worse than Old to Old Per-

formance (AUC ROC = 0.649), Z=4.445, two-tailed p<0.001. It 

was also significantly worse than the New to New performance for 

that algorithm (AUC ROC = 0.879), Z=6.826, two-tailed p<0.001. 

The Old to New performance for XGBoost (AUC ROC = 0.333) 

was the worst of all, significantly worse than the Old to Old Perfor-

mance (AUC ROC = 0.763), Z=6.498, two-tailed p<0.001. It was 

also significantly worse than the New to New performance for that 

algorithm (AUC ROC = 0.921), Z=7.926, two-tailed p<0.001. 



All four algorithms were able to achieve much better than chance 

performance in the Old to Old as well as the New to New scenarios, 

but the three newer algorithms struggled to make predictions about 

the New data when trained on the Old data. Decision Tree was the 

only model able to transfer from Old Data to the New without drop-

ping substantially in performance. Decision Tree’s performance 

was essentially equal when applied to unseen students in the same 

data set and unseen students in a new data set, suggesting that it 

may not have overfit to the features of the learning system/popula-

tion it was being applied to. The other three algorithms (all of them 

less conservative algorithms than Decision Tree) performed signif-

icantly worse when comparing Old to Old performance and Old to 

New performance. The drops in performance on newer models and 

the relative robustness of the more classic decision tree model indi-

cates that not all algorithms may be equally prone to detector rot. 

3.2 Feature Importance 
To understand how gaming the system is associated with student 

behavior in the logs, and whether this differs between time periods, 

we examined the feature importances of XGBoost, the algorithm 

with the worst drop in performance (also the newest) and Decision 

Tree, the algorithm with the least drop in performance (also the 

closest to the original paper). In doing so, we compared the models 

trained on the Old data and New data. Doing so can also provide 

evidence on how student behaviors have changed or remained con-

sistent over time. The XGBoost algorithm calculates the 

importance of each feature as the 'gain', i.e. "the improvement in 

accuracy brought by each feature across all splits the feature is used 

in" [39]. In the figure below we can see the top 15 features ranked 

by gain in both the Old and New models, for XGBoost.

 

 
Figure 1. XGBoost Old and New Top Features 

 

For XGBoost, in the Old Data we see that the majority of the pre-

dictive power is taken up by the features generated by the ITS’s 

response to the student based on the answer the student has given. 

In particular, we see that rates of correct (assess_CORRECT) 

responses and incorrect (assess_ERROR, assess_BUG) responses 

throughout a clip are strong predictors of gaming behavior, as well 

as the use of hints. 

In the XGBoost model for New data, we see features that are more 

related to time. The sum of the trailing count of how many of the 

last 5 steps were on the same problem (prob_step_last_5_sum) was 

the most important feature. This feature indicates that a student is 

taking many actions on the same problem step, which could indi-

cate that they are trying to game the system by attempting to guess 

the correct answer. In the other top features, we see the average 

time spent on the previous 5 actions in standard deviation units 

based on the distribution of time spent on these problems by all 

students (dur_sd_prev5_mean), the minimum time spent on any ac-

tion within the clip (time_min), and the average time spent on each 

action in standard deviation units (duration_sd_mean). This is more 

in line with features developed in previous gaming detectors [4, 3]. 

Additionally, we see more of a focus on student behavior features, 

like error counts and wrong attempts. This represents a contrast to 

the XGBoost model trained on the Old Data, where most of the 

features were derived from the correctness of student responses and 

whether their errors reflect common errors (perhaps reflecting gen-

uine errors) or rarer ones (perhaps reflecting systematic guessing). 

The features around bugs may be vulnerable to change over time, 

as the list of bugs (and the messages in response to them) has 

changed over the years. Features around hints could also have been 

impacted by changes in hint message content (which may impact 

learning and therefore how often they are used by non-gaming stu-

dents) and by the changes to credit given to non-bottom-out hints. 

By comparison, when we look at the features used by Decision 

Tree, we see a very different pattern. In figure 2 we see that alt-

hough features such as student rates of within-clip correct, 

incorrect, and bugs are relevant within the Decision Tree model for 

the Old data (as with  XGBoost), the variety of types of features 

being used by the Decision Tree model built on Old data is broader 

than for XGBoost. For instance, we see a feature representing 

whether or not this is the student's first time attempting a particular 

problem step attempt on a problem within the clip 

(prob_first_att_max) in the top 6. We also see the 8th most im-

portant feature was pknow-max, assessing how high the student’s 

mastery of the best-known KC in the clip is. These features, which 

are not present in the XGBoost model of the Old data, are helpful 

in understanding the student's relationship with the problems they 

are facing in a given clip.Overall, comparison of feature impor-

tances indicates that the decision tree was making predictions from 

more disparate features than XGBoost. 

When trained on the New data, the Decision Tree focused on a very 

small group of features that were similar to the features most im-

portant to XGBoost when trained on the New data. Again, we see 

the sum of the trailing count of how many of the last 5 steps were 

on the same problem step (prob_step_last_5_sum) as the most im-

portant feature in the New data. In the case of the Decision Tree 

trained on New data, this feature was the most important by a wide 

margin. In the next four features there are two related to evaluating 

the correctness of student responses (assess_CORRECT) and two 

that are related to the number of errors made by students in the clip 

(error_count_last_5_50%, error_perc_sum). These features also 

showed up in the XGBoost feature importance table, although at 

slightly different positions. The relatively stable performance of 

Decision Tree may be due to the stability in the meaning of the 

correctness assessments as opposed to the bug and error assess-

ments (which may have shifted more in meaning between versions, 

with errors becoming bugs as more errors were identified). 



 

Figure 2. Decision Tree New and Old Top Features 

 

4. DISCUSSION AND CONCLUSION 
Our primary research question was the degree to which models of 

a complex educational phenomena such as gaming the system can 

be trusted over time. To investigate this question, we analyzed 

whether gaming detectors built on data from over 15 years ago can 

make reliable predictions for contemporary data. To our pleasant 

surprise, an older model (Decision Tree) trained on older data (from 

17 years ago) still functioned well on contemporary data. However, 

newer, less-conservative algorithms performed much more poorly 

when trained on older data and tested on newer data, a phenomenon 

we term “detector rot”. Across all of our newer models, we ob-

served significant rot -- significant degradation in prediction -- 

when training on Old data and predicting on New data.  

Initial findings conducted with training and test sets from the same 

year initially looked positive for the newer algorithms. More spe-

cifically, Random Forest and XGBoost were able to outperform the 

other algorithms in both the Old to Old and New to New scenarios. 

This corresponds to other findings that contemporary machine 

learning models can offer a better fit and better cross-validated per-

formance for gaming detection e.g. [29]. However, XGBoost was 

the worst-performing algorithm when trained on Old data and 

tested on New data. This result (plus the considerable degradation 

seen for the Neural Network algorithm) raises the concern that 

more advanced models may generally have more difficulty when 

applied to future samples or data drawn from different contexts.  

This set of findings has important implications for detectors of 

complex phenomena currently in place, for the detectors being de-

veloped today, and for best practices when retraining models. We 

suggest the community should be cautious in using newer machine 

learning models -- they may initially be more accurate (even for 

unseen students) but may become less accurate more quickly over 

time than simpler models. At minimum, models developed using 

contemporary algorithms may need to be re-checked more often 

than models using classic algorithms. However, it is not yet clear 

how often new data should be collected or whether old and new 

data should be combined (see, for instance, [20]). 

In our modeling attempts most features were not important to the 

models. Future research might look to analyze these features and 

remove some of the redundancy to reduce overfitting. It is possible 

that this method of reducing overfitting may reduce some of the 

overfit to specific years, but the prominence of specific features in-

volving student errors in the model suggests that changes in 

semantics between the 2005 and 2021 datasets may have been a 

bigger part of the explanation for the observed detector rot. It is 

important to acknowledge that it is not clear from our findings 

which changes between the Old and New data sets resulted in the 

detector rot observed. Across the span of 17 years, changes in the 

user interface, updates to the content of the ITS, and changes in 

student behavior may have impacted the ability of the gaming de-

tectors to transfer. It may be worth attempting to directly identify 

how specific design changes impact detector performance -- for in-

stance, by collecting text replays from right before and right after a 

design change. This might help understand exactly how feature im-

portance and model functional form shifts due to this type of 

change, eventually helping us develop detectors resistant to these 

shifts and understand which design changes may reduce the effec-

tiveness of existing detectors. 

Our findings open a broad range of questions to further research on 

detector rot. Gaming the system is one of many classification tasks 

in educational data mining research and practice. Future research 

should investigate whether other important EDM classification 

problems such as drop-out/stop-out prediction and affect detection 

are impacted by detector rot. There is already evidence for one form 

of detector rot in the case of MOOC stop-out: classifiers trained on 

the first session of a MOOC can be less effective in later sessions 

[8, 36]. However, this finding may be due to differences in the pop-

ulations of students who choose to take a MOOC in its first session, 

rather than the degradation of detectors over time -- i.e. selection 

bias rather than detector rot. Studying what systems and detection 

tasks are most prone to detector rot would be an important contri-

bution to the practical use of detectors in real-world settings. 

One of the exciting aspects of educational data mining over the last 

decade has been the rapid developments in the algorithms available 

for us to use. Newer algorithms offer the promise of better predic-

tive performance on long-standing problems. There is a temptation 

to always go with the newest, most exciting algorithm available, 

and to focus on cross-validated performance or a held-out test set 

from the current data set, rather than looking at replication and gen-

eralizability (see discussion in [14]).  However, our findings 

suggest some of our predictive models may be aging, and this may 

be a more serious problem for contemporary algorithms which 

achieve higher initial performance. Future work can help us under-

stand which changes in learning systems and student populations 

result in detector rot, and how to develop adaptive and future re-

sistant models that will support learners now and for years to come. 
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