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ABSTRACT
Automated Essay Scoring (AES) research efforts primar-
ily focus on feature engineering and the building of ma-
chine learning models to attain higher consensus with hu-
man graders. In academic grading such as essay scoring,
the scores will naturally result in a normal distribution,
more commonly referred to as the bell curve. However,
the datasets used do not always have such distribution and
are often overlooked in most machine learning environments.
This paper proposes a Gaussian Multi-Class Synthetic Mi-
nority Over-sampling Technique (GMC-SMOTE) for imbal-
anced datasets. The proposed GMC-SMOTE generates new
synthetic data to complement the existing datasets to pro-
duce scores that are in a normal distribution. Using several
labeled essay sets, some of which already have a substantial
agreement between the machine learning model and human
graders, learning from normal distribution datasets yields
significant improvements. Improvements of 0.038 QWK score
(5.8%) over the imbalanced dataset were observed. The ex-
perimental result has also shown that naturally occurring
distribution in the automated essay scoring domain con-
tributes to the most appropriate training dataset for ma-
chine learning purposes.
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1. INTRODUCTION
In an educational setting, essay compositions are commonly
used to evaluate students’ competence in articulation. The
task to grade is labourious and is highly biased to the grader,

which causes the scoring to lack consistency in the essay
scoring process [20]. For this reason, Automated Essay Scor-
ing (AES) systems have been proposed and implemented to
solve the traditional human scoring approach problem or
act as a complementary mechanism. Research projects in
AES have focused on feature engineering, and in the design
of the scoring machine learning models to achieve higher
agreement with human graders [19, 22]. In building the ma-
chine learning models, the quality of the dataset is of utmost
importance. In the earlier research projects on AES, the dis-
tribution of the scoring in the datasets was not taken into
consideration. The datasets for building the AES models are
often imbalanced, as the scores assigned by human graders
may not be appropriately distributed. A significant level
of imbalance in multi-class datasets such as essay scoring
datasets is a profound problem [21].

1.1 Dataset Distribution
To visualise the imbalanced dataset issue in essay scoring,
the score distribution of a commonly used dataset for AES
research is used. The dataset is from the Automated Stu-
dent Assessment Prize (ASAP) competition1. There are 8
datasets, where sets 1, 2, 7 and 8 are essays of the same
genres were chosen and their score distribution is shown in
Figure 1, the other sets are not selected as they are of the
short letters genre.

Figure 1a and 1b have fewer classes compared to 1c and
1d. The agreement (accuracy) between the model and the
ground truth in a multi-class classifier would generally be
better with smaller classes. However, for Essay Set 7 (Fig-
ure 1c), the model built for it outperforms that of the smaller
number of classes Essay Set 2 (Figure 1b) as shown in Table
1b and 1c. Also, it is observed that Figure 1c has a typical
academic scoring distribution that has a Gaussian distribu-
tion with a median around the 60% mark. It can also be
observed that for Figure 1d, the distribution of the scores
does not reflect a Gaussian-like distribution with a trough
around the 66% mark. As the scoring range for Figure 1d
is larger (0 to 60), this would mean that the dataset quality

1https://www.kaggle.com/c/asap-aes
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(a) Essay Set 1 (b) Essay Set 2

(c) Essay Set 7 (d) Essay Set 8

Figure 1: Histogram for ASAP essay sets 1, 2, 7 and 8.

is poor as there are insufficient data that will result in poor
performance of the model by comparing the QWK score of
Table 1d with 1a, 1b and 1c. Hence, an appropriate dataset
distribution is important for training a model to have better
performance.

In automated essay scoring, it is well known that the scor-
ing of academic work such as essays normally falls within a
Gaussian distribution curve with the median hovering around
the 60 - 70 percentile. Motivated by the understanding that
quality training dataset will improve the learned model [10,
3], we propose Gaussian distribution Multi-Class Synthetic
Minority Oversampling Technique (GMC-SMOTE) to over-
come the issues of imbalanced multi-class data for AES mod-
elling. Instead of implementing SMOTE to provide a uni-
form distribution of the sampling, GMC-SMOTE is used
to oversample the multi-class dataset into a Gaussian dis-
tribution. With the improved quality of the training set,
the inherent bias of the dataset is kept in the training of the
models. To evaluate GMC-SMOTE effectiveness, three type
of train sets were generated. In addition, the evaluation was
conducted using the same features and modelling algorithm,
namely the Bayesian Linear Ridge Regression as proposed
by Phandi et al. [19].

2. IMBALANCED DATASET HANDLING
2.1 Imbalanced Data Problem Trends
Researchers worked on the imbalanced data problem from
two distinctive approaches; modifications on the attributes
at the algorithmic level for the training model to fit the
imbalanced data, or augmentation at the data level. These
two approaches are summarised as follows.

2.1.1 Algorithmic level
Most of the imbalanced data solutions are targeted on the
minority class due to the common high cost of misclassi-
fications on a minority class [18]. Hence, numerous cost-
sensitive learning approaches are introduced to balance the
classes based on the ratio to each classes’ costs [17]. The
most popular approach of cost-sensitive learning is to assign
different weights for each class in the training models that
are based on the costs of misclassifications [8]. Other than

assigning weights, cost-sensitive learning can be done differ-
ently, such as changing the models’ threshold based on its
own misclassification costs [8]. However, in most real-world
cases, the cost matrix is not easily identified.

2.1.2 Data level
Random undersampling (RU) and oversampling (RO) are
the first few methods introduced to deal with imbalanced
data. Both of the methods replicate random samples to re-
duce the imbalance ratio. However, the RU might eliminate
some significant samples, and RO might cause the model to
overfit. There are several extensions based on random un-
dersampling and oversampling such as one-sided selection
[15] and Edited Nearest Neighbour rule (ENN) [25]. Syn-
thetic Minority Oversampling Technique (SMOTE) was in-
troduced by Chawla et al. [6] to address the problem in
random oversampling. Instead of randomly replicating the
minority samples, SMOTE creates new minority class sam-
ples by using the interpolation between minority class sam-
ples’ neighbourhood. Several extension and hybrid meth-
ods based on SMOTE were introduced such as Borderline-
SMOTE, SMOTE with Tomek-links and SMOTE with ENN.
Eventually, many extensions of SMOTE are proposed such
as Borderline-SMOTE [11], ADASYN [13] and MWMOTE
[2].

2.2 SMOTE and Multi-Class SMOTE varia-
tions

2.2.1 SMOTE
The SMOTE algorithm [6] records the interpolations be-
tween minority class instances within a defined neighbour-
hood to create new synthetic samples. To do so, SMOTE
measures the difference between the selected feature vector
and its nearest neighbour. SMOTE multiplies the calculated
difference by a random number between 0 and 1, then adds
it to the selected feature vector. For this reason, the syn-
thetic sample will be at a random point between two specific
feature vectors. This method effectively forces the decision
making areas for minority class instances to become more
generic. However, SMOTE cannot be applied to multi-class
problems (such as for AES modeling) directly as SMOTE
works on dataset with two classes, the minority, and the
majority only. For multi-class problems, there are a few
notable multi-class oversampling approaches.

2.2.2 One-versus-All with SMOTE
As multi-class classification implies additional complexity to
data mining algorithms, due to the overlapping boundaries,
it will lead to a drop in the resulting performance [5]. One of
the approaches to tackle this problem is through implemen-
tation of class binarization techniques [1]. One-versus-All
(OvA), also known as One-versus-Rest (OvR), is a binary
classification algorithm for multi-class datasets. The com-
bination of OvA and SMOTE is one of the most popular
methods to implement SMOTE for multi-class datasets [10,
3]. OvA is implemented to split the multi-class dataset into
multiple binary classification problems. Next, each binary
classification problem are trained on a binary classifier based
on the samples of selected class as positive and the rest of
samples as negative [4]. After obtaining the binary class
problems sets from OvA/OvR, SMOTE is implemented for
each set to oversample the minority class instances. The



output of SMOTE will be merged back into the multi-class
dataset for the training of the selected model.

2.2.3 One-versus-One + SMOTE
One-versus-one (OvO) [12] is another approach of binary
classification algorithms for multi-class datasets. Similar to
OvA/OvR, OvO binarizes multi-class datasets by splitting
a multi-class dataset into binary classification problems [9].
However, OvO deals with the datasets differs in that it splits
them into single datasets for each class against every other
class.

3. PROPOSED GMC-SMOTE
We propose Gaussian Multi-Class Synthetic Minority Over-
sampling Technique (GMC-SMOTE) to enhance the quality
of the dataset in AES by introducing new synthetic samples
for improved performance of the models. Instead of creating
synthetic new samples uniformly, GMC-SMOTE individu-
ally processes each class to form a Gaussian-like distribution.
The implementation of SMOTE in a multi-class dataset is
not directly applicable. To implement SMOTE in a multi-
class dataset, we selected OvA with SMOTE to perform the
SMOTE for each class in the multi-class dataset as it has
the superior performance over oversampling for multi-class
dataset [10, 3]. It is one of the techniques suggested for
multi-class oversampling by the author of SMOTE [9].

The default SMOTE algorithm requires six samples for each
class, which can be reduced to two. In our proposed GMC-
SMOTE algorithm, we propose to replicate classes with fewer
than six samples to at least six samples. This ensures SMOTE
has sufficient samples to generate synthetic samples and in-
herit the bias from the original dataset. Also, six samples
per class are the minimum requirement to train a model [14].

3.1 GMC-SMOTE Algorithm
Algorithm 1 GMC-SMOTE algorithm’s pseudo-code

1: Inputs:
2: D = Dataset classes and its counts
3: Dataset = Dataset
4: Algorithms:
5: C ← getUniqueClass(D)
6: M ← calculateMode(D)
7: for class in C do
8: if class = M then
9: FDclass ← DM

10: else
11: posAway ← |M − class|
12: if Dclass

posAway
> 2.5 then

13: FDclass ← Dclass × 2.5
14: else
15: FDclass ← Dclass

posAway
16: end if
17: end if
18: end for
19: newData← SMOTE(Dataset, FD)
20: return newData

GMC-SMOTE is implemented based on the bell curve sym-
metric theory [24] for Gaussian distribution. The bell curves
symmetric theory means the distribution is symmetric com-
paring the left distribution and right distribution from the

value at the peak of the curve. Algorithm 1 describes our
implementation of the GMC-SMOTE. In line 4-7, C repre-
sents unique classes and M represents the mode class in D.
Then, each unique class C in D is iterated through. The
mode class of the dataset DM is kept constant. The mode
class will be the class with the most occurrences.

FN =
Dclass

posAway
(1)

The Equation 1 is to calculate the new frequency, FN for
the rest of the classes where posAway represents position
away from the mode, and is stored in Frequency Dictionary
FDclass. This equation is motivated by how the distribution
is scaled away from the mode in the bell-curved symmetric.
The author of SMOTE, Chawla et al. [6] have proven that
between 200% and 300% oversampling rate is proven to be
the most robust oversample ratio in SMOTE. Hence, we
limit the amount to be oversample at 250% of the original
frequency. With this, we can keep the naturally occurring
distribution of the datasets and inherit the bias for training
the models.

4. METHODOLOGY
4.1 Experimental Datasets
We use the same dataset from Figure 1. The selected datasets
metadata can refer to [19]. To extract features for learning
algorithms, we implement the Enhanced AI Scoring Engine
(EASE) 2. We selected EASE as it is a robust feature en-
gineering method for AES that several researchers have im-
plemented in recent years [19, 16]. The EASE system will
generate 14 features refer to [19]. Five-fold cross-validation
is implemented to generate the train and test set due to
unreleased test data from the ASAP competition. We re-
distributed the data into five-fold, where four-fold will be
the train set and one-fold will be the test set in each round.
Three different types of train set will be generated for the
learning algorithms to train the models:

(a) Default. The train set with original distribution.

(b) Uniform Distribution. The train set is oversampled by
SMOTE that makes the frequencies all classes to be uni-
formly same as the frequency of the mode class.

(c) GMC-SMOTE. The train set is oversampled by GMC-
SMOTE to generate Gaussian-like distribution of the
classes.

4.2 Learning Algorithm
The Bayesian Linear Ridge Regression (BLRR) algorithm is
chosen among the other prospective methods such as Naive
Bayes (NB) and Support Vector Machines (SVM) based on
the results from Phandi et al. [19]. It allows a natural lan-
guage processing tasks to deal with insufficient data by cre-
ate linear regression through probability distributors instead
of point estimate. Also, it is robust and has often delivers
good results in natural language processing projects.

2https://github.com/edx/ease



(a) GMC-SMOTE Essay 1 (b) GMC-SMOTE Essay 2

(c) GMC-SMOTE Essay 7 (d) GMC-SMOTE Essay 8

Figure 2: Histogram of GMC-SMOTE generated distribu-
tions.

4.3 Evaluation Metric
We implement Quadratic Weighted Kappa (QWK) to cal-
culate the rate of agreement among two graders; the human
graders, and the scoring by the trained model. It varies
from 0 to 1, where 0 represents no agreement, 0.01-0.20 as
slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as
substantial, and 0.81-1.00 as almost perfect agreement [7].
QWK is proven to be robust since it takes into consideration
the odds of accidental agreement [23]. Also, it is a common
evaluation metric for AES models [19, 16].

5. RESULT AND DISCUSSION
New samples for each essay set using the proposed GMC-
SMOTE are generated. A sample of the GMC-SMOTE dis-
tribution histograms are plotted in Figure 2. From the ob-
servation on the Figure 2a and 2b, the new distributions are
closer to a Gaussian distribution symmetrical on the left and
right of the mode value. For the Figure 2c, the histogram is
much flatter than the default distribution. As for Figure 2d,
the data quality remains of concern due to missing data for
many classes and low data samples. From all these observa-
tions, the nature of default distribution is inherited into the
new distribution, which brings the inherent bias of default
distribution to the new distribution.

Train Set QWK
(a) 0.808
(b) 0.810
(c) 0.823

(a) Essay Set 1

Train Set QWK
(a) 0.650
(b) 0.672
(c) 0.688

(b) Essay Set 2

Train Set QWK
(a) 0.688
(b) 0.707
(c) 0.704

(c) Essay Set 7

Train Set QWK
(a) 0.644
(b) 0.656
(c) 0.676

(d) Essay Set 8

Table 1: Experiments result

We calculate the mean QWK scores for each trained model
using the one-fold of test in five rounds. The results are

shown in Table 1. The best result is bold-faced and the sec-
ond best is underlined. Overall, the BLRR scores for GMC-
SMOTE datasets are better than all the default datasets
and GMC-SMOTE performs the best in essay sets 1, 2, and
8.

• Essay Set 1: An increase in QWK by 0.015 even though
it has an almost perfect agreement using the default
dataset.

• Essay Set 2: A more modest increase in QWK by 0.038,
which is expected as the dataset distribution is similar
and the number of classes are few.

• Essay Set 7: The GMC-SMOTE’s QWK is better than
the default dataset but slight poorer than Uniform dis-
tribution dataset produced by the default SMOTE al-
gorithm.

• Essay Set 8: A significant increase in QWK by 0.032
even though it has many missing classes and several
classes with one to five frequency counts.

With the exception of essay set 7, the uniformly distributed
datasets have poor results. This shows that simply applying
SMOTE to the datasets has probably removed the inher-
ent bias in an essay scoring situation. The proposed GMC-
SMOTE has shown that with proper oversampling, main-
taining the inherent scoring biasness in an academic setting
can improve the automatic essay scoring agreement with the
human graders. For essay set 7, although the GMC-SMOTE
improved the QWK scores over the default dataset, the uni-
form distributed dataset has the best result. This can be
attributed to the fact that the default dataset is relatively
platykurtic with negative skewness. This encompasses the
majority of the samples (scores of 15 or greater from Fig-
ure 1). Hence, applying a uniform distribution will enhance
the sample and does not significantly impact the human
scoring biasness. It will also mean that if there are suffi-
cient sampling sizes, the naturally occurring distribution is
the optimal distribution. This can be observed in Figure 2,
for essay set 7, where the histogram is plotted for the new
data distribution generated by GMC-SMOTE. Comparing
the GMC-SMOTE distribution (Figure 2) with the default
distribution (Figure 1), the naturally occurring distribution
is kept in the new distribution while new samples are gen-
erated.

6. CONCLUSION
The results show that the GMC-SMOTE is an effective over-
sampling method for situations with some imbalance in the
dataset. The proposed GMC-SMOTE method can be ap-
plied for training datasets for other classifications domains
where the naturally occurring distribution is Gaussian (nor-
mal). Kurtosis and skewness can be used to assess the type
of naturally occurring distribution of the respective dataset
distribution. As observed in our evaluation (essay set 7), it
is also important to first assess whether the kurtosis is much
lesser than the normal distribution (platykurtic), which may
require a uniformly distributed dataset. The assessment
can be conducted prior to deciding whether to use Multi-
Class SMOTE or the proposed GMC-SMOTE for imbal-
anced datasets.
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