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ABSTRACT 
This study applied a problem-based learning framework to visual-
ize students’ problem-solving patterns using sequential log data. 
Comparing the theory-informed visualization with a graph without 
theoretical guidance proved that problem-solving visualizations 
with a theoretical foundation were more interpretable for research-
ers and educators. The presentation of the graph was more explicit, 
and the outcomes can be generalizable to other related PBL studies. 
Besides, the theory-informed visualization can also be used by 
teachers to provide differentiated scaffoldings to support different 
groups of students when facilitating problem-based learning activ-
ities.  
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1. BACKGROUND & INTRODUCTION 
Problem-based learning (PBL) is an instructional method in which 
students learn through facilitated problem solving that centers on 
an ill-structured problem [8]. It is a constructivist educational strat-
egy and should be performed via a student-centered pedagogical 
approach [6]. In other words, when engaging in a PBL activity, 
learners should take a more active role in obtaining knowledge and 
skills [9]. Instructors need to serve as facilitators who provide indi-
vidualized instructions to accommodate students’ diverse progress 
[17]. 

In a constructivist activity like PBL, students would be at different 
paces and engage in various tasks. Thus, to better facilitate stu-
dents’ problem-solving, it is vital to monitor their progress [6]. 
Only after educators or researchers tracked students’ different pro-
gress successfully and precisely, then they could provide 
individualized instructions to facilitate students [13].  

The recent advancement of virtual PBL environments provided re-
searchers opportunities to track students’ problem-solving progress 
[3]. When students were engaging with virtual PBL environments, 
a large number of usage clickstream log data would be generated. 
The clickstream log data is time-stamped and captures students’ 
fine-grained behaviors [18]. Researchers and educators can employ 
these data to monitor students’ real-time progress or to provide just-
in-time interventions.  

The collected log data is often large amounts and consists of multi-
ple features including student ID, timestamp including start time, 
end time, the name of accessed tool, tool use actions such as tool 
open or close, and so on. Collecting the clickstream log is just the 
first step, a more crucial step is how researchers and educators pro-
cess the log data to make it interpretable for further educational 
practices. In this case, educational theories are needed in guiding 
researchers to process the collected log data and make it interpret-
able and relevant to educators.  

2. PURPOSE OF STUDY 
The research involving collecting, analyzing, and reporting learn-
ers’ usage log data is considered learning analytics studies (LA). 
Researchers have been exploring and refining the approaches of in-
corporating educational theories when conducting LA studies [2]. 
For instance, a study [7] incorporated the framework of engage-
ment in processing student-generated log data on MOOCs. 
Researchers applied exploratory and confirmative factor analysis 
upon collected log data, and related the outcome factors to three 
engagement constructs: affective, cognitive, and behavioral en-
gagement. This theory-informed data processing allowed 
researchers better to interpret the association between usage logs 
and learner performance. For example, learners’ video watching 
duration is associated with final scores because they were posi-
tively correlated with the behavioral and cognitive engagements. In 
another study [15], researchers mapped usage logs on learning 
management systems to self-regulated learning (SRL) phases. For 
instance, students’ actions of accessing objectives or lesson over-
views were associated with the Forethought phase of SRL. These 
actions reveal the traces of learners’ goal-setting behaviors, an im-
portant component of the forethought phase. Following the SRL 
framework, researchers could draw a clear path between nuanced 
learning analytics features and the nuances of learning theories. In 
return, the framework provided a solid theoretical foundation for 
further instructional practices and the future designs of the learning 
platforms. Although researchers have taken initiatives of involving 
theories to process log data generated from various educational 
platforms. However, selfdom studies have focused on incorporat-
ing theories to process problem-solving behavioral logs. Although 
previous studies applied LA techniques to analyze problem-solving 
logs [3, 12], however, to produce inferable and generalizable re-
search findings for future PBL research, more theory-based log 
processing approaches are needed.  

In addition, data visualization was widely applied in representing 
log data outcomes, especially when the amount of data is large [11]. 
LA studies can be benefited from data visualization techniques is 
because the visualizations can represent the large amount of data in 
a compact format without losing essential information [1]. For ex-
ample, a study [4] extracted student log data from a virtual 
geometry game to visualize their problem-solving patterns. These 
graphs helped researchers to examine students’ problem-solving 
patterns explicitly, they were able to see whether students were on 
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the expected path during the activity. In another study [14], re-
searchers used area graphs to represent students’ different tool 
usage frequencies in a virtual PBL environment. These graphs al-
lowed researchers to efficiently identify the different usage patterns 
between different groups of students. Using log data to create data 
visualizations brings researchers larger flexibility to examine user 
behavior patterns from different aspects. The outcomes of the vis-
ualizations could also be used in the classroom to inform teachers 
about providing just-in-time supports [16]. 

Considering the advantage of data visualization and the need to in-
corporate educational theories in processing log data, especially in 
the PBL context. The purpose of this study is to merge the gap by 
providing a theory-informed LA method to process sequential be-
haviors generated in a PBL activity. Then, by visualizing the 
sequential outcomes, the ultimate goal of proposing this approach 
is to (1) generate theory-based interpretable sequential patterns for 
researchers and (2) assist teachers in being better informed about 
students’ progress to support their PBL facilitation. 

3. METHOD 
3.1 Research Context 
The PBL environment applied in this study is called Alien Rescue 
(AR). In this environment, students play the role of scientists to 
help six alien species to relocate to our solar system. By solving the 
problem of which species can survive on which planet or moons in 
our solar system, students would gain related scientific knowledge 
aligned with 6th-grade science standards. 

Figure 1 presents the screenshots of the AR environment. It is a 3D 
immersive problem-solving platform, and there are ten different 
cognitive tools embedded for students to use. These tools, like the 
Solar system database or Notebook, can provide students with 
needed information and scaffoldings to find the solutions. 

 
Figure 1. Alien Rescue PBL environment  

3.2 Participants and Data Source 
A total of 114  six grade students engaged with the AR PBL envi-
ronment through 15 class sessions. More specifically, 61 students 
conducted this activity virtually at home, and 53 students conducted 
this activity in-person at school. 

In all, 45554 lines of behavioral log data generated by participants 
were collected for data processing and analysis. The features of the 
collected log data include: 

• Student ID. 
• Activity start time (by second). 
• Activity end time (by second). 
• The name of the accessed tool. 
• Tool usage actions such as tool open or close. 

3.3 Theory-Informed Data Processing 
To track and analyze students’ problem-solving behaviors and pre-
sent generalizable outcomes, the framework of PBL process was 
applied [8]. Based on the framework, problem-solving usually con-
sists of multiple phases, including identifying facts (IF) and 
Knowledge deficiency (IKD), generating hypotheses (GH), and 

Solutions (GS). Learners perform the phases iteratively or in differ-
ent order until solutions are produced. To better interpret students’ 
problem-solving patterns using log data and related to the frame-
work, 28 different kinds of behavioral log actions in AR were 
connected with several problem-solving phases based on the con-
cept of each phase [8]. Table 1 presents an example of the 
alignment. The first phase in the framework is the activities for stu-
dents to understand the problem scenario. AR environment 
provides several tools such as Alien or Concept Databases for stu-
dents to collect the information they need for solving the problem. 
Thus, the access to these tools aligns with the idea of Identify Facts 
(IF) phase. Plus, students needed to generate possible hypotheses 
as they gathered more information. The probe sending feature in 
AR is a critical component that students can actively obtain infor-
mation to generate hypotheses. Thus, the actions related to sending 
probes were aligned with Generate Hypothesis (GH) phase. More-
over, AR provided students with a Notebook tool to organize 
collected information and identify missing pieces, which resonates 
with the phase Identify Knowledge Deficiency (IKD). Plus, Note-
book also allows students to generate possible solutions via a 
Comparing Notes feature. This feature lets students conveniently 
compare the information they obtained in the environment to de-
cide which place is suitable for which alien. In this case, actions 
relevant to comparing notes were aligned with Generate Solution 
(GS) phase.  

Table 1. Examples for alignment process 

Log Activities 
in AR 

Phases in PBL 
Cycle 

Definition 

Alien Data-
base: Click 
Concept Data-
base: Click 

Identify Facts  
(IF, index = 1) 

Students identify the 
relevant facts from the 
environment, which 
helps them represent the 
problem. 

Probe Design: 
Change Probe 
Name; Click 
Back Button 

Generate Hy-
pothesis  
(GH, index = 
2) 

Students take the initia-
tive to generate possible 
hypotheses as they un-
derstand the problem 
better. 

Notebook: 
Click; Create; 
Delete; Edit 

Identify 
Knowledge 
Deficiency  
(IKD, index = 
3) 

Students identify the 
knowledge that is gath-
ered against knowledge 
that is still needed. 

Notebook: 
Compare; Edit 

Generate Solu-
tions  
(GS, index = 4) 

Students use the ob-
tained knowledge to 
produce solutions. 

Ultimately, all log data were transformed into 1789 sequences that 
reflect students’ problem-solving sequential patterns. Table 2 pre-
sents an example of processed outcomes. For instance, the first row 
indicates the sequence performed by student 1 in May. 25th is IF, 
IKD, GH, IF, IKD, and GS, which is different from the sequence 
the student conducted in May. 26th. These sequences were then 
used for sequential analysis and creating visualizations to examine 
student problem-solving patterns. 

Table 2. Example of processed sequences 

Student Date Activity Sequence 

Student 1 May.25th [1, 3, 2, 1, 3, 4] 

Student 1 May.26th [1, 3, 1, 3, 1, 4, 1, 4, 1] 

Student 2 May.25th [1, 2, 1, 3, 2, 1, 3, 1, 2, 3] 



Note. 1 = Identify Facts (IF), 2 = Generate Hypothesis (GH), 3 = 
Identify Knowledge Deficiency (IDF), 4 = Generate Solutions (GS) 

3.4 Data Visualization Techniques 
Problem-solving is a sequential activity that consists of multiple 
phases such as Identify Facts or Generate Hypothesis. The paths 
students go through during these phases are not always linear. In 
fact, during a PBL activity, students usually go iteratively or circle 
among different problem-solving phases [8]. The Sankey graph is 
a type of graph that symbolizes sequential activities. It can mimic 
users’ iterative sequential behaviors. More importantly, the graph 
can also present the strength of each sequential path: the wider the 
path between two phases, the larger proportion of the sequential 
activity between two phases among all sequences in the graph. 
Thus, Sankey graphs were used to visualize the iterative manner of 
students’ problem-solving efforts. 

4. RESULTS & DISCUSSION 
4.1 Theory-informed visualization 
Figure 2 was created to represent students’ problem-solving behav-
ioral patterns. For instance, the label 20% on the top of the figure 
means, among all the paths performed by students, 20% of the se-
quential actions were from Identify Knowledge Deficiency (IKD) 
to Identify Facts (IF) phase.  

 
Figure 2. Theory-informed problem-solving patterns 

Based on Figure 2, following highlights can be extracted: 

• Relatively large proportions of the sequential behaviors were 
conducted between IKD and IF phases (20%, 22%). It means 
students were inclined to keep seeking information until they 
figured out what information was obtained and what was miss-
ing, and they would find out the ones they needed.  

• The paths involving Generate Solutions (GS) were relatively 
smaller among all the paths (e.g., IF to GS is 3%; GH to GS is 
2%). These outcomes indicate GS is more of an end of prob-
lem-solving activity instead of a mean. It is aligned with the 
PBL environment setting. In the GS phase, students just 
needed to submit their solutions to a console in the environ-
ment, the action itself does not enhance or intervene in their 
problem-solving progress. In total, students are required to 
compose six solutions; that’s why the GS phase paths are 
smaller. To be noted, there were some paths coming out from 
GS phase; it means students were reconfirming their solutions 
either by going back to IF (2%) to examine some information, 
or to GH phase (2%) to refine their hypothesis. 

• The paths among IF, GH, and IKD occupy medium propor-
tions compared to the above two findings. For instance, 16% 
of the actions were from IKD to GH. GH phases involve the 
actions that students were sending probes to narrow down 
their hypothesized solutions. Students may or may not have a 

solution ready after the GH phase, which explains why the 
proportion of paths from GH to GS is relatively small (2%).  

In all, figure 2 presents the problem-solving sequential patterns per-
formed by students during a PBL activity. This graph provided an 
overview of how students conducted problem-solving in an itera-
tive manner across multiple PBL phases. More importantly, this 
graph provided a theory-informed representation of the sequential 
problem-solving patterns generated by a group of middle school 
6th-graders in a science PBL activity. Because the paths presented 
the actions transiting across different PBL phases, this outcome 
would be informative for other PBL research that is either in a sim-
ilar or a different educational context. 

In fact, to examine the benefits of theory-informed visualizations, 
Figure 3 was created by the authors for providing a contrast to fig-
ure 2. Figure 3 is also a Sankey graph but without aligning the 
problem-solving actions and the PBL phases. All nodes presented 
were different tools provided in the PBL environment, and all paths 
were students’ sequential paths across each tool. For instance, from 
this figure, we can find out relatively large proportions of sequen-
tial actions were performed among Notebook, Solar System 
Database, and Alien Database. These three tools are all essential 
features provided in the environment for students to solve the prob-
lem. Indeed, it provided a fine-grained visualization of how 
students transited across different tools in the environment. How-
ever, figure 3 could be less interpretable than figure 2 in the 
following two aspects.  

 
Figure 3. Patterns without PBL framework alignment 

The first aspect is information presentation. In the AR PBL envi-
ronment, there are a total of 10 different tools. A graph that presents 
students' problem-solving patterns in such an environment should 
incorporate all the actions among these ten tools. Compared to fig-
ure 2, which only contains four nodes, figure 3 brings a larger 
amount of information or cognitive load for readers to process [1]. 
Plus, the presentation of this graph is already congested even with-
out the authors inputting direction and percentage for each path. In 
fact, many current PBL environments, such as River City [10] or 
Crystal Island [5], involve more than ten tools or features that stu-
dents need to access. Even though a fine-grained graph that 
includes all tools can reveal detailed sequential behaviors and is in-
formative to readers familiar with the environment, it might be 
challenging for both researchers and readers to interpret those less 
acquainted.  

The second aspect is generalizability. A fine-grained graph like fig-
ure 3 can indeed reveal exact sequential action performance by 
students. For example, after accessing Probe Design, the figure 
shows students would engage with a series of tools such as Alien 
Database or Spectra. However, what do these actions mean in terms 



of problem-solving patterns in general? It may be more informative 
for developers of this environment than researchers conducting 
PBL studies in different contexts. Whereas for figure 2, since the 
Probe Design is aligned with the GH phase (see Table 1), the figure 
shows 13% of actions afterward were to IDF, and 13% were to IF. 
These outcomes provide a more explicit picture of how students 
performed their PBL paths and strategies, since it is aligned with 
the PBL framework [8]. Other studies that also applied this frame-
work could compare and contrast the outcomes with this study and 
draw inferences. In addition, researchers or educators who are con-
templating conducting PBL studies or activities could pick up the 
information that depicts students’ problem-solving patterns easily 
from the theory-informed graphs to apply to their future PBL de-
sign or activities.  

4.2 Uses of the theory-informed visualization 
Expect for interpretation, the theory-informed visualizations also 
present in-depth outcomes for researchers and educators about stu-
dents’ problem-solving patterns based on conditions. Since 
participants engaged in the AR PBL environment under virtual or 
in-person modes, the theory-informed visualizations can also pro-
vide a comparison between these two groups.  

 
Figure 4. Problem-solving patterns grouped by learning modes 

A Sankey graph was made with light blue representing the paths 
conducted by students in the virtual mode and dark blue represent-
ing the paths by students in the in-person mode (see Figure 4). The 
statistical results showed that students in the virtual mode (M = 106, 
M = 97) performed significantly more paths from Identify Facts 
(IF) to Identify Knowledge Deficiency (IKD) phase (U = 901. 00, 
z = 3.86, p < .01), and from Identify Knowledge Deficiency (IKD) 
back to Identify Facts (IF) phase (U = 829. 00, z = 4.28, p < .01) 
than their in-person mode peers (M = 82, M = 72), these statistical 
outcomes are resonated with the Sankey graph that light blue path 
is wider than dark blue paths. Moreover, as indicated in Figure 4, 
students in the virtual mode (M = 8) were more inclined to use the 
generated hypothesis to assist their knowledge deficiency identifi-
cation process (U = 879. 50, z = 2.16, p < .05) than students in the 
in-person mode (M = 12). Based on these results, the students in the 
virtual mode appeared to be more careful when identifying 
knowledge deficiency by organizing their collected information on 
Notebook. They were more likely to collect information from dif-
ferent databases (ID) or draw results from the probes they sent (GH) 
first, then input the information on Notebook for further uses. In 
fact, carefully identifying sufficient information from different da-
tabases and collecting returned data from probes are expected 
problem-solving sequential paths that would provide students with 
better solution outcomes [8].  

IIn addition, the graph also showed that students in the in-person 
mode did not perform the paths from Generate Solutions (GS) to 
Identify Facts (IF), the dark blue path is missed between these two 

phases. To conceptualize and finalize robust solutions, it would be 
helpful for students to check with different databases to ensure the 
correct information supported the solution. Therefore, the above 
outcomes indicate that students in the virtual mode would perform 
the problem-solving actions close to the expected path, leading to 
better problem-solving outcomes. These results presented that stu-
dents under different learning modes performed distinctive 
problem-solving strategies. It indicates that when teachers facilitate 
PBL activities, different scaffoldings instructions should be pro-
vided based on students’ learning mode. For example, teachers can 
encourage in-person students to identify what information they still 
need before generating hypothesis, or remind them to examine the 
facts before submitting their final solutions.  

In addition, the gender variable can also be incorporated by the the-
ory-informed visualization. Figure 5 was made to visualize the 
different problem-solving sequential patterns between genders. The 
light blue color represents the paths conducted by male students, 
and the dark blue color represents female students. It is noticeable 
that from Identify Facts (IF) to Generate Hypothesis (GH) phase, 
the light blue path is wider than the dark blue path. A similar pattern 
could be observed from Generate Hypothesis (GH) back to Identify 
Facts (IF) phase as well. Statistical results showed that under con-
dition A, male students (M = 13, M = 17) performed significantly 
more paths from Identify Facts to Generate Hypothesis (GH) phase 
(U = 1027. 00, z = 3.14, p < .01), and from Generate Hypothesis 
back to Identify Facts (IF) phase (U = 1137. 00, z = 2.50, p < .05) 
than their female peers (M = 8, M = 12). These results indicate that 
male students dedicated more efforts to generating hypotheses di-
rectly after collecting information from different databases (see 
Table 1), and these actions were presented in a repeated manner. 
On the other hand, female students might be more cautious when 
generating hypotheses, as indicated on the graph, female students 
(dark blue) were more likely to generate hypotheses after identify-
ing knowledge deficiency than male students (light blue). Although 
this path is not significantly different by gender, it still reveals nu-
anced sequential differences between genders. Therefore, teachers 
can provide scaffoldings to different students based on gender ac-
cordingly. For instance, teachers can remind male students not to 
make prompt hypotheses right after identifying facts from data-
bases. But instead, they can check what information is missing and 
what they already have to draw better hypotheses. 

 
Figure 5. Problem-solving patterns grouped by genders 

5. CONCLUSION 
In conclusion, this study's findings revealed that theory-informed 
visualizations could provide more interpretable outcomes when ex-
amining students' sequential activities during problem-solving 
activities. The overall presentation of the visualization would be 
more explicit and generalizable to other relevant studies. 



Moreover, the theory-informed visualizations can also demonstrate 
students' patterns based on different conditions such as learning 
modes or genders. These nuanced outcomes can inform teachers' 
differentiated scaffoldings when facilitating PBL activities.   
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