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ABSTRACT
Knowledge tracing (KT) is an essential task in online ed-
ucation, which dynamically assesses students’ mastery of
concepts by predicting the probability that they correctly
answer questions. One of the most effective solutions for
knowledge tracing is graph-based methods. They main-
tain multiple vectors to represent students’ mastery of con-
cepts, and use these vectors to predict the probability of
students correctly answering questions. To give more accu-
rate predictions, the graph-based methods require concept
relations to update these vectors once students answer ques-
tions. However, the concept relations usually require manual
annotation in a real-world scenario, limiting the application
of the graph-based method. In this paper, we proposed a
method called Automatical Graph-based Knowledge Trac-
ing (AGKT), which is a graph-based method that updates
these vectors without requiring manually annotated concept
relations. We evaluate our method on four public datasets
and compare it with ten advanced methods. The experi-
ment results demonstrate that AGKT yields superior per-
formance.
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1. INTRODUCTION
Knowledge tracing is a task that estimates students’ mas-
tery of knowledge by predicting the probability that they
correctly answer questions. It plays a significantly impor-
tant role in the online educational application, like exer-
cise recommendation and knowledge diagnosis. The input
of knowledge tracing is the question-answering history of a
student and a new question, and the output is the proba-
bility of the student correctly answering the question. For
instance, in step 4, the knowledge tracing aims to use the
student’s performance on q1, q2, q3 to predict the probability
of the student correctly answering q4 in Figure 1.
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Figure 1: An example of a student’s question-answering se-
quence and the change of her (his) knowledge states. The
darkness of a circle’s color represents the level of the student
masters the corresponding concept, and more darkness de-
notes a better mastery.

To address the knowledge tracing problem, many outstand-
ing methods [11, 17, 8, 19, 7, 1, 5, 3, 10, 18, 12, 9, 14]
have been proposed, which could be grouped into graph-
free methods [11, 17, 8, 19, 7, 1, 5, 3, 10, 18, 12] and graph-
based methods [9, 14]. Graph-free methods are directly built
based on the sequential models, like auto-regressive methods
[13, 6, 2], Transformer [15]. They maintain one or multiple
vectors to represent students’ mastery of knowledge con-
cepts, which denotes as knowledge states, and they predict
students’ performance based on vectors. As students’ knowl-
edge states change with time, to maintain the latest knowl-
edge states for prediction, they update the vectors which
represent knowledge states according to the questions and
question-concept relation immediately after students answer
questions. However, according to the previous research, con-
cepts in one specific domain are correlative with each other
[7, 19]. Thus, when a student has a deeper understanding of
one concept, her(his) mastery of the correlative concepts also
changes. For instance, answering q1 enhances the student’s
mastery of addition in Figure 1. Since addition is correla-
tive with multiplication in the concept relation graph, the
deeper understanding of addition enhances her (his) mas-
tery of multiplication. Hence, the knowledge states are not
only influenced by questions and question-concept relations,
but also influenced by the relations among concepts.

Due to this reason, the graph-based methods introduce the
concept-relation graph when they update students’ knowl-
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edge states. Though the graph-based methods gain many
achievements in performance and interpretability, the concept-
relation graph usually relies on manual annotation, which
is almost impossible for cases with thousands of concepts.
To address this issue and keep the superiority of graph-
based methods, we proposed a method called Automatical
Graph-based Knowledge Tracing (AGKT), which is indepen-
dent on the manual-annotated concept relation, but could
update students’ knowledge states like graph-based meth-
ods by considering question, question-concept relation and
concept-concept relation. We perform experiments on four
real-world datasets, and compare our method with ten excel-
lent models. The experiment results reveal that our method
has superior performance to the other methods.

2. PROBLEM FORMULATION
Suppose the learning history of a student is Xt−1 = {(q1, r1),
(q2, r2), ..., (qt−1, rt−1)}. Here, qi denotes the question the
student answers at step i. ri denotes the correctness of the
student’s response on qi, and

ri =

{
1, if the student’s answer is right;

0, otherwise.
(1)

Each question is related to one or multiple concepts. We

denote the set of concepts as C = {cj}|C|
j=1, and the set of

the concepts which are related to qi as Ci, and the set of
the concepts which are unrelated to qi is denoted as Di.
Obviously, Ci ∪Di = C.

The task of knowledge tracing is formulated as estimat-
ing the probability that the student correctly answer a new
question qt given the question-answering history Xt−1, i.e.,
P (rt = 1|qt,Xt−1). We approach that by learning a function
to estimate the probability:

r̄t = fΘ(·), (2)

where r̄t = P (rt = 1|qt,Xt−1) and the input of fΘ(·) rep-
resent the features used to predict the correctness of the
student.

3. METHOD
As we discussed previously, students’ latest knowledge states
are necessary to predict the probability of students cor-
rectly answering questions. Moreover, considering the ques-
tion, the question-concept relation and concept-concept re-
lation in knowledge state update benefits for the perfor-
mance. Nevertheless, annotating the concept-concept re-
lation is almost impossible. To reserve the superiority of the
graph-based methods in the condition of manual annotated
concept-concept relation absent, we proposed a method called
Automatical Graph-based Knowledge Tracing (AGKT). It is
composed of three components, as Figure 2 (a) illustrates:
Automatical Graph (AG), state update module and predic-
tion module. AG is obtained according to question-concept
relation, which replaces the concept relation graph to assist
the state update module in updating students’ knowledge
states. The prediction module predicts the probability of
students correctly answering questions by students’ knowl-
edge states and the question information. In the following,
we will discuss the AG first. Then, we will present how
to update students’ knowledge states based on AG in the
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Figure 2: (a) The framework of Automatical Graph-based
Knowledge Tracing (AGKT). (b) An example of the Auto-
matical Graph (AG) for the q1 in Figure 1.

state update module. Finally, we will discuss the prediction
module.

3.1 Automatical Graph (AG)
Each question corresponds to an Automatical Graph (AG).
Figure 2(b) illustrates the corresponding AG for q1 in Fig-
ure 1. We denote the graph corresponds to qt as Gt, and
Gt = {Vt, Et}. Vt is the node set, and Vt = {V c

t , V d
t , s}.

Here, each node in V c
t represents a concept in Ct. That

is, each node in V c
t represents one question-related concept.

Each node in V d
t represents a question-unrelated concept

(Dt). For the ease of presentation, we call these nodes by
concepts when there is no ambiguity. s is the supernode,
which connects the question-related concepts and question-
unrelated concepts. Et represents the edges on Gt, and Et =
{Ec, Ed}, Ec represents the edges between V c

t and s, and
Ed represents the edges between V d

t and s.

3.2 The state update module
Since the questions require students to utilize their knowl-
edge of question-related concepts to answer, which increases
their comprehension of the question-related concepts, and
causes their knowledge states on these concepts to change
once they answer questions. As concepts are correlative,
these changes will also influence the knowledge states of
some question-unrelated concepts. Based on this, we main-
tain a vector for each concept to represent a student’s knowl-
edge state on it. When a student answer a question, we
update the knowledge states of question-related concepts
first, and then we update the knowledge states of question-
unrelated concepts according to the AG.

3.2.1 The state update of question-related concepts
Suppose a student interacts with question qt at step t. After
the student answer qt, we update the knowledge states of
question-related concepts by concepts’ attributes and the
student’s response on qt. Specifically, for a concept ci ∈ Ct,
we integrate its embedding and the student’s correctness by:

zit =

{
eci ⊕ 0, rt = 1,

0 ⊕ eci , rt = 0,
(3)

where 0 = (0, 0, ..., 0), is a d dimension zero vector. eci ∈ Rd

denotes the embedding of ci. ⊕ denotes the concatenation.



Then, we feed the concatenation into the cell of recurrent
neural network (RNN) to update the knowledge state of ci:

hi
t+1 = GRU(zit, h

i
t), (4)

where hi
t denotes the knwoledge states on concept ci at step

t, it is the i-th row of the knowledge states matrix Ht. GRU
denotes the gated recurrent unit [2].

3.2.2 The state update of question-unrelated concepts.
The knowledge states of one concept will influence the con-
cepts that correlate to it, e.g., the knowledge state of mul-
tiplication is influenced by the knowledge state of addition
after the student answer q1 in Figure 1. Thus, the update of
question-unrelated concepts should be based on the relation
of concepts. Since the concept relation is unknown in many
cases, we update the knowledge states of question-unrelated
concepts based on AG (Figure 2 (b)). Since the question-
related concepts connect to the supernode, and the supern-
ode connects the question-unrelated concepts in AG, the su-
pernode integrates the message about the knowledge states
of all the question-related concepts first. Then it transmits
the integrated message to question-unrelated concepts. Fi-
nally, the question-unrelated concepts update their knowl-
edge states according to the message transmitted from su-
pernode. Specifically, we take the following steps to update
the knowledge states of the question-unrelated concepts:

First, we represent the original message that a question-
related concept ci sent to the supernode by:

mi
t = hi

t+1 ⊕ oi, (5)

where oi is the one-hot encoding of concept ci to denote the
identity of the message source. The supernode aggregates
the messages from the question-related concepts by:

hs =
1

|Ct|
∑

ci∈Ct

fs(m
i
t), (6)

where fs denotes multi-layer perceptrons (MLP). hs denotes
the states of the supernode.

Then, the supernode transmits the message it receives to
the question-unrelated concepts. We represent the message
obtained by the question-unrelated concept cj (cj ∈ Dt) as

mj
t = fd,j(hs), (7)

fd,j denotes the mapping function, which is implemented
by MLP, to extract the message which is interested by cj ,
e.g., the knowledge states of its correlative concepts. Note,
for different question-unrelated concepts, the mapping func-
tions in Eq. 7 are different. However, for the same question-
unrelated concept in different time steps, the mapping func-
tion is shared to guarantee the pattern are compatible in all
steps.

Finally, we update the knowledge state on question-unrelated
concept cj by:

hj
t+1 = GRU(mj

t , h
j
t). (8)

3.3 The prediction module
To predict the probability of students correctly answering
questions, we consider the attributes of question qt, the level

Table 1: Dataset statistics.
Dataset ASSIST09 ASSIST12 EdNet Junyi Math

Students 2,968 22,422 50,000 1,146

Records 185,110 1,839,429 3,266,010 101,854

Questions 15,003 45,543 12,077 1,145

Concepts 121 99 189 39

Questions Per Concept 150.76 460.03 144.01 36.28

Concepts Per Question 1.22 1.0 2.67 1.0

Attempts Per Question 12.34 40.39 270.43 71.98

Attempts Per Concept 1,914.21 18,580.10 39,959.14 2,611.64

Positive Label Rates 63.80% 69.60% 59.54% 66.78%

of the student master question-related concepts, and her(his)
knowledge background. We represent the attributes of ques-
tion qt by the question embedding eqt , and eqt ∈ Rd. We rep-
resent the level of the student master the question-related
concepts by the mean knowledge state:

hm =
1

|Ct|
∑

ci∈Ct

hi
t. (9)

We represent students’ knowledge background as

hc =
1

|C|
∑
ci∈C

hi
t, (10)

and then we predict the probability of the student correctly
answering qt by

r̄t = δ(fr(hc ⊕ eqt ⊕ hm), (11)

where fr denotes MLP, and δ denotes the Sigmoid function.

3.4 Model Learning
The objective function of our model is to minimize the neg-
ative log-likelihood of the observed sequence. The sequence
is the question-answering history of the student from step
1 to T . The learning parameters of our method are the
embedding of concepts and questions, the weights in GRU,
the parameters of all the MLPs. The parameters are jointly
learned by minimizing the cross-entropy between the pre-
dicted probability r̄t and the students’ actual correctness rt
as

L = −
T∑

i=1

(ri log r̄i + (1− ri) log(1− r̄i)). (12)

4. EXPERIMENT
4.1 Dataset
We evaluate our method on four public datasets: ASSIST09,
ASSIST12, EdNet, and Junyi Math. These datasets record
the question-answering history of students. We take the
questions, the concepts related to the questions, and the stu-
dents correctness of responses from the records. The maxi-
mum length of students’ question-answering history is set to
200. We split 80% data for training and validation, and 20%
for testing. The statistics of the four datasets are shown in
Table 1. Note, the statistics are the actual samples we use
in our experiments after preprocessing, which are different
from the statistics of raw data.

4.2 Baselines
To evaluate the effectiveness of our model, we compare our
method with graph-free methods, and graph-based meth-
ods. The graph-free methods trace students’ knowledge



Table 2: The AUC on four public datasets.

Model ASSIST09 ASSIST12 EdNet Junyi Math

BKT 0.6815 0.6142 0.5729 0.6293

KTM 0.6734 0.6881 0.7071 0.7207

SAKT 0.6884 0.6914 0.7313 0.7422

SAINT 0.6901 0.6917 0.7336 0.8079

AKT-NR 0.6940 0.7098 0.7450 0.7705

DKT 0.6769 0.6884 0.7496 0.8397

DHKT 0.7499 0.6966 0.7547 0.8594

EERNNA 0.7244 0.7000 0.7437 0.8196

DKVMN 0.7235 0.6664 0.7009 0.8426

GKT 0.7488 0.6857 0.7039 0.8257

AGKT 0.7765 0.7232 0.7589 0.8656

states without considering concept-relation, and they could
be grouped into four groups. The first group are tradi-
tional methods, i.e., BKT [4], KTM [16], which trace the
students’ knowledge states according to the factors that af-
fect students’ learning. The second group are single-state
methods, i.e., DKT [11], DHKT [17], EERNNA [7], which
use one vector to represent students’ knowledge states on
all concepts. The third group is multi-state methods, i.e.,
DKVMN [19], which maintain a vector for each concept to
represent students’ knowledge states on them. The fourth
group are state-free methods, i.e., SAKT [10], SAINT [3],
AKT-NR [5], which maintain no explicit vector to represent
students’ knowledge states. The graph-based methods ap-
ply a concept-relation graph in the knowledge state update.
Here we choose the GKT [9].

4.3 Student Response Prediction
We measure the AUC to evaluate the performance of mod-
els. A higher AUC indicates a better performance. Table 2
shows the converged ACC, AUC. According to Table 2, on
the ASSIST09, our method is better than the best baseline
DHKT by 2.66% in AUC. On ASSIST12, our model outper-
forms the best baseline AKT-NR 1.34% in AUC. On EdNet,
our model is better than the best baseline DHKT by 0.42%
in AUC. On Junyi, our method is better than the best base-
line DHKT 0.64% in AUC. Thus, the performance presented
in Table 2 demonstrates that our method is effective.

4.4 Ablation Study
To further verify the contribution of AG, we conduct exper-
iments on ASSIST09 with three comparative settings:

• MovGraph removes the AG from AGKT. Thus, this set-
ting removes the concept-concept relation.

• DenGraph replaces the AG in AGKT with the dense graph
in GKT [9]

• TransGraph replaces AG with the transition graph in GKT.

The experimental results are shown in Figure 3. We can
find that: (1) AGKT, DenGraph and TransGraph have bet-
ter performance than MovGraph. That means the consider-
ation of concept-concept relation is beneficial; (2) Replacing
AG in AGKT with other graphs (DenGraph, TransGraph)
decreases the performance. That means the AG is more
effective in the framework of AGKT.

4.5 Case Study

(a) ACC. (b) AUC.

Figure 3: The contribution of AG.

Figure 4: The state of supernode and the message received
by the question-unrelated concepts.

To investigate whether the states update of question-unrelated
concepts is interpretable, we randomly pick two question-
answering records, and visualize the state of supernode and
the message obtained by question-unrelated concepts. We
expect the knowledge states of question-unrelated concepts
could be automatically updated according to the actual re-
lationship with the question-related concepts when AGKT
converges. Thus, for the correlative concepts of the question-
related concepts, the message they receive from supernode
should be correlated with the state of the supernode.

The results is presented in Figure 4. We can observe the mes-
sage obtained by triangle properties (No.21) is highly close to
supernode when the student answer the question related to
congruent triangles (No.9), and message obtained by rates
and ratios is highly close to the state of supernode when
the student answer the question related to ratio-percentage
(No.29). Thus, the state update of question-unrelated con-
cepts is interpretable in our method. which demonstrates
our method has good interpretability.

5. CONCLUSION
In this paper, we proposed a method called Automatical
Graph-based Knowledge Tracing (AGKT). Different from
the previous graph-based methods, it adopts the Automat-
ical Graph (AG) to automatically update students’ knowl-
edge state without requiring the manually annotated con-
cept relation. We evaluate the performance of our method
on four public real-world datasets, and compare it with ten
methods. The experiment result reveals that our method is
effective in tracing student’s knowledge states.
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