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ABSTRACT 
In this study, we proposed an Online Item Response Theory Model 

(OIRT) by combining the Item Response Theory and Performance 

Factor Analysis (PFA) models. We fitted the proposed model with 

modified Variational Inference (VI) to perform real-time student 

and item parameter estimation using both simulated data and real 

time series data collected from an online adaptive learning 

environment. Results showed that modified VI parameter 

estimation method outperformed other Bayesian parameter 

estimation methods in efficiency and accuracy. We also 

demonstrated that OIRT tracked students’ ability growth 

dynamically and efficiently, it also predicted students' future 

performance with reasonable AUC given limited input features. 

Keywords 
Item Response Theory, Performance Factor Analysis, Online 

Learning, Bayesian Parameter Estimation, Variational Inference 

1. INTRODUCTION 
As time series data become increasingly prevalent in online 

learning system, tracking students' ability changes during their 

learning processes is important for the analysis of teaching and 

learning activity. There have been three commonly used models for 

estimating students' cognitive mastery: Item Response Theory 

(IRT) model is a general tool to provide a quantitative description 

of students' ability in academic testing. Knowledge Tracing (KT) 

model tries to predict a students' future performance through their 

historical interaction logs [5]. Performance Factor Analysis (PFA) 

[15] analyzes learning rates of  students by considering multiple 

Knowledge Components (KCs) of each exercise item.  

None of the above approaches are perfectly applicable to monitor 

students' ability changes in online learning. IRT roots on the 

assumption that students’ true abilities are fixed [18], which may 

not be true in online learning environment, because student abilities 

are dynamic. Bayesian KT only estimates binary hidden states 

(either mastery or non-mastery) and models each KC separately. 

Standard IRT and PFA models are not able to perform real-time 

parameter estimation due to model format or estimation methods. 

In this study, we propose an Online Item Response Theory Model 

(OIRT) to track students' ability changes in real-time fashion using 

both simulation and real data. 

In summary, the contribution of the work is three-fold: (1) propose 

OIRT model by estimating students' initial abilities, item 

difficulties as well as ability changes for different KCs; (2) modify 

Variational Inference (VI) [24] under OIRT model to track 

students’ ability changes; (3) compare the computational time and 

accuracy of the modified VI with other parameter estimation 

approaches, and demonstrate answer accuracy prediction by OIRT. 

2. BACKGROUND 
In this part, IRT and PFA models as well as common real-time 

parameter estimation approaches are briefly reviewed. 

2.1 Item Response Theory Model 
IRT is widely used in assessing student abilities and item 

difficulties due to its high interpretability. The one-parameter 

logistic (1PL) model [16] is given in Eq.1, 

𝑝(𝑦𝑖𝑗|𝜃𝑖, 𝑏𝑗) =
1

1 + 𝑒−(𝜃𝑖−𝑏𝑗)
 

(1) 

where 𝑦
𝑖𝑗
 is the 𝑖-th student's response to the 𝑗-th item. 𝑦

𝑖𝑗
= 1 

indicates a correct answer and 0 otherwise. 𝜃𝑖 denotes the ability 

of the 𝑖-th student and 𝑏𝑗 denotes the difficulty of the 𝑗-th item. 

We developed our OIRT model based on 1PL model in Eq.1, but 

OIRT can be extended to 2 or 3PL IRT models [7,8] easily. 

2.2 Performance Factor Analysis 
IRT model only estimates a constant ability for each student and 

cannot model the changes of student abilities as learning proceeds 

[18]. To address this problem, especially in the adaptive online 

learning environment, Learning Factor Analysis (LFA) model [4] 

and PFA model [15] are proposed to further include the prior 

practice counts for each KC. Specifically, PFA model, an extension 

of LFA model, is given in Eq.2, 

𝑝(𝑦𝑖 = 1|𝛽𝑘 , 𝛾𝑖,𝑘 , 𝜌𝑖,𝑘) =
1

1 + 𝑒−∑𝑘=1
𝐾 (−𝛽𝑘+𝛾𝑖,𝑘∗𝑠𝑖,𝑘+𝜌𝑖,𝑘∗𝑓𝑖,𝑘)

 
(2) 

Here, 𝛽
𝑘
 is the difficulty of the 𝑘-th KC, 𝑠𝑖,𝑘 and 𝑓𝑖,𝑘 are the prior 

successes and failures of the 𝑖-th student on the 𝑘-th KC, 𝛾𝑖,𝑘 and 

𝜌𝑖,𝑘 are the learning rates of these observation counts, implying 

the effects of accumulated successes and failures (𝑠𝑖,𝑘 and 𝑓𝑖,𝑘) on 

answer accuracy in the processes of learning. 

Some other models also try to track the changes of student 

abilities in a short period [10, 13, 23]. The main principle here is 
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to estimate the ability change, 𝛥𝜃𝑡, based on students' responses to 

items. We also follow this principle by modeling 𝛥𝜃𝑡 using 

learning rate parameters and their corresponding practice counts, 

which will be introduced in Section 3. 

3. ONLINE ITEM RESPONSE MODEL 
Online Item Response Theory (OIRT) model is an extension of the 

existing PFA model. Suppose there are 𝑁 students, 𝑀 items 

covering a total of 𝐾 KCs, the OIRT model is given in Eq.3, 

𝑝(𝑦𝑖𝑗|𝜃𝑖 , 𝛾𝑖
𝑠⃑⃑⃑⃑ , 𝛾𝑖

𝑓⃑⃑ ⃑⃑  
, 𝑏𝑗) =

1

1 + 𝑒−(𝜃𝑖−𝑏𝑗+(𝛾𝑖
𝑠⃑⃑⃑⃑  ⊙𝑠𝑖⃑⃑⃑  +𝛾𝑖

𝑓⃑⃑ ⃑⃑  
⊙𝑓𝑖⃑⃑  )𝑇 𝑇𝑗⃑⃑  ⃑)

 
(3) 

where 𝜃𝑖 and 𝑏𝑗  denote the 𝑖-th student's general ability and the 𝑗-
th item's difficulty, respectively. Let 𝐾 be the total number of  KCs 

covered by all the items, 𝑠⃑⃑ 𝑖 and 𝑓⃑⃑ 𝑖  are 𝐾 ∗ 1 vectors containing 

successful and unsuccessful practice counts for the 𝑖-th student. 𝛾⃑⃑⃑⃑  
𝑖
𝑠 

and 𝛾𝑖
⃑⃑ ⃑⃑  𝑓

 are the 𝐾 ∗ 1 learning rate vectors for 𝑠⃑⃑ 𝑖 and 𝑓⃑⃑ 𝑖, respectively. 

𝑇⃑⃑ 𝑗 is a pre-specified 𝐾 ∗ 1 distributional vector of KCs for item 𝑗. 

The ⊙ and ∙ are element-wise product and dot product, 

respectively. 

OIRT contains four extensions compared to PFA model in Eq.2. (1) 

An initial ability 𝜃𝑖 for each student is added in OIRT due to the 

prior knowledge of students. (2) Note that modeling item difficulty 

as ∑ 𝛽𝑘𝑘  in PFA is unreasonable in that the item with the same KCs 

will have same difficulty. To solve the problem, we added a unique 

difficulty 𝑏 for each item in OIRT. (3) Instead of using a binary 

vector indicating which item covers which KC, we used a 

distributional vector 𝑇⃑⃑ 𝑗 to avoid a bias (working on items with more 

KCs will lead to higher ability gain when adding up the learning 

effects of all KCs covered by an item) towards the items with many 

KCs. To construct 𝑇⃑⃑ 𝑗 , suppose we have a total of 𝐾 = 3 KCs, if 

item 𝑗 covers KC 1 and 3, instead of representing the item-KC 

vector as [1,0,1], we represent it as 𝑇⃑⃑⃑⃑ 𝑗 = [1/2,0, 1/2], whose sum 

is always equal to 1. (4) The parameters in OIRT will be updated 

in a real-time mode: once a student receive the feedback after 

answering an item, we update 𝑠⃑⃑ 𝑖 and 𝑓⃑⃑ 𝑖 and hence the corresponding 

learning rate vectors, this is a major difference between OIRT 

model and other IRT and PFA models, because of the dynamic 

updates of  𝑠⃑⃑ 𝑖 and 𝑓⃑⃑ 𝑖  , we can update the learning rate parameters, 

and hence track ability changes.  

In online learning system, 𝑠⃑⃑ 𝑖 and 𝑓⃑⃑ 𝑖  are initialized to 0, which will 

then be accumulated once an item is completed by the student. 

Therefore, the general ability 𝜃𝑖 and item difficulty 𝑏𝑗 will be 

estimated in the beginning, learning rates 𝛾⃑⃑⃑⃑  
𝑖
𝑠 and 𝛾𝑖

⃑⃑ ⃑⃑  𝑓
will then be 

estimated as more practice data being collected. 

4. PARAMETER INFERENCES OF OIRT  
We applied and compared four parameter estimation methods in 

OIRT model: Maximum Likelihood Estimation (MLE) in Logistic 

Regression (LR), MCMC, EP and VI. We consider LR as a baseline 

and mainly introduce the other three methods under OIRT. 

 

 

 

4.1 Markove Chain Monte Carlo  
Markov Chain Monte Carlo (MCMC) [2, 3] can be directly used to 

perform real-time parameter estimation, because the prior of the 

interested parameter 𝜂 at time 𝑡 can be updated using the posterior 

based on the data at time 𝑡 − 1, specifically, 𝑝(𝜂|𝐷𝑎𝑡𝑎𝑡) ∝
𝑝(𝐷𝑎𝑡𝑎𝑡|𝜂) ∗ 𝑝(𝜂|𝐷𝑎𝑡𝑎𝑡−1) given the conditional independence 

of data. It draws samples from the approximated posterior 

distributions from which the expectations and variances of the 

parameters are constructed. Researchers successfully applied 

MCMC to IRT parameter estimation [1, 14, 19, 20]. 

4.2 Expectation Propagation 
Recall the parameters we need to estimate are 𝜂 = {𝜃 , 𝛾𝑠 , 𝛾𝑓 , 𝑏⃑ }. 

Here 𝛾𝑠 and 𝛾𝑓 are 𝑁 ∗ 𝐾 matrices, 𝜃  is an 𝑁 ∗ 1 ability vector 

and 𝑏⃑  is an 𝑀 ∗ 1 item difficulty vector. We can reformulate the 

parameters as a long vector 𝜏 = [𝛾1⃑⃑⃑⃑ 
𝑠 , 𝛾2

⃑⃑⃑⃑ 𝑠 , . . . , 𝛾1
⃑⃑ ⃑⃑  𝑓 , 𝛾2

⃑⃑ ⃑⃑  𝑓 , . . . , 𝜃𝑇⃑⃑ ⃑⃑  , 𝑏𝑇⃑⃑⃑⃑  ]. If 
the complete data is given, we can easily solve 𝜏 by a LR. 

However, data comes batch by batch, therefore, we can use 

Expectation Propagation (EP) [11, 12, 21]. 

Given 𝑁 responses 𝑦1, 𝑦2, … , 𝑦𝑁, the posterior of 𝜂 can be written 

as 𝑝(𝜂|𝑦) ∝ 𝑝(𝜂) ∗ 𝑝(𝑦1|𝜂) ∗ 𝑝(𝑦2|𝜂) ∗ … ∗ 𝑝(𝑦𝑁|𝜂) if responses 

are conditionally independent. In EP, 𝑝(𝑦𝑖|𝜂) is usually 

complicated function and approximated by 𝑝𝑖෥ , 𝑖 ∈ 0,1,2. . . . 𝑁 

(often chosen to be normal distribution). Here, 𝑝0෦,≈ 𝑝(𝜂) and 

𝑝𝑖෥ , ≈ 𝑝(𝑦𝑖|𝜂). Generally, we compute the following steps: 

(1) Initialize all 𝑝𝑖෥ , 

(2) Calculate the approximating posterior 𝑞(𝜂) =
ς 𝑝𝑖෥ ,𝑖

∫𝜃ς𝑖𝑝𝑖෥ ,𝑑𝜂
 

(3) Until all 𝑝𝑖෥ ’s converge for 𝑖 = 1,2,3…𝑁: 

i.       Calculate cavity distribution 𝑞\𝑖(𝜂) ≈
𝑞(𝜂)

𝑝𝑖෥ ,
 

ii. Update 𝑞 by 𝑎𝑟𝑔𝑚𝑖𝑛
𝑞

𝐾𝐿(𝑞(𝜂)||𝑞\𝑖(𝜂) ∗ 𝑝(𝑦𝑖|𝜂)) 

iii. Update 𝑝𝑖෥ ≈
𝑞(𝜂)

𝑞\𝑖(𝜂)
 

In the KL divergence step for the IRT models, 𝑞\𝑖(𝜂) is a normal 

density function but 𝑝(𝑦𝑖|𝜂) is a logistic function, it is difficult to 

get a normal distribution approximation of this product. 

Therefore, some other approximation forms are proposed [6, 22] 

and we applied the approximation in [9] as well as its update rule 

in the KL step for logistic function, see [9] for details. 

4.3 Variational Inference 
Inspired from [24], we derived an ELBO function for our OIRT in 

Eq.4 by assuming the joint posterior distribution factors as 

𝑞(𝜂|𝑦) = 𝑞(𝜃 |𝑏⃑ , 𝑦)𝑞(𝛾𝑠|𝑏⃑ , 𝑦)𝑞(𝑏⃑ |𝑦)𝑞(𝛾𝑓|𝑏⃑ , 𝑦),  

𝐸𝐿𝐵𝑂 = 𝐸𝑞(𝜂)[𝑙𝑜𝑔𝑝(𝑦 ∣ 𝜃 , 𝑏⃑ , 𝛾𝑠 , 𝛾𝑓) 

−𝐸𝑏[𝐾𝐿(𝑞(𝜃 ∣ 𝑏⃑ )||𝑝(𝜃 ∣ 𝑏⃑ )) + 𝐾𝐿(𝑞(𝛾𝑠 ∣ 𝑏⃑ )||𝑝(𝛾𝑠 ∣ 𝑏⃑ )) 

+ 𝐾𝐿(𝑞(𝛾𝑓 ∣ 𝑏⃑ )||𝑝(𝛾𝑓 ∣ 𝑏⃑ ))] − 𝐾𝐿(𝑞(𝑏⃑ )||𝑝(𝑏⃑ )) 

(4) 

For simplicity, we simplified Eq.4 as 𝐸𝐿𝐵𝑂 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 −

𝐾𝐿𝜃 − 𝐾𝐿𝑏 − 𝐾𝐿𝛾
𝑠 − 𝐾𝐿𝛾

𝑓
. Then, the following algorithm is used 

to estimate parameters: 

(1) At time 𝑡 = 0, initialize the priors of the parameters 

𝑝0(𝜃 ), 𝑝0(𝑏⃑ ), 𝑝0(𝛾
𝑠), 𝑝0(𝛾

𝑓) 



(2) Set shrink, enhance, decay hyperparameters. 1 Loop over 

iterations on loss optimization at each time 𝑡: 

i. Update priors 𝑝𝑡(𝜂) at time 𝑡 based on the 

combination of the approximated posterior 𝑞𝑡−1(𝜂) 

and the original prior 𝑝0(𝜂) for each parameter in 

𝜂: 𝑝𝑡(𝜂) = (1 − 𝑑𝑒𝑐𝑎𝑦) ∗ 𝑞𝑡−1(𝜂) + 𝑑𝑒𝑐𝑎𝑦 ∗
𝑝0(𝜂) 

ii. Optimize 𝑙𝑜𝑠𝑠 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 − 𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗

[(1 + 𝑒𝑛ℎ𝑎𝑛𝑐𝑒 ∗
𝑔

𝑚𝑎𝑥
) ∗ (𝐾𝐿𝜃 + 𝐾𝐿𝑏) + 𝐾𝐿𝛾

𝑠 +

𝐾𝐿𝛾
𝑓] to obtain current posterior 𝑞𝑡(𝜂) to be used in 

each 𝐾𝐿 , 𝑔/𝑚𝑎𝑥 is the number of student-item 

pairs up to time 𝑡 over the total number of pairs. 

There are three differences compared to the standard VI: (1) We 

set the shrink factor to 0.95 after the first time point because the 

prior distributions now keep the information from the previous 

data and should not be shrunk. (2) We used a weighted average 

instead of directly replacing the prior at time 𝑡 with the posterior 

at 𝑡 − 1 so that the prior gets updated gradually and the previous 

information play in role smoothly. (3) We enhanced the 𝐾𝐿𝜃 and 

𝐾𝐿𝑏 gradually. At the first several sessions of student data, 𝑠 ,𝑓  
are close to zero, therefore, student abilities and item difficulties 

are the only parameters being estimated in OIRT. As 𝑠 ,𝑓  increase, 

and since student abilities and learning rates are not identifiable 

(both are parameters of individual student), we gradually fixed 

student abilities and item difficulties so that the algorithm can 

focus on the estimation of those learning rates only. Our 

experience showed that shrink = 0.95, decay = [0.3, 0.5] and 

enhance = 7 is reasonable. 

5. EXPERIMENTS AND RESULTS 
We compared the performances of modified VI with MCMC, EP 

and LR in parameter estimation on two simulated datasets. We also 

demonstrated the online ability tracking of OIRT using a real data, 

and compared OIRT with XGBoost on answer prediction task on 

the real data. The software environment in these experiments is 

under Python 3.7, Pytorch-1.7.1, the hardware is Intel(R) Xeon(R) 

Gold 6130 CPU @ 2.10GHz, Tesla P4 GPU.   

5.1 Simulation Studies 

5.1.1 Standard Normal Distribution for Learning 
Rates 

In the first experiment, we examined two conditions: 100 students 

and 500 students, both with 4 KCs and 100 items. The data 

simulations are as following: 

(1) We simulate student abilities, learning rates for 𝑠𝑖 and 𝑓𝑖  for 

each KCs, item difficulties from standard normal distributions 

independently. Generate and normalize the KC distribution 

vector for each item. Initialized 𝑠  and 𝑓  to be 0 

(2) Since the person-item pairs in each condition is 100*100 and 

500*100, respectively, at each time point, we sample a random 

number of pairs from the remaining unused person-item pairs 

(in this case, person-item pairs could be generated sequentially) 

 

1 Shrink controls the contribution of the KL terms in optimizing the loss function. 

Enhance gives more importance to KL terms as more data flows in, because the 

prior in KL at time 𝑡 contains the information from the previous data that we want 

to keep. Decay controls the weight given to the posterior at time 𝑡 − 1 in 

contributing to the prior at time 𝑡. 

as the current data, and extract the corresponding parameters 

sampled in step (1) for each chosen person and item 

(3) Construct responses based on OIRT model in Eq.3  

(4) Update the 𝑠  and 𝑓  for each student at each session based on the 

responses in (3) and apply them in step (3) of next session 

(5) Repeat step (2) (3) (4) until all pairs are chosen 

Table 1 shows the results for the 500 students condition. Under the 

standard normal distributions for the learning rates, LR (default 

setting in sklearn) has the highest accuracy in parameter estimation. 

MCMC is the second best, but it is more time-consuming. Even 

though the estimation accuracy of the modified VI is worse than 

MCMC and LR, its computational time is comparable to that of LR. 

EP has the worst parameter estimation performance due to its 

approximation issue discussed in Section 4.2. Similar results were 

obtained for the simulation with 100 students. 

Table 1. Correlations with real values under standard normal 

parameter distribution: with 100 items and 4 KCs 

Student

s 

Method

s 
ABI DIFF LS LF Time 

500 

LR 0.806 0.968 0.778 0.771 35.4s 

MCMC 0.656 0.977 0.702 0.725 5d 

EP 0.7 0.905 0.658 0.669 650m 

VI 0.706 0.789 0.532 0.491 84.5s 

 

5.1.2 Non-standard Normal Distribution for 

Learning Rates 
In the second experiment, student abilities and item difficulties 

were sampled independently from standard normal distribution, 

while learning rates for success and failure were sampled 

independently from non-standard normal distributions, 

𝑁(0.01,0.03). Other simulation procedures remained the same. 

In this case, the true distributions of the learning rates are no longer 

standard normal distributions, which may be more realistic because 

learning rates are usually small and positive. Since MCMC is time-

consuming, we only compared VI, EP and LR. Results about the 

estimation accuracy with respect to abilities, difficulties and two 

learning rates are shown in Table 2.  

It is clear form Table 2 that VI is still robust in estimating the 

learning rates when their true distributions are non-standard 

normal, it is also comparative to LR in ability and item difficulty 

estimations. VI is also more computationally efficient in dealing 

with more students and more KCs (500 items and 5KCs in Table 

2). Similar results were obtained for 100 students. 

Results about computational speed are shown in Figure 1 with 

varying students, KCs and item numbers. The computational time 

is the time each method spent on estimating all parameters 

throughout all generated sessions. The lines for EP and LR are 

incomplete because LR fails when it needs more than 256G 

memory and EP fails when it takes more than 5 days.  



Table 2. Correlations with real values under non-standard 

Normal parameter distribution: with 500 items and 5 KCs 

Students Methods ABI DIFF LS LF Time 

500 

LR 0.939 0.992 0.778 0.303 573s 

VI 0.936 0.969 0.658 0.661 145s 

EP 0.827 0.731 0.532 0.153 100h 

LR 0.939 0.992 0.778 0.303 573s 

 

Figure 1. Computational time comparison 

It is obvious to note that the results of the modified VI are better 

compared with that of the other methods in three aspects: (1) the 

computational speed of VI is faster as number of persons and items 

increase; (2) the modified VI gives better parameter estimation 

when the prior distributions disagree with the true distributions of 

the learning rates; (3) the modified VI supports real-time parameter 

estimations and requires less memories. 

5.2 Real Data Study 
In the third experiment, we used a real dataset, Riiid public dataset2 

from Kaggle competition, to demonstrate the ability change 

tracking and answer prediction by OIRT.  

We selected the event for a question being answered by the user 

(content_type_id=0) with prior question having explanation. We 

also removed the items and users with response frequencies fewer 

than 50. The data contained 6800 students, 1983 items and 146 KCs 

after preprocessing. We sorted the data by time the question was 

completed by the user, for ability tracking task, we used the whole 

data to estimate parameters; for answer prediction task, the first 

90% was used train models, and the remaining 10% was used as 

testing set. We partition the data into 50 sessions with person-item 

pairs and feed one session into the model at a time. 

We compared OIRT with XGBoost technique in answer prediction 

task. The reason for comparing with XGBoost is that both methods 

are single-layered and explainable models, which by nature are 

different and incomparable with the models based on deep neural 

networks. We only used ‘Timestamp’, ‘Tags’, ‘User ID’, and ‘Item 

ID’ as the input features for both OIRT and XGBoost. The 

‘answered correctly’ was the label for the models. OIRT 

outperformed XGBoost in accuracy prediction of future question 

responses with limited input features: AUC=0.702 vs 0.689, 

ACC=0.733 vs 0.717 (since the XGBoost in the competition uses 

complex feature engineering, its AUCs reported in the competition 

are much higher). OIRT also provides reasonable estimates for user 

ability and item difficulty due to its high correlation with the 

observed accuracy proportion for students and items (0.751, 0.696, 

respectively). 

We randomly selected 2 users and plotted Figure 2 to show the 

ability change tracking of OIRT by comparing with the observed 

differences of the accuracy proportion between two adjacent time 

points, averaging all KCs at each session. The estimations are equal 

to (𝛾𝑖
𝑠⃑⃑⃑⃑ ⊙ 𝑠𝑖⃑⃑ + 𝛾𝑖

𝑓⃑⃑ ⃑⃑  
⊙ 𝑓𝑖⃑⃑ )

𝑇 𝑇𝑗⃑⃑   in Eq.3 at each time 𝑡 (below). The 

observed changes in accuracy proportion is equal to 
(# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐾𝐶𝑠1:𝑡 − # 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐾𝐶𝑠1:𝑡−1)

# 𝐾𝐶𝑠⁄  for each user 

(above), indicating how many more accurate KCs completed by a 

user at time 𝑡 relative to that at time 𝑡 − 1. 

 

Figure 2. Students’ ability tracking by OIRT 

It can be seen when the observed increase in accuracy proportion 

are high between two adjacent time points, the estimated ability 

growth is more abrupt, such as sessions in the blue and orange 

windows for student 8 and student 55, respectively. 

6. CONCLUSIONS 
In this study, we developed OIRT model and modified VI 

parameter estimation method to track student abilities in real-time 

and predict answer correctness for online learning system. Results 

show that the modified VI can estimate the parameters fast and 

effectively despite of the difference between the priors and the true 

distribution of the learning rate parameters. 

Although OIRT performs relatively well in different tasks 

introduced above, it takes the form of generalized linear model, 

which has parameter identification issue and limits its performance 

in the accuracy prediction for future questions. We only predict 

answer accuracy based on historical data for individuals, and didn’t 

examine the prediction accuracy for new students, which will be 

explored more in future study.  

 

2 https://www.kaggle.com/c/riiid-test-answer-prediction/data 
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