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ABSTRACT
Previous studies suggest that Deep Knowledge Tracing (or
DKT) has fundamental limitations that prevent it from sup-
porting mastery learning on multi-step problems [15, 17].
Although DKT is quite accurate at predicting observed cor-
rectness in offline knowledge tracing settings, it often gen-
erates inconsistent predictions for knowledge components
when used online. We believe this issue arises because DKT’s
loss function does not evaluate predictions for skills and
steps that do not have an observed ground truth value. To
address this problem and enable DKT to better support on-
line knowledge tracing, we propose the use of a novel loss
function for training DKT. In addition to evaluating pre-
dictions that have ground truth observations, our new loss
function also evaluates predictions for skills that do not have
observations by using the ground truth label from the next
observation of correctness for that skill. This approach en-
sures the model makes more consistent predictions for steps
without observations, which are exactly the predictions that
are needed to support mastery learning. We evaluated a
DKT model that was trained using this updated loss by
visualizing its predictions for a sample student learning se-
quence. Our analysis shows that the modified loss function
produced improvements in the consistency of DKT model’s
predictions.
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1. INTRODUCTION
Intelligent tutoring systems are widely used in K-12 edu-
cation and online learning platforms to enhance learning.
Knowledge tracing algorithms are embedded in such intelli-
gent tutoring systems to support automatic selection of the

problems a learner should work on next based on their mas-
tery of different skills. There are multiple popular knowl-
edge tracing algorithms that are frequently used to predict
students’ performance in offline settings. While these ap-
proaches have all achieved satisfactory performance in these
settings, there is only limited work investigating the use of
knowledge tracing algorithms in online settings [11, 17].

Deep Knowledge Tracing (DKT) is a knowledge tracing ap-
proach that has gained in popularity in recent years. It em-
ploys a recurrent neural netwok (RNN) [16] to predict stu-
dent’s correctness on problem-solving steps that use particu-
lar skills. Though some studies demonstrated that DKT out-
performs other knowledge tracing models such as Bayesian
Knowledge Tracing [1] and Performance Factors Analysis
(PFA) [10], it has some fundamental limitations and draw-
backs. For example, DKT’s neural network representation
is not easily interpretable, making it difficult for people to
understand DKT’s predictions. Additionally, Yeung and Ye-
ung [15] identified two problems with DKT—the model fails
to reconstruct the observed input, and the DKT predictions
are inconsistent and fluctuate over time.

In this paper, we investigate the issue of inconsistent pre-
dictions. Our work explores the hypothesis that DKT’s in-
consistent behavior is primarily due to its loss function. We
propose a novel modification to the DKT loss functions de-
signed to produce more consistent behavior. Multiple au-
thors have proposed ways of modifying the loss function by
adding regularization terms [7, 8, 15]. However, our research
explores a novel modification that evaluates predictions for
each skill that does not have an observed ground truth value
by using the next observed correctness for that skill.

We use the “Fraction Addition and Multiplication, Blocked
vs. Interleaved” dataset accessed via DataShop [5] to evalu-
ate a DKT model generated through training with this new
loss function by visualizing its predicted correctness for each
skill at each time step in a heatmap. We then compare
these results with the predictions generated by a DKT model
trained using the original loss function. Our results indicate
that training with the revised loss function produces a DKT
model that generates more consistent predictions than one
produced by training with the original loss function.
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2. BACKGROUND
2.1 Knowledge Tracing
Knowledge tracing approaches model a student’s knowledge
over time and predict their performance on future problem-
solving steps. Knowledge tracing algorithms are embedded
in Intelligent Tutoring Systems to support automatic selec-
tion of the next problem a student will practice [13]. Much
of the research on knowledge tracing has explored its use
in offline settings; however, little work has explored the
use of knowledge tracing in online settings. In offline set-
tings, knowledge tracing models are fit to existing data sets,
typically to evaluate different knowledge component mod-
els to identify those that better fit the data. In contrast,
the objective of online knowledge tracing is to keep track
of the student’s level of mastery for each skill (or knowledge
component) and/or predict the student’s future performance
based on their past activity. In a nutshell, knowledge tracing
seeks to observe, depict, and quantify a student’s knowledge
state, such as the level of mastery of skills underlying the
educational materials [6]. The outputs of knowledge tracing
support mastery learning and intelligent selection of which
problems a student should work on next.

2.2 Deep Knowledge Tracing
Pieche et al. [12] proposed the Deep Knowledge Tracing
(DKT) approach, makes use of a Long Short-Term Memory
(LSTM) [4] architecture (complex variant of Recurrent Neu-
ral Network, or RNN) to represent latent knowledge. The
use of an LSTM has become increasingly popular because
it reduces the effect of vanishing gradients. It employs cell
states and three gates to determine how much information to
remember from previous time-steps and also how to combine
that memory with information from the current time-step.

The DKT model accept an input matrix X, which is con-
structed by one-hot encoding two pieces of information for
each step: qt, which represents the knowledge components,
and at, which represents whether the question was answered
correctly. The information at each time step is packed into
a tuple denoted as ht = {qt, at}. h0 represent the initial
state at time 0 (where t = 0). The network outputs the
prediction Y based on the input and previous state. Y is
a matrix that represents the probability of each KC being
correctly answered at each step by a given student. yt is the
predicted probability at time t.

The objective of DKT is to predict performance at the next
iteration (given the data from time 0 to t, predict t+1). To
optimize next iteration results, a dot product of the output
vector yt and the one-hot encoded vector of the next prac-
ticed KC δ(qt+1) is calculated. We take the cross entropy
(denoted as l) of the dot product, average over number of
steps and number of students. All together, the original loss
function of DKT LOriginal can be expressed as:

LOriginal =
1∑n

i=1(Ti − 1)

n∑
i=1

Ti−1∑
t=1

l(yt · δ(qit+1), a
i
t+1) (1)

where n is the number of students, and Ti is the length of
the interaction sequence for student i.

When the size of a dataset increases, deep knowledge trac-
ing generally has an edge over the classical statistical mod-
els, such as Bayesian Knowledge Tracing, Streak Model or
Performance Factor Analysis, when it comes to predicting
learner performance. The original DKT work [12] demon-
strated that it can produce tremendous gains in AUC (e.g.,
25%) when compared to prior results obtained from other
knowledge tracing models. However, subsequent work sug-
gests that the gains are not as large as originally anticipated
[14]. One of the key advantages of DKT over classical knowl-
edge tracing methods, such as BKT, is that it has access to
more precise information about the temporal order of inter-
actions as well as information about KCs not involved in the
current step [2]. We intend to leverage these advantages of
DKT to support online knowledge tracing [17] and explore
whether it is possible to get better mastery learning behav-
ior when using DKT rather than classical knowledge tracing
approaches, such as BKT.

2.3 Challenges with DKT
Even though DKT has many advantages over other knowl-
edge tracing models like Bayesian Knowledge Tracing (BKT)
[1], Streak Model [3] and Performance Factor Analysis (PFA)
[10], the model still has several limitations. Specifically,
DKT models are difficult to interpret [14], make inconsis-
tent predictions [15], and only consider the correctness of
skills that are observed on each time step [7].

Figure 1: This example, drawn from Zhang and MacLellan
(2021) [17], shows DKT model predictions on a single knowl-
edge component given one student correctness sequence.

Yeung and Yeung [15] identified that the DKT predictions
are not consistent and fluctuate over time. They also showed
that the DKT model fails to reconstruct the input infor-
mation in its predictions. For example, DKT may predict
lower correctness on steps tagged with a particular skill even
when the student correctly performs steps that contain the
skill. Figure 1 is an example of this effect. From the first to
the third steps, the student did not answer the problem cor-
rectly, but DKT predicted the third step would have a 100%
chance of being correct. From the fourth to the sixth steps,
the student correctly answered the question while DKT’s
predictions dropped. Upon closer investigation of the DKT
model, we believe that this unexpected behavior is due to
the way that the loss is computed.

Our previous work [17] highlighted DKT’s shortcoming with
respect of giving reliable predictions of correctness on steps
tagged with each skill during online knowledge tracing. We
want to further investigate the issues that prevent DKT from
giving consistent predictions in the scenario of multi-step
problem solving and online knowledge tracing. In this paper,
we propose a novel revision of DKT’s loss function. We will
discuss our approach in Section 3.1.



3. METHODOLOGY
We propose a novel approach to make the DKT model pre-
dictions more consistent by modifying the loss function used
during training. We trained and tested on the “Fraction Ad-
dition and Multiplication, Blocked vs. Interleaved” dataset
accessed via DataShop [5] with 80% training data and 20%
testing data. This data was collected from a study presented
in [9], the students solved problems by interacting with a
fraction arithmetic tutor and solved three different types
of problems. The three problem types are: Add Different
(AD), add fractions with different denominators; Add Same
(AS), add fractions with same denominators; Multiplication
(M), multiply two fractions.

We created two DKT models: one trained using the original
DKT loss function and another trained using the modified
loss function. We then used the two models to make predic-
tions on the same student sequence. Lastly, we visualized
the predictions for each knowledge component (KC) as heat
maps and evaluated the prediction consistency by comparing
the heat maps generated using the different DKT models.

All DKT models in this paper consists of a input layer, a
hidden layer, and a output layer with size 28, 200, and 14,
respectively. The number of knowledge components deter-
mines the size of the input and output layers. The LSTM
(long short-term memory) contained 200 hidden units. We
trained the model over 1000 epochs, with a learning rate of
0.0025, a dropout rate of 0.4, and a batch size of 5. The
only difference between the original DKT approach and our
approach is the loss function used during training.

3.1 Revision of DKT Loss Function
As outlined in Section 2.3, DKT’s original loss function only
evaluates the DKT predictions that have observed ground
truth values. To overcome this challenge, we propose a re-
vision to the loss function. Rather than using the original
ground truth values typically provided to DKT’s loss func-
tion, our revised approach uses modified ground truth data
that fills in steps without any observations by taking the
next observation of that skill (see Figure 2).

Figure 2: Graphical depiction of â. Colored cells denote
observed student performance (0/red equals incorrect and
1/green equals correct). Cells with white backgrounds are
extrapolated from the next observation of each skill.

Mathematically, we use â to represent the updated ground
truth values that populate missing cells using the value from
the next observation of each skill, see Figure 2. For example,
for a specific knowledge component, if there is no ground
truth at ti and the next ground truth is at ti+n, then the â
contains an entry at ti that has the same value as the entry
at ti+n. As a result, the entries from ti to ti+n−1 would
share the same ground truth with ti+n.

Next, we updated the loss function so that it evaluates the

model’s predictions for all entries that have a value in the
updated ground truth values (â). Here is the mathematical
representation of this new loss function:

LNext =
1∑n

i=1

∑K
k=1(Ti,k − 1)

n∑
i=1

K∑
k=1

Ti,k−1∑
t=1

l(yt,k, â
i
t+1,k)

(2)

This updated loss function will evaluate most of the DKT
predictions that did not originally have observed ground
truth values. Note, some predictions are still not evaluated
(those that occur near the end and do not have a next obser-
vation to use for evaluation). Because this new loss function
evaluates more of DKT’s predictions in between observa-
tions, we believe it will result in more stable predictions.

4. MODEL EVALUATION
To evaluate the performance of DKT model after revising
the loss function, we took a complete student sequence and
generated correctness predictions for each skill using the
DKT model. We have 14 skills (knowledge components) and
three types of problems as introduced in Section 3. There
are 8 steps for an Add Different (AD) problem, 3 steps for
an Add Same (AS) problem, and 3 steps for a Multiplica-
tion (M) problem. Figure 3 is a comparison of the student’s
predicted mastery of each KC at each step when solving a
problem (problem type shown on the x-axis). We use the
color to represent DKT’s prediction, with green indicating
the student mastering a skill and red indicating not mas-
tering a skill. We use the numbers to represent the ground
truth where 1 equals correct and 0 equals incorrect. Figure
3b shows a substantial improvement in prediction consis-
tency over Figure 3a.

In Figure 3a, the DKT predictions fluctuate over time. There
is also a pattern of inconsistent predictions on the “AD
Right Convert Numerator”, “AD Answer Numerator” and
“AD Done” skill even though the ground truth values for
these skills are 1 during the series of problems practiced.
Initially, the DKT model trained using the original loss pre-
dicts that the student masters this skill after a few practices.
However, we see that for certain repeating periods over the
remainder of the sequence, the model predicts the student
will get steps with these skills wrong. The student mastered
these three skills initially. As the student starts solving ad-
ditional steps, however, the DKT model alternates between
correct and incorrect predictions over the remainder of the
sequence. These behaviors are unexpected and contrary to
the typical assumption that students will not forget skills
once they obtain mastery.

In Figure 3b, the problem of wavy DKT predictions (alter-
nating correct and incorrect predictions for different skills)
is largely addressed. The DKT model with the revised loss
predicts that the student obtains mastery on all the AD
skills and retains this mastery through the end of training.
The DKT predictions are consistent with the ground truth
in this case.

These results suggest that our revised loss function pro-
duces more consistent DKT model predictions. Besides the



(a) DKT predictions for each KC using model trained with original loss function.

(b) DKT predictions for each KC using model trained with updated loss function.

Figure 3: A comparison model performance between DKT models trained using the original and revised loss functions.

improvement, we noticed a common issue that occurred in
both the original and the revised DKT model. The student
started with 10 AS problems but both DKT models predict
improvement of mastery in M and AD skills even before M
and AD problems were given to the student. We believe
that more work is needed to better understand how DKT
relates the corresponding skills in a multi-step problem.

5. RELATED WORKS
Multiple authors have discussed the limitations of DKT in
handling multi-skill sequences and possible modifications to
the loss function to improve model behavior. Yeung and
Yeung [15] proposed regularization terms to address the re-
construction problem (where model predictions move oppo-
site to student performance) and the wavy prediction tran-
sition problem (where skill predictions cycle between high
and low). Inspired by their study, we believe that revising
the loss function is the key to enhancing the consistency
of DKT model predictions. Rather than addressing these
two problems separately using regularization terms, our ap-
proach modifies the loss function so that it evaluates predic-
tions that lack ground truth observations.

Beyond modifying the loss function, Pan and Tezuka [8] pro-
posed pre-training regularization, which incorporates prior
knowledge by including synthetic sequences to the neural
network before training DKT with real student data. Their
motivation is similar to ours—their goal is also to solve the
inverted prediction problem (referred to as the reconstruc-
tion problem by Yeung and Yeung). They added synthetic
data to a baseline model trained with student data and
then introduced two regularization measures to measure the
severity of the inverted prediction problem. This approach
is different from ours as we are using the ground truth value
of each skill to populate skills and steps that do not have
observations.

6. CONCLUSIONS AND FUTURE WORK
We revised DKT’s loss function to improve prediction con-
sistency across all KCs over time. Our main contribution
is that we propose a novel way of modifying the DKT loss
function by evaluating skill predictions at the time steps that
lack ground truth observations. Instead of only addressing
DKT’s consistency issues, our ultimate goal is to use DKT as
an approach to keep track of student performance in online
learning environments and recommend problems to support
personalized learning.

Through our heat map analysis, we demonstrated that a
DKT model trained with our improved loss function gener-
ates more consistent predictions than a DKT model trained
with the original loss. Our analysis showed that predictions
for certain skills would cycle between high and low for a
DKT model trained with the original loss function; i.e., gen-
erated inconsistent predictions over time. In contrast, the
DKT model trained with the revised loss function showed
much smoother, more consistent predictions that started
lower and improved steadily over the course of training.

Moving forward, we have a number of additional future di-
rections that we would like to explore to improve DKT’s
stability and accuracy. In our current work, we propose an
updated loss function that evaluates the DKT predictions
for each skill in terms of the next observation of that skill.
In future work, we instead want to evaluate each prediction
in terms of all future predictions. Further, we plan to weight
each evaluation by a decay factor γ as Yeung & Yeung [15]
proposed in their future direction. Finally, we should move
online and evaluate how well the revised DKT operates in
an online mastery learning context.
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