An Evaluation of code2vec Embeddings for Scratch

Benedikt Fein, Isabella Grafl, Florian Beck, Gordon Fraser
University of Passau
Passau, Germany

ABSTRACT

The recent trend of embedding source code for machine
learning applications also enables new opportunities in learn-
ing analytics in programming education, but which code
embedding approach is most suitable for learning analyt-
ics remains an open question. A common approach to em-
bedding source code lies in extracting syntactic informa-
tion from a program’s syntax tree and learning to merge
these into continuous distributed vectors (e.g., CODE2VEC).
CODE2VEC has been predominantly investigated in the con-
text of professional programming languages, but learning
analytics are particularly important in the context of edu-
cational programming languages such as SCRATCH. In this
paper, we therefore instantiate the popular embedding ap-
proach CODE2VEC for SCRATCH programs, create three dif-
ferent classification tasks with corresponding datasets, and
empirically evaluate CODE2VEC on them. Our experiments
demonstrate that a transfer of CODE2VEC to the educational
environment of SCRATCH is feasible. Our findings serve as a
basis to apply code embeddings to further educational tasks
such as automated detection of misconceptions of program-
ming concepts in SCRATCH programs.

Keywords

code2vec, Scratch, programming education.

1. INTRODUCTION

The application of natural language processing (NLP) and
machine learning (ML) methods in the field of software en-
gineering (SE) is gaining popularity in research and indus-
try [27]. A central prerequisite for such machine learning
applications on source code is to represent semantically simi-
lar code as similar continuously distributed vectors, the code
embeddings, in a vector space. Popular code embeddings
such as CODE2VEC [6] have been successfully used for pro-
gram analysis tasks such as predicting method and variable
names, or identifying bugs and misconceptions [3}|5[17].

B. Fein, I. GraBl, F. Beck, and G. Fraser. An evaluation of code2vec
embeddings for Scratch. In A. Mitrovic and N. Bosch, editors, Pro-
ceedings of the 15th International Conference on Educational Data
Mining, pages 368-375, Durham, United Kingdom, July 2022. Inter-
national Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853103

Programming education research frequently relies on analy-
sis of learners’ programs, for example to automatically de-
tect incorrectly used programming concepts and bugs [2,/11]
25,126]. Code embeddings bring the promise of novel ap-
plications also in the educational domain [9,/10,24]; e.g.,
continuously distributed vectors make it possible to monitor
learner trajectories or to detect outliers and anomalous be-
havior. However, code embeddings are predominantly gen-
erated from syntactic features of the source code. For ex-
ample, CODE2VEC considers the relation of pairs of textual
tokens in the context of the syntax tree that results from
parsing the source code. Most code embedding approaches
are designed for textual programming languages such as
Java or Python. Programming education, however, is fre-
quently based on simplified block-based programming lan-
guages such as SCRATCH [22]|. These programming languages
are intentionally designed to reduce the syntactic overhead
for learners, and may thus affect the same syntactic prop-
erties of programming languages that make them amenable
to code embedding models. This may in turn affect the ap-
plicability of these models in an education context.

The aim of this paper is to adapt and investigate the pop-
ular CODE2VEC code embeddings for the educational pro-
gramming language SCRATCH. We implement an analysis
for SCRATCH programs that extracts the path context infor-
mation on which CODE2VEC is built. We then create three
different classification tasks with corresponding datasets to
study the suitability of the resulting embeddings:

e Girls and boys are known to implement different project
types and programming concepts |13}|16]; we explore
whether code embeddings can capture these nuances.

e A major characteristic of SCRATCH programs with ed-
ucational implications [1] is their type (e.g., game, an-
imation, etc.). We explore whether code embeddings
enable the prediction of project types from code.

e The original evaluation of CODE2VEC explored the abil-
ity of embeddings to capture semantic content by pre-
dicting names of methods. We adapt this task to
SCRATCH by predicting names of sprites.

Although SCRATCH code differs from text-based code in im-
portant ways affecting code embeddings, such as the struc-
ture or size of syntax trees, or the organisation into sprites
and scripts rather than classes and methods, we find that
CODE2VEC nevertheless performs well at these tasks.

https://doi.org/10.5281/zenodo.6853103

2. BACKGROUND AND RELATED WORK

To understand the application of CODE2VEC to the introduc-
tory programming language SCRATCH, this section outlines
the concepts and their use cases.

2.1 The Scratch Programming Language
SCRATCH is a block-based programming environment that
is particularly designed for learners due to its ease of use
through the arrangement of visual blocks . In ScrATCH,
the behavior of graphical objects, the sprites, is controlled by
means of code blocks, which are assembled to scripts. The
code blocks have particular shapes so that they can only be
assembled in syntactically valid ways, without the need for
the syntactic overhead of text-based programming languages
(such as indentation, braces, semicolons, etc.) Code blocks
control the appearance and behavior of sprites, as well as
interactions with the user.

Besides the intuitive programming user interface, the popu-
larity of SCRATCH is also supported by a rich ecosystem of
users sharing their programs publicly and interacting around
them. In addition to accessing this information through
the user interface, it is also possible to use a REST-API to
programmatically access all publicly available data conve-
niently, which is helpful to enable data mining applications.

SCRATCH programs are categorized into one or more project
types: games, stories, animations, music, art, and tutori-
als. It has been established that some project types require
certain programming concepts more than others . Fur-
thermore, it has been repeatedly observed that there
are gender-dependent preferences regarding the project type
and thus in the programming concepts: While girls mainly
prefer programs with storytelling elements, boys implement

more programs with game structures [1,[13}[16].

2.2 Analyzing Scratch Programs

The source code of programs in text-based programming
languages is represented using plain text files. In contrast,
block-based programs require an intermediate format to de-
scribe the program blocks. In particular, SCRATCH programs
are represented using JavaScript Object Notation (JSON)
format. These JSON files organize programs in terms of
their “targets” (stage and sprites), and for each target the
JSON file lists its name, its procedures (i.e., custom blocks),
scripts, variables, lists, messages, sounds, costumes, and
blocks. The blocks are organized as lists, where each ele-
ment contains a unique identifier as well as the identifiers of
the parent and successor blocks, we well as any parameter
blocks. Whereas text-based programs are often used directly
as input for machine learning approaches, this JSON format
is intuitively less suitable for NLP-based approaches.

Static program analysis is usually not conducted on the raw
text representation, but the abstract syntax tree (ASTSs) in-
termediate representation, which results from parsing the
source code. An AST-like representation is used by the
SCRATCH virtual machine in order to interpret SCRATCH pro-
grams. The LITTERBOX analysis framework provides
a Java API to parse SCRATCH programs and apply static
analysis. Figure shows a publicly shared example projec

"https://scratch.mit.edu/projects/18024798

setx to

(c) Abstract syntax tree of the script in Fig.

Figure 1: Example project (ID: 18024798): Flappy mario.

implementing a flappy bird game (Fig. . Figureshows
the code of one of its 24 sprites: This sprite represents the
ground and the script implements the scrolling motion to
simulate movement of the “flappy Mario” character. Fig-
ure shows the AST representing the same script: Al-
though this AST is slightly simplified for space reasons, it is
noteworthy that this AST is less “abstract” than an AST for
other languages would be. For example, while a text-based
programming language would likely define an abstract to-
ken type for binary operators, with the actual operator as
one of its leaf childrerﬁ in SCRATCH none of the operators
are leaves, while only variables, literals, menu-options (e.g.,

[EEEEED), and blocks without parameters (e.g.,) ap-

pear as leaves in the AST. The AST can be used for analysis
tasks such as identifying bugs [11], code smells [15], evidence
of misconceptions , or progress and understanding .

2.3 Code2vec Code Embeddings

CODE2VEC @ learns code embeddings from the syntactical
representation of programs through a neural network, where
semantically similar code snippets, which are implemented
differently but serve the same purpose, represent vectors
with a small distance to each other in the vector space. As
a basis, CODE2VEC extracts path contexts from the AST: A
path context consists of two leaves together with the path

2For example, https://javaparser.org/

https://scratch.mit.edu/projects/18024798
https://javaparser.org/

that connects them. For example, consider the two @D
variable tokens in Fig. which are connected by a path
that ascends from the leaf node up to the abstract StmtList
node, which is the least common ancestor of the two leaves,
and then descends to the other leaf:

C)TOTC)T set x to TStthiSt\L switch costume to \LC)LO\LQ\LC)

CODE2VEC extracts the path contexts for all pairs of leaves
in the AST [17]. Then, a neural attention model is used
to combine the path contexts to a single vector representa-
tion, i.e., the code embedding [6]. The attention mechanism
learns to assign weights to path contexts depending on their
importance to the semantics of the code snippet, which is
assumed to be captured by method names. Consequently,
CODE2VEC is applied to individual functions; note that, ex-
cept for custom blocks, SCRATCH scripts are not named. The
final single vector that represents the code is calculated as
a weighted sum over the learned individual vectors for the
path contexts [6]. When given an unseen code snippet, the
network can then use the learned weights of the paths to
calculate such a weighted sum again and therefore assigns a
similar vector to semantically similar program code.

2.4 Code Embeddings in CS Education

Various approaches to create code embeddings have recently
been considered in an education context. Piech et al. [21]
created embeddings for programs written in a text-based
educational language by executing unit tests; these embed-
dings were shown to be useful for predicting which students
would benefit from instructor feedback. Azcona et al. [7]
demonstrated that CODE2VEC embeddings on Python code
are particularly promising on learner’s code when compared
to word embeddings applied directly to tokens. Cleuziou et
al. [9] proposed a two-step embedding approach where first
the AST paths executed by predefined test cases are ex-
tracted, and embeddings are created using document embed-
ding techniques. This approach was applied to Python code
for the task of propagating teacher feedback. Shi et al. [23]
evaluated the two code embedding techniques CODE2VEC
and ASTNN (28] for the supervised learning task of bug pre-
diction on Java programs. Paassen et al. [20] introduced the
AST2VEC approach for embedding Python programs, with
the aim to also support transformations back from embed-
dings to source code. Finally, Bazzocchi et al. [§] proposed to
bypass the embedding problem by using an encoder-decoder
architecture directly on Python source code. All of these
approaches have in common that they are applied to text-
based programming languages.

To the best of our knowledge, there is only one prior investi-
gation of CODE2VEC on block-based programs: Shi et al. [24]
applied CODE2VEC to SNAP [14] and clustered the embedded
programs to identify clusters representing common miscon-
ceptions. Shi et al. demonstrated that for this application
CODE2VEC embeddings are superior to other models of the
code, such as Bags of Words. In this paper we aim to shed
more light on how CODE2VEC generalizes to other tasks. Al-
though SNAP represents programs using XML files that are
closer in their structure to regular programs, the resulting
ASTs are similar to those of SCRATCH, and so we expect our
findings to generalize also to SNAP.

3. METHOD

To evaluate the CODE2VEC code embeddings for SCRATCH
programs, we investigate the following research questions:

RQ 1 Gender: How accurately can CODE2VEC assess a bi-
nary classification task on SCRATCH programs?

RQ 2 Category: How accurately can CODE2VEC assess a
multi-class classification task on SCRATCH programs?

RQ 3 Sprite naming: How accurately can CODE2VEC assess
a classification task on SCRATCH programs?

3.1 Datasets

The RQs require different datasets for their classification
tasks: predicting gender, project type, and sprite names.

RQ1. To answer RQ1, we use a dataset of 317 SCRATCH pro-
grams [13|, of which 171 were created by 64 (self-identified)
girls and 146 by 68 boys in the range of 8-10 years. The
programs are the result of the final task of a multi-day in-
troductory programming course; the children were tasked
to implement a SCRATCH program based on a topic of their
own choice. The resulting programs were then manually la-
belled with the students’ genders. The programs of both
genders are comparable in block size (on average: boys 27,
girls 22) and number of sprites (on average: girls 6.10, boys
4.78) although the types of blocks and sprites differ |13].

RQ2. To answer RQ2, we sampled 216 000 SCRATCH pro-
grams publicly shared between March 2021 and June 2021.
Since the REST API of the SCRATCH WebsitEEI does not pro-
vide information about project types, we downloaded pro-
grams from each category individually by using GET re-
quests containing certain category nameq| To create a bal-
anced dataset we subsampled these programs to create a uni-
form distribution of labels; each program can belong to one
or more categories. Since users often use hashtags with all
category keywords to gain more visibility, the dataset con-
tains a high percentage of misclassifications. To mitigate
these misclassifications, we applied several filtering steps:
First, we excluded duplicates and remixed programs. We
then also excluded programs tagged as games from the mu-
sic and tutorial categories, as users often incorrectly add the
hashtag music to their game programs simply because they
contain background music. In addition, we removed pro-
grams in the tutorial, art, music categories that contain their
category keyword in the notes and credits section, as users
would state credits to the music they included. We eval-
uated the effectiveness of these filtering steps by manually
classifying 10 randomly selected programs from each cate-
gory, which confirms a decrease of the misclassification rate
to 20 % or less in every category. The final dataset consists
of 50 560 multi-labelled SCRATCH programs in 40 categories
representing various combinations of the six base-categories.

RQ3. To answer RQ3, we created a randomized sample of
530696 SCRATCH programs publicly shared between April
2007 and April 2020. The data mining was realized by re-
trieving the 10000 most recently publicly shared SCRATCH
programs each day using the REST API of the SCRATCH
website in the mentioned period.

Shttps://github.com/LLK/scratch-rest-api/wiki
“https://scratch.mit.edu/explore/programs/all/

https://github.com/LLK/scratch-rest-api/wiki
https://scratch.mit.edu/explore/programs/all/

1.0
0.8 -
0.6 -
0.4 -
0.2 1 — RQ1
RQ2
0.0 = RQ3
T T T T
0 200 400 600 800 1000

Figure 2: Cumulative distribution of block counts.

3.2 Data Analysis

Each dataset is divided into training, validation and test
dataset with a ratio of 80:10:10. For RQ1, the training
set contains 253 programs, the test and validation set 32
programs each; for RQ2 the training set contains 34639
programs, the test and validation set 4335 programs each.
To answer RQ3, we use a classification task to identify the
names of sprites based on their code, thus resembling the
method name prediction task [6]. In contrast to RQ1/RQ2,
this task considers the ASTs of individual sprites, rather
than entire programs. The training set contains 504 503 pro-
grams with 4487940 sprites, the test set 15000 programs
with 137429 sprites and the validation set 15000 programs
with 132875 sprites. The training dataset contains 247 317
different names with 90802 of them appearing more than
once. The 100 most frequent names are used for 580 544
sprites. We use accuracy, precision, recall and F'l-score to
quantify the performance of the generated models. To better
understand the contribution of the code structure versus the
literals used in programs, we conduct a small ablation study
with a model for each task where literal values are replaced
with abstract tokens for their type (string or number).

3.3 Data Preprocessing

The SCRATCH programs must first be processed to extract
the path contexts in an appropriate format for the CODE2VEC
model. SCRATCH programs are saved as .sb3 files, contain-
ing image and audio files as well as the JSON program code.
We use LITTERBOX [12] to parse these JSON files into their
AST representation. We extended LITTERBOX with the ex-
traction and cleanup of the path contexts, such that no ad-
ditional intermediate representations of the graph structure
are needed. The extraction of path contexts ignores non-
code related aspects of the AST, such as the positions of
blocks in the code editor or post-it style comments.

For RQ1 and RQ2, the entire AST of the program, starting
with the Program root node, is considered when extracting
path contexts, and the labels are included in the dataset.
For RQ3, we extract the path contexts per sprite from their
sub-trees (ActorDefinition nodes in LITTERBOX), as well as
the sprite name as the label for the classification task. Sim-
ilar to how CODE2VEC treats method names, sprite names
are split on special characters into subtokens, and the subto-
kens are normalized to only contain lowercase letters. The
final sprite name is then obtained by joining the non-empty

Table 1: Hyperparameters used for Java code [6] compared
to the ones for Scratch experiments.

Java RQ1 RQ2 RQ3
number of contexts 200 200 1000 200

embedding size 128 128 128 128
max path length 8 8 12 8
dropout keep rate 0.75 0.75 0.75 0.75
batch size 1024 16 512 1024

subtokens back together with a vertical bar “|” as separating
character to support manual interpretation. Additionally,
there can be sprites that have the default name (depending
on the language settings, e.g., “sprite”) after this normal-
ization step. These are sprites that were not named by the
user, and therefore the name cannot be assumed to describe
the code. We excluded these sprites from the dataset.

3.4 Neural Network Structure

For all experiments we used the network structure as de-
scribed by Alon et al. [6] and their implementatiorﬂ Even
after extensive hyperparameter tuning by rerunning the ex-
periment while iteratively changing the parameters one at
a time, most of the values as used by Alon et al. for their
analysis on Java code [6] also perform best on SCRATCH code
(see Table . Consequently, we mainly re-used the default
or similar values for common hyperparameters. We adapted
batch sizes for the different experiments based on the dataset
sizes: For the small dataset for RQ1 we reduced the batch
size to 16; for RQ2 we used a batch size of 512.

Of the additional hyperparameters specific to the domain
of code embeddings, the maximum considered path length
and the number of path contexts used for the representation
require particular consideration: Increasing the maximum
path length allows the model to learn about related elements
that are further apart in the source code. However, this also
increases the number of generated path contexts. Due to
the limited amount of memory available to us during the
training phase, a random sample of those has to be chosen.
By generating too many path contexts, the chance of missing
semantically important ones during sampling increases.

Generally, the maximum path length that should be consid-
ered in the case of SCRATCH is higher than for the original
Java method name experiment: Even a single sprite encap-
sulates the full behavior of a figure in a game and can contain
multiple scripts, each controlling different aspects of behav-
ior. Therefore, a sprite can be seen as comparable to a class
in Java with scripts corresponding to methods. This results
in long paths especially for connections between AST leaves
placed in different scripts or sprites. Figure [2] shows the av-
erage program sizes for the three different datasets, showing
that the RQ2 and RQ3 datasets have substantially larger
programs than the gender classification task (RQ1). As the
project categorization task (RQ2) considers entire programs,
only 2% of all paths would be retained when pruning at
the maximum of eight, as used in the original Java study
(Fig. . Consequently, for RQ2 we increased the length to
12, resulting in 18 200 path contexts.

Shttps://github.com/tech-srl/code2vec

https://github.com/tech-srl/code2vec

- RQ1
RQ2
== RQ3

0 10 20 30 40

Figure 3: Cumulative distribution of path lengths.

1.0
0.8 - ===
0.6 —
049 — RQ1 (8)
RQ2 (8)

027 — - RQ2 (12)

— = RQ3 (8
0.0 7 T T T T &

0 200 400 600 800 1000

Figure 4: Cumulative distribution of path context counts.
Maximum path length hyperparameter in parentheses.

Figure [] shows the trade-off between increasing the max-
imum path length and the number of programs for which
sampling the path contexts is necessary. Limited by graphics
card memory, the model was allowed to use up to 1000 path
contexts which allows us to include all of them for nearly
60 % of all programs. Lowering the number of considered
path contexts showed worse results during hyperparameter
tuning. For RQ1, the default value of 200 was sufficient due
to the small size of the programs. For RQ3, the default
value of a maximum path length of eight combined with
a maximum count of 200 also yielded the best results; the
average number of path contexts in this dataset (1319) is
significantly smaller compared to the one for RQ2.

3.5 Threats to Validity

Although our experiments aim to improve external valid-
ity by investigating CODE2VEC on three different SCRATCH
tasks, results may not generalize to other tasks and embed-
dings (e.g., [41/28]). Although we applied methods to ensure
data quality, additional filtering may further improve re-
sults. To decrease the influence of the random initialization
of internal model parameters on the small RQ1 dataset, we
re-ran the experiment for each hyperparameter setting mul-
tiple times with/without reshuffling of the training set. We
performed incremental hyperparameter tuning using a val-
idation set not used during training and are reporting the
results on a separate test set. Nevertheless, on different
datasets other hyperparameters might yield better results.
To support independent validation, our code is open sourceﬂ
and data is available on request.

Shttps://github.com/se2p/litterbox

Table 2: Top-1 and top-5 accuracy, precision, recall, and F1-
Score for code2vec when replacing literal values with abstract
tokens (AT) and when keeping them.

Task\Metric Prec. Recall F1 Acc. Top-5 Acc.
RQ1 (AT) 78.1 78.1 78.1 78.1 —
RQ1 90.6 90.6 90.6 90.6 —
RQ2 (AT) 63.3 59.2 612 579 93.4
RQ2 64.1 60.0 62.0 589 93.6
RQ3 (AT) 45.4 41.6 434 415 51.9
RQ3 574 535 553 538 61.2
4. RESULTS

To evaluate the CODE2VEC embeddings for SCRATCH, Ta-
ble 2] shows the performance of the CODE2VEC model on
three different classification tasks.

4.1 RQ1: Gender Classification

The gender classification task shows a very high accuracy of
90.6 %, suggesting that the projects are quite homogenous
within the two gender groups. Grassl et al. [13] observed
structural differences between the projects of the two gen-
ders, which is reflected by the high accuracy. For example,
boys tend to produce interactive projects using event han-
dling blocks and loop control structures, while girls produce
more sequential programs. We observe a sharp drop in accu-
racy when ignoring literals (Table; we conjecture that this
is also related to the reported sequential nature of the girls’
projects: Girls tend to produce story-like projects where
sprites speak more, thus using more string literals.

RQ1 Summary. CODE2VEC is able to predict the gender
based on code with a high accuracy of 90.6 %.

4.2 RQ2: Project Type Classification

Compared to the gender classification task, the project cate-
gory classification task shows a substantially lower accuracy
of 58.9% (Table . The lower accuracy is likely influenced
by the more challenging multi-class classification task, more
noise in the data compared to the small gender dataset, and
the generally larger projects used in this dataset.

While the accuracy is lower, it is comparable to the perfor-
mance of the original analysis by Alon et al. [6], which was
applied to individual methods. The results on the project
category task thus confirm that CODE2VEC can also be ap-
plied to whole SCRATCH programs. We initially assumed
that the model requires more path contexts to be able to
extract information from the larger scope of the whole pro-
gram. However, changing the maximum number of con-
texts to values between 100 and 1000 did not impact the
prediction quality. In all cases the accuracy remained be-
tween 56.7 % and 58.9 %. We assume that the model does
not actually use the path contexts as such to categorize the
programs but instead focuses on the presence or absence of
certain block types within the path contexts. For example,
the dataset contains the categories “animations”, “games”,
and “music”. Games obviously contain many blocks based
around the user’s interaction with the program, whereas an-
imations rarely do. Similarly, musical programs can be iden-

https://github.com/se2p/litterbox

0'091 go 10 0 0
0 0,136
0’1 6—] go Da dara 100 aye
|_ 0,221
o) 0 Cro oo 480
O e 10 O d S O 720 480
I

(0.999972) level
(0.000012) walkthroughable|sprite
(0.000004) floor

Figure 5: Example prediction with the top-4 paths with the
highest attention weights, and the top-3 predictions.

tified by containing many sound-related blocks. As long as
even the small path context samples contain some of those
blocks distinctive to a program type, the model appears to
have enough information to predict the correct category.

This conjecture is supported by the results without literals
(Table , which even slightly increases the accuracy. This
could be caused by two possible factors: The literal values
might not be distinctive for project types; e.g., the move-
ment of sprites in both animations and games relies on sim-
ilar bounds checks on the visible stage area. Alternatively,
some literal values are at least somewhat distinctive for the
project type, but the attention mechanism focuses on other
more significant differences. In both cases the model uses
the attention mechanism to increase the weight for paths
that contain project type specific blocks instead of relying
on their start and end values. This coincides with our other
hypothesis about the required number of path contexts.

RQ2 Summary. The model is able to extract semantic
information from whole programs and is able to predict
the project type with nearly 60 % accuracy.

4.3 RQ3: Sprite Name Classification

The sprite naming task is most similar to the task used
by Alon et al. @ in the initial CODE2VEC evaluation, i.e.,
method name prediction. Alon et al. report F1 scores of
slightly below 60 %, and our results are quite close with an
F1 score of 55.3 % (Table. We conjecture that the slightly
lower score is a result of the sprite naming task being slightly
more challenging, as a sprite can consist of multiple scripts,
and the name likely carries less semantic information than
a descriptive method name.

To demonstrate that the embeddings actually represent se-
mantic information, Table |3| shows example words and the

Table 3: Closest terms in the vector space for the example

words “game”, “mario”, “easy” and “sound”.

game mario easy sound

profile luigi hard music
controls link medium music player
text sonic insane sounds

word wario extreme audio

jimmy yoshi impossible sfx

five closest words in the embedding space. All the terms
close to “game” clearly have a connection to games them-
selves: Games tend to have player “profiles”, players interact
using “controls”. Similarly, the terms close to “mario” mostly
represent other characters from the Super Mario universe.

Unlike the project category task, the literals do contribute
to some degree to the performance of the classification (Ta-
ble . For example, Fig. |5 visualizes the most important
paths in the “level” sprite from Fig. [I] as determined by
the attention mechanism. In particular, the neural network
gives the path between the tokens “100” and “480” the most
attention; the number 480 represents the width of the stage,
and thus is likely to be used in similar contexts.

RQ3 Summary. CODE2VEC can predict sprite names with
a top-5 accuracy of more than 60 %, suggesting that se-
mantic information is successfully captured.

S. CONCLUSIONS AND FUTURE WORK

Code embeddings are a trending approach for program anal-
ysis, and the computer science education community has re-
cently joined this trend and is exploring novel applications
in learning analytics. An important prerequisite for apply-
ing machine learning methods is a better understanding of
the capabilities and limitations of such approaches.

In order to contribute to such an improved understanding,
we evaluated the popular code embedding method CODE2VEC.
This is the first application of CODE2VEC to the SCRATCH
programming language, and our work has identified a num-
ber of important differences between regular, text-based pro-
gramming languages, and block-based languages like SCRATCH,
such as differences in named entities (e.g., classes or meth-
ods) and the overall structure of the resulting AST.

Our experiments on three different classification tasks, pre-
dicting gender, project type, and sprite names, suggests that
the adaption of CODE2VEC to the educational domain of
SCRATCH is highly feasible, but there is room for improve-
ment. This suggests that future work should investigate
alternative code embedding methods, both those based on
syntax (e.g.,) or graph neural networks [4].

Acknowledgements

This work is supported by the Bayerische Forschungsstiftung
(AZ-1520-21, “DeepCode”) and the Federal Ministry of Edu-
cation and Research (01JA2021, “primary::programming”).
as part of the “Qualitdtsoffensive Lehrerbildung”, a joint ini-
tiative of the Federal Government and the Lander. The au-
thors are responsible for the content of this publication.

6.
1]

[10]

[12]

[13]

REFERENCES

J. C. Adams and A. R. Webster. What do students
learn about programming from game, music video,
and storytelling projects? In Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education - SIGCSE ’12, page 643, Raleigh, North
Carolina, USA, 2012. ACM Press.

E. Aivaloglou and F. Hermans. How Kids Code and
How We Know: An Exploratory Study on the Scratch
Repository. In Proceedings of the 2016 ACM
Conference on International Computing Education
Research, ICER ’16, pages 53—-61, New York, NY,
USA, 2016. ACM.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton.
Suggesting accurate method and class names. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 38—49,
Bergamo Italy, Aug. 2015. ACM.

M. Allamanis, M. Brockschmidt, and M. Khademi.
Learning to represent programs with graphs. Technical
Report MSR-TR-2017-44, November 2017.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A
general path-based representation for predicting
program properties. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 404-419,
Philadelphia PA USA, June 2018. ACM.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
Code2vec: Learning distributed representations of
code. Proc. ACM Program. Lang., 3(POPL):1-29, Jan.
2019.

D. Azcona, P. Arora, [.-H. Hsiao, and A. Smeaton.
User2code2vec: Embeddings for profiling students
based on distributional representations of source code.
In Proceedings of the 9th International Conference on
Learning Analytics € Knowledge, pages 86-95, 2019.
R. Bazzocchi, M. Flemming, and L. Zhang. Analyzing
csl student code using code embeddings. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pages 1293-1293, 2020.
G. Cleuziou and F. Flouvat. Learning student
program embeddings using abstract execution traces.
page 11, 2021.

A. Emerson, A. Smith, F. J. Rodriguez, E. N. Wiebe,
B. W. Mott, K. E. Boyer, and J. C. Lester.
Cluster-Based Analysis of Novice Coding
Misconceptions in Block-Based Programming. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pages 825-831, Portland
OR USA, Feb. 2020. ACM.

C. Fradrich, F. Obermiiller, N. Korber, U. Heuer, and
G. Fraser. Common Bugs in Scratch Programs. In
Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 89-95, Trondheim Norway, June
2020. ACM.

G. Fraser, U. Heuer, N. Korber, F. Obermiiller, and
E. Wasmeier. Litterbox: A linter for scratch programs.
In 2021 IEEE/ACM 48rd International Conference on
Software Engineering: Software Engineering Education
and Training (ICSE-SEET), pages 183-188, 2021.

I. GraBll, K. Geldreich, and G. Fraser. Data-driven

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

Analysis of Gender Differences and Similarities in
Scratch Programs. In The 16th Workshop in Primary
and Secondary Computing Education, pages 1-10,
2021.

B. Harvey, D. D. Garcia, T. Barnes, N. Titterton,

D. Armendariz, L. Segars, E. Lemon, S. Morris, and
J. Paley. Snap!(build your own blocks). In Proceeding
of the 44th ACM technical symposium on Computer
science education, pages 759-759, 2013.

F. Hermans and E. Aivaloglou. Do code smells
hamper novice programming? A controlled
experiment on Scratch programs. In 2016 IEEE 24th
International Conference on Program Comprehension
(ICPC), pages 1-10. IEEE, 2016.

H.-m. J. Hsu. Gender Differences in Scratch Game
Design. In 2014 International Conference on
Information, Business and Education Technology
(ICIBET 2014). Atlantis Press, Feb. 2014.

V. Kovalenko, E. Bogomolov, T. Bryksin, and

A. Bacchelli. PathMiner: A Library for Mining of
Path-Based Representations of Code. In 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pages 1317, Montreal,
QC, Canada, May 2019. IEEE.

J. Moreno-LeOn, G. Robles, and

M. RomAn-GonzAlez. Towards Data-Driven Learning
Paths to Develop Computational Thinking with
Scratch. IEEE Transactions on Emerging Topics in
Computing, 8(1):193-205, Jan. 2020.

F. Obermiiller, L. Bloch, L. Greifenstein, U. Heuer,
and G. Fraser. Code Perfumes: Reporting Good Code
to Encourage Learners. In The 16th Workshop in
Primary and Secondary Computing Education, pages
1-10, Virtual Event Germany, Oct. 2021. ACM.

B. Paassen, J. McBroom, B. Jeffries, I. Koprinska,

K. Yacef, et al. Mapping python programs to vectors
using recursive neural encodings. Journal of
Educational Data Mining, 13(3):1-35, 2021.

C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093-1102. PMLR, 2015.

M. Resnick, B. Silverman, Y. Kafai, J. Maloney,

A. Monroy-Hernéndez, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, and J. Silver.
Scratch: Programming for all. Commun. ACM,
52(11):60, Nov. 2009.

Y. Shi, T. Mao, T. Barnes, M. Chi, and T. W. Price.
More with less: Exploring how to use deep learning
effectively through semi-supervised learning for
automatic bug detection in student code. In In
Proceedings of the 14th International Conference on
Educational Data Mining (EDM) 2021, 2021.

Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward Semi-Automatic Misconception
Discovery Using Code Embeddings. In LAK21: 11th
International Learning Analytics and Knowledge
Conference, pages 606-612, Irvine CA USA, Apr.
2021. ACM.

A. Swidan, F. Hermans, and M. Smit. Programming
Misconceptions for School Students. In Proceedings of

[26]

the 2018 ACM Conference on International
Computing Education Research, pages 151-159, Espoo
Finland, Aug. 2018. ACM.

M. Talbot, K. Geldreich, J. Sommer, and

P. Hubwieser. Re-use of programming patterns or
problem solving?: Representation of scratch programs
by TGraphs to support static code analysis. In
Proceedings of the 15th Workshop on Primary and
Secondary Computing Education, pages 1-10, Virtual
Event Germany, Oct. 2020. ACM.

27]

28]

D. Vagavolu, K. C. Swarna, and S. Chimalakonda. A
Mocktail of Source Code Representations. In 2021
36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages
1296-1300. IEEE, 2021.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM
41st International Conference on Software
Engineering (ICSE), pages 783-794. IEEE, 2019.

