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ABSTRACT
Peer assessment systems are emerging in many settings, such
as peer grading in large (online) classes, peer review in con-
ferences, peer art evaluation, etc. However, peer assessments
might not be as accurate as expert evaluations, thus ren-
dering these systems unreliable. The reliability of peer as-
sessment systems is influenced by various factors such as
assessment ability of peers, their strategic assessment be-
haviors, and the peer assessment setup (e.g., peer evaluat-
ing group work or individual work of others). In this work,
we first model peer assessment as multi-relational weighted
networks that can express a variety of peer assessment se-
tups, and can also capture conflicts of interest and strategic
behaviors. Leveraging our peer assessment network model,
we introduce a graph neural network which can learn assess-
ment patterns and user behaviors to more accurately predict
expert evaluations. Our extensive experiments on real and
synthetic datasets demonstrate the efficacy of our approach,
which outperforms a variety of peer assessment methods.
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1. INTRODUCTION
Peer assessment systems have emerged as a cost-effective
and scalable evaluation mechanism in many settings such
as peer grading in large (online) classes and peer review
in conferences. In these systems, peers assess each others’
work (e.g., assignments, papers, etc.) in lieu of a set of
pre-appointed experts responsible for evaluation (e.g., in-
structors, teaching assistants, program committee members,
etc.). These peer assessment systems not only make the
evaluation of thousands of contributions plausible, but also
help to deepen peers’ understanding [22], and facilitate peers
providing feedback to each other [20]. However, the reliabil-
ity of peer assessment systems is directly impacted by the
accuracy of peers in their assessments. Peers might lack
knowledge or motivation to accurately evaluate others, or

they might be strategic in their assessments for their own
gain [1, 12, 11, 2, 15, 34, 25, 21].

Related work. Two classes of approaches are taken to ad-
dress reliability challenges. One primarily focuses on de-
signing strategy-proof peer assessment mechanisms, which
incentivize peers to accurately assess each other [6, 24, 9,
16, 11, 35, 32]. The other class of approaches—most relevant
to our work—emphasizes learning peer aggregation mecha-
nisms, which aggregate noisy peer assessments for an item
(e.g., assignment or paper) as an estimate of its ground-
truth valuation (or expert evaluation) [19, 27, 7, 30, 4].
The learning methods for peer assessment aggregation fall
into unsupervised [27, 19, 5] and semi-supervised [7, 30] ap-
proaches based on whether or not a subset of ground-truth
labels are used for training in addition to peer assessment
data. These models usually possess particular inductive bi-
ases such as peer’s assessment accuracy being correlated
with his/her item’s ground-truth valuations (e.g., the grade
of his/her assignment) [19, 27, 7]; or peer’s accuracy in an
assessment depending on the extent of its agreement with
others’ assessments or ground-truth valuations [30]. How-
ever, these machine learning methods are empirically shown
to be only as effective as simple aggregation mechanisms
such as averaging [23]. Moreover, these approaches are not
flexible and general enough to accommodate a wide variety
of peer assessment modes (e.g., when an individual assesses
the group contribution of others or self assessments). Our
focus in this paper is to develop a semi-supervised aggrega-
tion mechanism without any specific or restrictive inductive
bias, accommodating various modes of peer assessments.

Contribution. We first introduce our graph representation
model of peer assessment, which we call social-ownership-
assessment network (SOAN).1 Our SOAN model can ex-
press a wide variety of peer assessment setups (e.g., self-
assessment and peer assessment for both individual or group
contributions) and represent conflict-of-interest relations be-
tween peers using auxiliary information, such as social net-
works. Leveraging our SOAN model, we then introduce
a semi-supervised graph convolutional network (GCN) ap-
proach, called GCN-SOAN, which can learn assessment pat-
terns and behaviors of peers, without any restrictive induc-
tive bias, to predict ground-truth valuations. We run ex-
tensive experiments on real-world and synthetic datasets to
evaluate the efficacy of GCN-SOAN. Our GCN-SOAN out-
performs a wide variety of baseline methods (including sim-

1SOAN can read as “swan.”
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ple heuristics, semi-supervised, and unsupervised approaches)
on the same real-world dataset [23], which was shown to be
challenging for machine learning approaches. Our GCN-
SOAN also outperforms others on a wide range of synthetic
data, which captures strategic assessment behavior between
users, follows the assumptions of competitor baselines, or
considers strict and generous graders. GCN-SOAN can be
a stand-alone approach or possibly be integrated with some
incentivizing mechanisms (e.g., [32, 5, 35]).

2. PROPOSED APPROACH
Our goal is to predict the ground-truth assessments (e.g.,
expert evaluations of educational or professional work) from
noisy peer assessments. We first discuss our proposed graph
representation model, social-ownership-assessment network
(SOAN), for capturing the peer grading behavior. We then
present a modified graph convolutional network (GCN), which
leverages our SOAN model, to predict the ground-truth as-
sessments. We call this approach GCN-SOAN.

2.1 Social-Ownership-Assessment Model
We assume that a set of n users U (e.g., students or schol-
ars) can assess a set of m items I (e.g., a set of educational,
professional, or intellectual work). The examples cover var-
ious applications ranging from peer grading in classrooms
to peer reviewing scientific papers, professional work, or re-
search grant applications. We also consider each item i ∈ I
possesses a (possibly unknown, but verifiable) ground-truth
value vi ∈ R+ (e.g., staff grade for a course work, or expert
evaluation of intellectual or professional work).

The user-item assessments can be represented by assessment
matrix A = [Aui], where Aui is the assessment (e.g., grade
or rating) of user u ∈ U for item i ∈ I. We let Aui = 0
when the user u’s assessment for item i is missing; other-
wise Aui ∈ R+. As the assessment matrix A is sparse, we
equivalently represent it by an undirected weighted bipartite
graph, consisting of two different node types of users U and
items I, and weighted assessment edges between them (see
Figure 1a as an example).

We introduce a social-ownership-assessment network (SOAN),
an undirected weighted multigraph, consisting of three types
of social, ownership, and assessment relationships on two
node types of users and items. In addition to the assess-
ment matrix A, this network consists of two other adja-
cency matrices: social matrix S = [Suv] ∈ Rn×n and own-
ership matrix O = [Oui] ∈ Rn×m. The social matrix S,
by capturing the friendship and foe relationships between
users U , can accommodate “conflict of interest” information.
The ownership matrix O, by capturing which users to what
extent own or contributed to an item, not only completes
conflict of interest information but also provides flexibility
of modeling group contributions, self-evaluation, etc. We
let G = (S,O,A) denote the tuple of all three networks
of SOAN. Figure 1 demonstrates some instantiations of our
models for various settings. SOAN offers various advantages
over the existing peer assessment models (e.g., [27, 19, 7, 4]):

Expressiveness. Our model is more expressive as it facilitates
the representation of many various peer assessment settings
that could not be accommodated in the existing models. Its
expressive power can be realized in the settings such as self

assessments (Figure 1b), peer assessments for both solo and
group work (Figures 1e and 1f), and the mixtures of peer
and self assessments for solo and group work (Figures 1c
and 1d). For all of these settings, our SOAN model can
also express conflict of interest (which is neglected in other
models) through a social network (see Figure 1g).

Less Assumptions. Dissimilar to some existing models (e.g.,
[27, 19, 7, 30]), our model avoids making explicit or implicit
assumptions about the relationships between ground-truth
values (or grades) and the quality of peer assessments. It
is still flexible enough to learn such correlations from as-
sessment data if it exists. Our experiments below have
shown that our model outperforms other models with re-
strictive assumptions regardless of whether their assump-
tions are present in the data or not.

2.2 Graph Convolutional Networks
Our learning task is semi-supervised. Given a social-ownership-
assessment network G = (S,O,A) and a set of ground-truth
valuations VD = {vj |j ∈ D} for a subset of items D ⊂ I ,
we aim to predict vi for i /∈ D. More specifically, we aim to
learn the function f(i|θθθ,G) for predicting the ground-truth
valuation vi by v̂i = f(i|θθθ,G). The model parameters θθθ
are learned from both the observed ground-truth valuations
VD = {vj |j ∈ D} and social-ownership-assessment network
G. We formulate the function f by a modified graph convo-
lution network (GCN) with a logistic head:

f(i|θθθ,G) = σ
(
w(o)zi + b(o)

)
, (1)

where σ(.) is the sigmoid function for converting the linear
transformation of the node i’s embedding zi into its pre-
dicted valuations. Here, wo and bo are the weight vector
and the bias parameter for the output layer. The node (i.e.,
item) embedding zi is computed with K layers of graph

convolution network. Let H(l) be the (n + m) × d matrix
of d-dimensional node embeddings at layer l for all users U
and items I such that user u and item i’s vector embeddings
are located at the u-th and (m+ i)-th rows, respectively. In
Eq. 1, the item i’s embedding zi is the (m + i)-th row of

H(K) with the updating rule of

H(l+1) = g(l)
(
D−1MH(l)W(l)

)
. (2)

The matrix M is constructed from the graph G = (S,O,A)

by M =

(
S P
P⊤ 0m

)
+ I, where P = O + A, ⊤ is the

transpose operator, 0m is m × m zero matrix, and I is the
identity matrix. In Eq. 2, D is the diagonal matrix with
Dii =

∑
j 1[Mij ̸= 0] with 1[.] as the indicator function.

The core idea in Eq. 2 is to update the node embeddings at
layer l + 1, denoted by H(l+1), from layer l’s node embed-
dings H(l). This update includes the multiplication of the
layer l’s embeddings H(l) by the normalized matrix D−1M,
then linear transformation by learned weight matrix W(l)

at layer l, and finally passing through a non-linear activa-
tion function g(l). The initial embedding matrix H(0) can
be node-level features (e.g., textual features for items, user
profiles for users, etc.). When the node-level features are
absent, the common practice is to initialize the embeddings
with one-hot indicators [14, 28, 10]. As our GCN is built
upon SOAN, we refer to this combination as GCN-SOAN.
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Figure 1: Different instantiations of social-ownership-assessment network (SOAN): (a) assessments provided by users to items as
weighted edges; thicker lines for higher weights; (b) self assessments of users for their own items; (c) combination of self and peer
assessments of solo contributions; (d) self and peer assessments of both solo and group contributions; (e) peer assessments of
solo contributions; and (g) self and peer assessments of group contributions with the social networks between users for capturing
conflict of interest.

The updating rule in GCN-SOAN (see Eq. 2) benefits from
row normalization of the adjacency matrix similar to many
other graph neural networks [31, 26, 28, 29]. As the choice
of an effective normalization technique is an application-
specific question [10, 3], we have decided to normalize our
weighted SOAN model by taking an unweighted average,
which has been suggested as a solution to address the sensi-
tivity to node degrees for neighborhood normalization [10].

Our GCN-SOAN differentiates from vanilla GCN in various
ways: (i) GCN-SOAN supports weighted graphs as opposed
to GCN which solely is designed for unweighted graphs; (ii)
it has asymmetric normalization as opposed symmetric nor-
malization. These properties well-equip our GCN-SOAN
to aggregate the information from multi-hop neighborhoods
(e.g., neighbors, neighbors of neighbors, and so on) of SOAN,
thus successfully capturing various assessment behaviors and
patterns as evidenced in our experiments below.

Richer data as node-level features. To incorporate richer
data for users (e.g., grader’s profile, reviewer’s expertise
level, reviewer’s interest, etc.) and items (e.g., textual or
visual information) in peer assessment systems, our GCN-
SOAN can readily accommodate those information in the
form of their node-level features. For example, the expertise
level of peers can be represented as the one-hot encoding
for initial embeddings. These initial embeddings can be ex-
tended with any other type of peers’ auxiliary information
(e.g., education, age, sex, etc.). Similarly, initial embeddings
of items can accommodate item features (e.g., the keywords
for papers, textual features extracted from a paper, etc.).

Learning. Given the SOAN of G and a small training set of
ground-truth valuations VD, we learn GCN-SOAN parame-
ters by minimizing the mean square error of its predictions:

L(θθθ|G,D) = 1
|D|

∑|D|
i=1

(
vi − f (i|θθθ,G)

)2
, where |D| is the

number of items in the training dataset, and f (i|θθθ,G) is
the estimated valuation of GCN-SOAN for item i. This loss
function can be minimized by gradient-based optimization
techniques (e.g., stochastic gradient descent, Adam, etc.).

As opposed to many existing peer assessment systems with
unsupervised learning approaches (e.g., [19, 4, 27]), we de-
liberately have adopted a semi-supervised learning approach
for predicting ground-truth assessment. This choice offers
many advantages at some cost of access to a small training
dataset. By learning from the training data, GCN-SOAN is
well-equipped to mitigate the influence of strategic behav-
iors, assessment biases, and unreliable assessments in peer
assessment systems. Of course, the extent of this mitigation
depends on the size of training data.

3. EXPERIMENTS
We run extensive experiments on real-world and synthetic
datasets to compare our GCN-SOAN model against other
peer assessment methods. While the real-world datasets al-
low us to assess the practical efficacy of our approach, we
generate various synthetic data to assess its robustness in
various settings (e.g., strategic and biased assessments).2

Real-world dataset. The peer grading datasets of Sajjadi
et al. [23] includes peer and self grades of 219 students
for exercises (i.e., questions) of four assignments and their
ground-truth grades.3 For each specific assignment, the sub-

2See the longer version for additional experiments [17].
3The datasets can be found at http://www.tml.cs.
uni-tuebingen.de/team/luxburg/code_and_data/peer_
grading_data_request_new.php. The original datasets are
for six assignments. However, two of the datasets have
ordinal peer gradings, not applicable to our experiments.

http://www.tml.cs.uni-tuebingen.de/team/luxburg/code_and_data/peer_grading_data_request_new.php
http://www.tml.cs.uni-tuebingen.de/team/luxburg/code_and_data/peer_grading_data_request_new.php
http://www.tml.cs.uni-tuebingen.de/team/luxburg/code_and_data/peer_grading_data_request_new.php


Table 1: The summary statistics of real-world peer grading datasets.

Average Grades Number of

Asst. ID Ground-truth Peer Self Exercises Groups Students Items Peer grades Self grades

1 0.62± 0.27 0.70 ± 0.26 0.74 ± 0.22 3 75 183 225 965 469
2 0.71 ± 0.24 0.76 ± 0.23 0.80 ± 0.22 4 77 206 308 1620 755
3 0.69 ± 0.33 0.75 ± 0.31 0.82 ± 0.26 5 76 193 380 1889 890
4 0.59 ± 0.27 0.68 ± 0.29 0.76 ± 0.24 3 79 191 237 1133 531

missions are group work of 1–3 students, but each student
individually has self and peer graded all exercises of two
other submissions (in a double-blind setup). We treat all
data associated with each assignment as a separate dataset,
where all the submitted solutions to its exercises form the
item set A and the user set U includes all students who have
been part of a submission. We also have scaled peer, self,
and ground-truth grades to be in the range of [0, 1]. Table
1 shows the statistics summary of our datasets.4

Synthetic datasets. We discuss different models used for the
generation of our synthetic data.

Ground-truth valuation/grade generation. For all i ∈ A, we
sample the true valuation vi from a mixture of two nor-
mal distributions vi ∼ P (x;πππ,µµµ,σσσ) =

∑2
c=1 πcN (x;µc, σc),

where πππ = (π1, π2), µµµ = (µ1, µ2), and σσσ = (σ1, σ2), with πk,
µk, and σk being the mixing probability, mean, and standard
deviation of the component k.

Social network generation. We create social networks be-
tween users by Erdős-Rényi (ER) random graph G(n, p)
model: each pair of n users are connected to each other
with the connection probability of p.

Ownership network generation. For all synthetic datasets,
we randomly connect each user to just one item (i.e., one-to-
one correspondence between users and items). This setup is
in favor of existing peer assessment methods (e.g., [19, 27,
7]), which does not support group ownerships of items.

Assessment network (or peer grades) generation. To gener-
ate peer assessment for each item i ∈ A, we first randomly
select a set of k users N(i) ⊂ U such that |N(i)| = k. Then,
for each u ∈ N(i), we set u’s assessment for item i, denoted
by Aui, using one of these two models. The strategic model
sets Aui = 1, if the grader u is a friend of the user j who owns
the item i (i.e., suj .oji = 1); otherwise Aui comes from a nor-
mal distribution with the mean of vi and standard deviation
of σH . This implies that friends collude to peer grade each
others with the highest grade, but would be relatively fair
and reliable in assessing a “stranger.” The bias-reliability
model draws Aui from the normal distribution N (x; µ̂, σ̂)
with the mean µ̂ = vi + α and σ̂ = σmax(1− βvl), where vl
is the true valuation of item l owned by user u, and σmax is
the maximum possible standard deviation (i.e., unreliabil-
ity) for peer graders. Here, the bias parameter α ∈ [−1, 1]
controls the degree of generosity (for α > 0) or strictness
(for α < 0) of the peer grader. The reliability parameter β

4While GCN-SOAN can easily accommodate user/item fea-
tures, we were not able to explore its full potential due to a
lack of access to datasets with such features.

controls the extent that the reliability of the grader is cor-
related with his/her item’s grade (i.e, the peer graders with
higher grades are more reliable graders). The inductive bias
of many peer assessment models (e.g., [27, 7, 19]) include
the assumption that the grader’s reliability is a function
of his/her item’s grade. Our bias-reliability model allows
us to generate synthetic datasets with the presence of this
assumption. So we can compare our less-restrictive GCN-
SOAN with those models tailored to this specific assumption
in such datasets.

Baselines. We compare the performance of our GCN-SOAN
model with PeerRank [27], PG1 [19], RankwithTA [7], Van-
couver [4], Average, and Median. Average and Median (resp.)
outputs the average and median (resp.) of each item’s peer
grades as its predicted evaluation. As PeerRank, PG1, and
RankwithTA treat users and items interchangeably, they
can’t be directly applied to our real-world data with individ-
ual assessments on group submissions. For these methods,
we preprocess our real-world dataset by taking the average
of the grades provided by a group’s members for a particular
submission as the group assessment for the submission. For
the PeerRank and PG1, we have used the same parameter
settings reported by the original papers. The parameters
for RankwithTA and Vancouver are selected by grid search
with multiple runs, since the optimal parameters either were
not reported or result in non-competitive performance.5

Experimental setup. We implement GCN-SOAN based on
PyTorch [18] and PyTorch Geometric [8].6 For all experi-
ments, we use two GCN-SOAN convolutional layers with an
embedding dimension of 64 and ELU as activation functions
of all hidden layers. We train the model for 800 epochs with
Adam optimizer [13] and a learning rate of 0.02. We initial-
ize the node embeddings with vectors of ones. We use Monte
Carlo cross-validation [33] with the training-testing splitting
ratio of 1:9 (in synthetic data) or 1:4 (in real-world data),
implying that just 10% or 20% data is used for training and
the rest for testing. To make our results even more robust,
we run all tested methods (our model and baselines) on four
random splits and report the average error over those splits.
For each random split, we compute the root mean square
error (RMSE) over testing data as the prediction error.

Results: Real-World Datasets. To assess the effectiveness
of GCN-SOAN in predicting ground-truth valuations, we
compare it against the baseline methods on eight real-world

5We set the Vancouver’s precision parameter to 0.1. For
RankwithTA, we set 0.8 and 0.1 (respectively) for the pa-
rameters controlling the impact of working ability on grading
ability and grading ability on the grade (respectively).
6The implementation of GCN-SOAN can be obtained from:
https://github.com/naman-ali/GCN-SOAN/

https://github.com/naman-ali/GCN-SOAN/


Table 2: Root mean square error of various methods over two classes of real-world datasets. The first and second best are shown
with dark and light gray backgrounds, respectively. ↑ and ↓ denote better and worse than Average. GCN-SOAN (ours) is the
only method that consistently has outperformed Average for all datasets. Results are averaged over three runs.

Peer evaluation Peer and self evaluation

Model Asst. 1 Asst. 2 Asst. 3 Asst. 4 Asst. 1 Asst. 2 Asst. 3 Asst. 4

Average 0.1917 0.1712 0.1902 0.1989 0.1944 0.1681 0.2023 0.2117
Median 0.1991 ↓ 0.1843 ↓ 0.2047 ↓ 0.2250 ↓ 0.2111 ↓ 0.1750 ↓ 0.2333 ↓ 0.2538 ↓
PeerRank 0.1913 ↑ 0.1762 ↓ 0.2235 ↓ 0.2087 ↓ 0.1888 ↑ 0.1721 ↓ 0.2203 ↓ 0.2168 ↓
PG1 0.1919 ↓ 0.1669 ↑ 0.2110 ↓ 0.2161 ↓ 0.2009 ↓ 0.1680 ↑ 0.2111 ↓ 0.2304 ↓
RankwithTA 0.1922 ↓ 0.1903 ↓ 0.2183 ↓ 0.1740 ↑ 0.1884 ↑ 0.1845 ↓ 0.2137 ↓ 0.1792 ↑
Vancouver 0.1851 ↑ 0.1688 ↑ 0.1951 ↓ 0.2071 ↓ 0.1815 ↑ 0.1672 ↑ 0.1945 ↑ 0.2101 ↑
GCN-SOAN (ours) 0.1795 ↑ 0.1673 ↑ 0.1869 ↑ 0.1822 ↑ 0.1778 ↑ 0.1621 ↑ 0.1840 ↑ 0.1821 ↑

datasets. These datasets differentiate on (i) which assign-
ment dataset is used and (ii) whether both peer and self-
grades are used or only peer grades. For GCN-SOAN, we
just create an assessment network, thus allowing us to mea-
sure how the assessment network alone can improve the
predication accuracy. As shown in Table 2, our GCN-SOAN
model outperforms others in five datasets and ranked sec-
ond in remaining ones with a small margin. RankwithTA
and PG1 are the only models that slightly outperform GCN-
SOAN for those three datasets. Notably, GCN-SOAN is the
only model which consistently outperformed the simple Av-
erage benchmark. This observation is consistent with Saj-
jadi et al.’s findings [23] on the same dataset that the existing
machine learning methods (not including ours) could not im-
prove results over simple baselines. However, the conclusion
does not hold anymore as our machine learning GCN-SOAN
approach could consistently improve over simple baselines.
This improvement mainly arises from the expressive power
and generalizability of GCN-SOAN (discussed in Section 2).

Results: Synthetic Data with Bias-Reliability. We run an ex-
tensive set of experiments with the bias-reliability peer grade
generation model to assess our GCN-SOAN under various
peer assessment settings. For these experiments, we define
a default setting for all parameter of synthetic generation
methods (e.g., bias parameter α, reliability parameter β,
etc.). For each experiment, we fix all parameters except
one; then, by varying that parameter, we aim to understand
its impact on the performance of GCN-SOAN and other
baselines. Our default setting includes a number of users
n = 500 and number of items m = 500; random one-to-
one ownership network; µµµ = (0.3, 0.7), σσσ = (0.1, 0.1), and
πππ = (0.2, 0.8) for the ground-truth generation method;7 the
number of peer grades k = 3,8 σmax = 0.25, bias parame-
ter α = 0, and reliability parameter β = 0 for assessment
network generation; and no social network generation.9

Figure 2a shows how the prediction error changes with the
number of peer graders k while the other parameters are
fixed to the default setting. Unsurprisingly, the performance

7This setting for ground-truth distribution is motivated by
two-humped grade distribution in academic classes.
8This choice of 3 is motivated by the fact that most practi-
cal applications (e.g., conference review or peer grading in
classrooms) do not require more than 3 peer assessment per
item due to time-consuming nature of assessment processes.
9We have run some other experiments with different default
settings. The results were qualitatively similar.

of all methods improves with k. GCN-SOAN not only out-
performs others for any k, but also exhibits significant im-
provement over others for a relatively small k (e.g., k ≤ 4).
This superiority of GCN-SOAN with minimal number of
peer graders is its strength to make peer assessment suitable
and practical for different applications, as so many peer as-
sessment requests will put unnecessary stress and burden on
users, thus impeding the practicality of the system.

Figure 2b illustrates the errors for each model while changing
the bias parameter α (and keeping other parameters fixed
to default). GCN-SOAN performs significantly better than
other models for any bias values, including generous (α > 0)
and strict graders (α < 0). GCN-SOAN owes this success
to its ability to learn students’ grading behavior by leverag-
ing a small portion of ground truth grades and assessment
network structure. These experiments show that our model
could be a great choice for those peer assessment settings
where the peer grades are intentionally or unintentionally
overestimated/underestimated.

Figure 2c reports the errors for various values of reliabil-
ity parameters β. Recall that the β controls the extent
that the accuracy of each peer in his/her assessments is cor-
related with his/her item’s grade. Our results show that
GCN-SOAN is very competitive to other models, even those
built based on this correlation assumption (e.g., [27, 19]).
We observe that only when β > 0.8, PeerRank outperform
GCN-SOAN. One might argue that β > 0.8 is implausible
scenario in practice. However, this result suggests that our
model is still competitive choice for settings in which peer
assessment accuracy is correlated with peer success.

To study how various ground-truth generation distribution
impacts the prediction error of various method, we first
change the default biomodal mixture of normal distributions
(for ground truth generation) to a normal distribution by
setting µ1 = µ2 and σ1 = σ2 = 0.15. Then, we only vary the
mean of distribution while other parameters are fixed to de-
fault. As shown in Figure 2d, GCN-SOAN consistently out-
performs others regardless of the underlying ground-truth
distribution. Notably, PeerRank and RankwithTA do not
perform well when most users own items with low grades.

Results: Synthetic Data with Strategic Assessment. We study
the performance of all peer assessment methods under the
strategic model discussed above. For this set of experiments,
we define this default setting: number of users n = 500 and
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Figure 2: Root mean square errors of various methods, synthetic data with bias-reliability peer generation model, default setting
for all parameters but varying (a) number of peer graders k, (b) grading bias α, (c) reliability parameter β, or (d) ground-truth
mean µ. Average over four runs.

Figure 3: Average of root mean square errors, synthetic data
with strategic peer grade generation model and random graph
model.

number items m = 500; random one-to-one ownership net-
work; µµµ = (0.3, 0.7), σσσ = (0.1, 0.1), and πππ = (0.2, 0.8) for the
ground-truth generation method; the number of peer grades
k = 3 and σmax = 0.25 for assessment network generation
by the strategic model; and ER random graph model with
n = 500 and p = 0.05 for social network generation. We
only vary the connection probability p while keeping other
parameters fixed to study how the connection density of col-
luding social networks impact the accuracy of peer assess-
ment methods. Figure 3 show the outstanding performance
of our model compare to other benchmarks and illustrate
how our model is more resilient to colluding behaviors. This
result suggest that GCN-SOAN is well-eqiupped to detect
conflict-of-interest behaviors and mitigate the possible im-
pact of any strategic behaviors.

Discussion. Our experiments show that GCN-SOAN learns
very well various grading behaviors, even when graders have
intentional or unintentional biases in their evaluations. We
also observe that our GCN-SOAN can outperform other
benchmarks even when their main inductive biases are strongly
present in the dataset (e.g., when the grading ability of users
are strongly correlated to the quality of their own work).

Our set of benchmarks, in spite of being very competitive,
does not cover all ML-based peer assessment methods. We
make a few remarks about this. PG3 [19] is missing in our
experiments as its implementation was not publicly available
and we could not properly implement it to gets its compet-
itive performance. However, we expect that GCN-SOAN
outperforms PG3 since the relative improvements of GCN-

SOAN over PG1 is 10.27% (on average) compared to the
average relative improvement of 1.76% for PG3 over PG1
(as reported in their original paper [19]). We also spec-
ulate that the other traditional ML-based methods might
not outperform our GCN-SOAN for at least one reason:
except graph neural networks, most ML methods assume
that the data points (e.g., peer grades, ground-truth valu-
ation, etc.) are identically and independently distributed
(i.i.d.). However, as argued earlier, the peers’ grading be-
haviors, ownerships, social connections, and valuations of
their owned items are all dependent on each other. Ignor-
ing these dependencies in machine learning methods with
i.i.d. assumptions make them less competitive to our GCN-
SOAN in which these dependencies are well-expressed by our
proposed SOAN and well-exploited by our proposed graph
neural network algorithm. This might explain why the lit-
erature has even been thin in successfully exploring other
advanced machine learning models and Sajjadi et al. [23]
concluded that machine learning methods cannot improve
over simple heuristics (e.g., average).

4. CONCLUSION AND FUTURE WORK
We represent peer assessment data as a weighted multi-
relational graph, which we call social-ownership-assessment
network (SOAN). Our SOAN can easily express many dif-
ferent peer assessment setups (e.g., self assessment, peer
assessment of group or individual work, etc.). Leveraging
SOAN, we introduce a modified graph convolutional net-
work approach, which learns peer assessment behaviors, to
more accurately predict ground-truth valuations. Our ex-
tensive experiments demonstrate that GCN-SOAN outper-
forms state-of-the-art baselines in a variety of settings, in-
cluding strategic behavior, grading biases, etc.

Our SOANmodel provides a solid foundation for the broader
investigation of graph neural network approaches for peer
assessments. Our GCN-SOAN can be extended to mitigate
the over-smoothing effect observed in our experiments, or to
include a different set of network weights for each relation
type of social, assessment, and ownership. Another promis-
ing direction is to assess the effectiveness of GCN-SOAN or
its extensions on real-world assessment data, with the pres-
ence of social network data. Finally, it would be interesting
to collect data with richer node features in order to evaluate
how node features can further improve our GCN-SOAN.
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