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ABSTRACT
We consider the equity and fairness of curricula derived from
Knowledge Tracing models. We begin by defining a unify-
ing notion of an equitable tutoring system as a system that
achieves maximum possible knowledge in minimal time for
each student interacting with it. Realizing perfect equity re-
quires tutoring systems that can provide individualized cur-
ricula per student. In particular, we investigate the design of
equitable tutoring systems that derive their curricula from
Knowledge Tracing models. We first show that the clas-
sical Bayesian Knowledge Tracing (BKT) model and their
derived curricula can fall short of achieving equitable tutor-
ing. To overcome this issue, we then propose a novel model,
Bayesian-Bayesian Knowledge Tracing (B2KT), that natu-
rally allows online individualization. We demonstrate that
curricula derived from our model are more effective and equi-
table than those derived from existing models. Furthermore,
we highlight that improving models with a focus on the fair-
ness of next-step predictions can be insufficient to develop
equitable tutoring systems.
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1. INTRODUCTION
In recent years Massive Open Online Courses (MOOCs) and
online educational platforms have gained significant impor-
tance. They hold the opportunity of providing education at
scale and making education accessible to a larger part of the
world’s population. To facilitate learning in online educa-
tion and enable customized learning paths for all students,
intelligent tutoring systems can be employed while limiting
the amount of manual work necessary for each student [11].

In that context, moving education from an offline setting to
an online setting, has the potential to promote Inclusion,
Diversity, Equity, and Accessibility (IDEA). In particular,
by reducing personnel efforts for tutoring, there is the op-
portunity to include students with diverse backgrounds and

skills, and, importantly, to support their learning equitably.
To achieve this, an intelligent tutoring system must be able
to adapt to the specific characteristics of each student.

While individualized tutoring has been studied in the com-
munity for many years, we consider individualization with a
focus on equitable and fair tutoring in this paper. We start
by providing a unifying definition of an equitable tutoring
system. Our definition is based on the ethical principles
of beneficence (“do the best”) and non-maleficence (“do not
harm”) which are commonly adopted in bioethics and medi-
cal applications [1]. These principles dictates that we should
provide tutoring which maximizes the achieved knowledge
while minimizing a student’s efforts. In particular we fo-
cus on modifying Bayesian Knowledge Tracing (BKT) [2]
to better realize these ethical principles. To this end, we
propose the Bayesian-Bayesian Knowledge Tracing (B2KT)
model and demonstrate its advantages for equitable tutor-
ing in several experiments. Furthermore, we investigate the
relation of the commonly considered AUC score concerning
the derived tutoring policies, finding that even if a BKT
model appears fair in terms of the AUC score, the derived
tutoring policies can be inequitable.

In summary, we make the following contributions: (i) We
propose a unifying definition of equitable tutoring moti-
vated by ethical principles. (ii)We propose the B2KT model
which allows for effective individualization and demonstrate
its benefits concerning equitable tutoring. (iii) We highlight
that focusing on equity in terms of AUC can be insufficient
to ensure equitable tutoring in terms of our definition.

An longer version of this paper with additional experimental
results and extended discussion is available [15].

2. RELATED WORK
Fairness in online education and BKT. Several works have
considered fairness in data-driven educational systems and
intelligent tutoring, e.g., [7, 4, 17, 8]. In [7], the authors dis-
cussed implications of using data-driven predictive models
for supporting education on fairness. They identified sources
of bias and discrimination in “the process of developing and
deploying these systems”, and discussed high-level possibili-
ties to improve fairness of systems in the“action step”. In [8,
17], it was investigated how different data sources can pro-
vide helpful information to predict students’ success in ed-
ucation. Key insights were that different data sources can
help to make better predictions but have different character-
istics in whether they over- or underestimate students’ suc-
cess [17], and that such predictions can include gender and
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racial bias in some fairness measures which can be partly
alleviated through post-hoc adjustments [8]. In [4] fairness
in the context of BKT was studied, and it was found that
tutoring policies basing on inaccurate BKT models can be
inequitable, when considering the difference in learning suc-
cess for different subpopulations as a measure of unfairness.
Related work also considers adopting a Bayesian perspective
for realizing fair decision rules under model uncertainty [3]
and fairness in the context of non-i.i.d. data [19].

Individualization in BKT. Several papers have studied in-
dividualization of BKT models per student, e.g., [9, 10,
18]. In [10] the prior per student model was introduced
which uses a student-specific parameter characterizing the
students’ individual knowledge. [18] considered individual-
ization through defining student and skill specific parame-
ters which are fitted through gradient descent.

Instructional policies. Key for achieving equity according to
our definition are instructional policies which stop practicing
a skill at the right time. This problem has for instance been
considered in [6, 12]. Further related work has investigated
approaches leveraging deep models for creating policies to
quickly assess students’ knowledge [16] and using reinforce-
ment learning for optimizing tutoring policies [14, 5].

3. BACKGROUND & NOTATION
Bayesian Knowledge Tracing. Bayesian knowledge tracing
(BKT) [2] is a model characterizing the skill acquisition pro-
cess of students. For a single skill, it can be understood as
a standard hidden Markov model in which the binary (la-
tent) state encodes the mastery of the skill, and the binary
observations indicate whether a practicing opportunity of
the skill was solved correctly. Upon practicing a not yet
mastered skill, the student acquires the skill with probabil-
ity p(T ). Once a skill is mastered, it remains mastered. If
a student has mastered the skill practiced by an exercise,
they solve this exercise correctly with probability 1− p(S).
If a student has not mastered the skill, it guesses the correct
answer with probability p(G). At the beginning, a student
has already mastered the skill with probability p(L0).

Notation. We consider the interaction of students s ∈ S with
an intelligent tutoring system. The interaction history up
to time t is denoted as Ds

t = {(z1, c1), (z2, c2), . . . , (zt, ct)},
where zt′ ∈ Z is the skill practiced through an exercise at
time t′, ct′ ∈ {0, 1} is an indicator of whether the exercise
was solved correctly, and Z is the set of skills. In the context
of BKT, we refer to the random variables (RVs) indicating
whether skill i ∈ Z is mastered at time t as Zi

t and to
the RVs indicating whether an exercise practicing that skill
would be solved correctly as Ci

t . Sometimes we add another
superscript s to indicate the student the RVs correspond to.
Upper-case terms like Zi

t denote RVs and their lower-case
counterparts like zit denote particular instantiations.

4. EQUITABLE TUTORING
In this section, we provide a definition of equity in intelligent
tutoring and discuss its operationalization.

4.1 Definition
We consider a tutoring setting in which a total of K sills
ought to be taught to a set of students S by an intelligent tu-
toring system employing a tutoring policy π : H → I ∪{⊤}.
This policy maps histories h ∈ H consisting of observations

of a student’s learning process to an exercise e ∈ I to be
practiced next or to a stop-action ⊤, which ends the teach-
ing process. Each student can have different learning charac-
teristics. Every tutoring policy π has an expected stopping
time T s(π), i.e., the expected time of executing the stop ac-
tion, and an expected knowledge Ls(π) acquired by the end
of the teaching process, i.e., Ls(π) is the expected number
of mastered skills upon executing the stop action.

Our notion of equity is based on the ethical principles of
beneficence and non-maleficence. We understand them to
translate into the objective of maximizing a student’s knowl-
edge using as little of the student’s resources as possible, i.e.,
performing a minimal number of exercises:

Definition 1. Consider a tutoring system employing a tutor-
ing policy π. The policy π is equitable for student s iff

T s(π) = min
π′,Ls(π′)=K

T s(π′) and Ls(π) = K.

A tutoring system is equitable if its tutoring policy is equi-
table for all students s ∈ S.
Thus, informally, a tutoring system is equitable if it can
teach all K skills in the minimal amount of time possible to
any student. Note that our notion of equity is strongly re-
lated to that introduced in [4] (cf. discussion below). In the
above definition, we implicitly assume that all students can
master allK skills.1 Importantly, a tutoring system can only
be equitable if it is adaptive to the students which are inter-
acting with it. In particular, it has to individualize the as-
signment of exercises and needs to carefully select the ”stop
action”, in order to achieve equity. The above definition de-
scribes an idealized notion of equity which in general cannot
be achieved as the tutoring policy would have to teach using
the optimal policy right from the beginning. Nevertheless,
we can compare tutoring policies π in the spirit of the above
definition. In particular, given two tutoring policies π and
π′ which both teach the same number of skills, we consider
the policy π to be more equitable as compared to π′ if for
all students s ∈ S it holds that T s(π) ≤ T s(π′).

We note that our notion of equity is strongly related to that
introduced in [4]. In [4], the authors “assume that an equi-
table outcome is when students from different demographics
reach the same level of knowledge after receiving instruc-
tion”. The desideratum of achieving knowledge fast is later
also added to their notion of equity whereas in our case it is a
fundamental constituent. Furthermore, our interest extends
to downstream implications of such a definition of equity,
namely the individualization of knowledge tracing.

Theoretical Implications. Our definition of equity leads to
the following (probably obvious) but important observation:

Observation 1. A tutoring system for a population of stu-
dents with different learning characteristics can only be eq-
uitable if its tutoring policy is adaptive to the students.

Thus, we note that if the tutoring policy is derived deter-
ministically from a non-adaptive, initially incorrect, model
of the students, the tutoring system will in general not be
equitable. Achieving equity would require basing a policy on
rich side information in order to employ an optimal tutoring
policy for each student right from the beginning. But such
rich side information might not be available.
1Our definition can be easily generalized to account for an
individual student’s maximal achievable knowledge.
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Figure 1: Graphical model of B2KT. The acquisition and ap-
plication of the K skills depends on p(L0), p(S), p(G), p(T ).

4.2 Operationalization
Tutoring policies are often either simple fixed strategies or
derived from a model, e.g., a BKT model, such that each
knowledge component is repeatedly exercised until it is mas-
tered with a certain probability. But tutoring policies based
on incorrect or non-adaptive models can result in a student
not acquiring all skills or suggest to perform too many prac-
ticing opportunities. Thus the following two general direc-
tions are important for building equitable tutoring systems:
(i) Using side information. Any available side information
about a student should be used to individualize the underly-
ing models. In the context of classical BKT models, the side
information could be used to make an initial guess about
the key parameters of the model (p(L0), p(S), p(G), p(T )).
(ii) Online adaptation. Even when using side information, a
model is likely not perfectly individualized to all students.
To further adjust the models in such cases, online adaption
of the models during interaction seems promising.

5. PROPOSED APPROACH: B2KT
In this section, we propose a Bayesian variant of the classi-
cal BKT model which enables online adaption to student’s
parameters from which individualized — potentially more
equitable — policies can be derived, cf. Figure 1.

We assume that each student s has its own learning dy-
namics, described by student-specific parameters θs. If the
learning dynamics can be described using a BKT model,
θs = (p(Ls

0), p(T
s), p(Ss), p(Gs)). We assume these learn-

ing dynamics to apply for the acquisition of all skills. In
practice, we don’t know these parameters and need to infer
them. To this end, we take a Bayesian approach, and we
assume a set of possible parameters Θ such that θs ∈ Θ and
a prior distribution p0(θ

s). Based on t observations of a stu-
dent’s practicing exercises collected in Dt, we can compute
the probability that a student has mastered a specific skill
and base tutoring policies thereon. As we don’t know θs,
this requires marginalizing out the (unknown) parameters
θs. In this way the different possible parameters and their
influence for predicting the knowledge state get re-weighted
according to the available data. In particular, we compute

p(Zs,i
t | Dt) =

∫
θ∈Θ

p(Zs,i
t | θ,Dt)︸ ︷︷ ︸
=:(#1)

p(θ | Dt)︸ ︷︷ ︸
=:(#2)

dθ, (1)

where Zs,i
t is a random variable indicating whether skill i

is mastered at time t by student s. For only a few possible
parameters θ, the above equation can be solved exactly by
enumeration and by observing that both terms (#1) and
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Figure 2: Equity gap vs number of excess learning opportuni-
ties. B2KT becomes more equitable as more skills are taught.

(#2) can be computed efficiently by the following recursion:

αθ
0(l) = p(Zs,i

0 = l | θ) = p(L0)
l(1− p(L0))

1−l

αθ
t+1(l) = p(Zs,i

t+1 = l, cit+1)

=
∑

z
s,i
t

p(cit+1|Zs,i
t+1 = l)p(Zs,i

t+1 = l|Zs,i
t = zs,it )αt(z

s,i
t )

Here cit collects all observations with respect to practicing
the ith skill up to time t, and cit′ is the t

′th entry of cit. Then

(#1) = p(Zs,i
t = 1 | θ,Dt) =

αθ
t (1)

αθ
t (0)+αθ

t (1)
, and

(#2) = p(Θ = θ | Dt) =
p0(θ)·(αθ

t (0)+αθ
t (1))∑

θ′∈Θ p0(θ′)·(αθ′
t (0)+αθ′

t (1))
.

6. EXPERIMENTS
We perform experiments on synthetic data and consider set-
tings in which the learning rate p(T s) is assumed to be un-
known. This is motivated by previous work which has iden-
tified the learning rate as a key parameter for improving
BKT based models [18]. In all presented results we denote
the average stopping time of a policy for a population of
students by Tstop and the average number of acquired skills
by % skills. We consider Threshold(τ) curricula based on
knowledge tracing models. These curricula repeatedly ex-
ercise a skill until it is mastered with a probability of at
least τ under the model. We consider the following models:
(i) BKT: the classical BKT models with fixed parameters;
(ii) B2KT: the proposed Bayesian-BKT model.

Students with different learning behaviors. We study the
equity of tutoring policies when the students are sampled
uniformly from two groups, each containing students with
learning dynamics described by a ground truth BKT model.
In particular, we build on the experimental setup from [4]
where there is a group of slow learners (BKT slow) and fast
learners (BKT fast). In [4], the authors also fitted a BKT
model to interaction data from students from both groups;
we refer to the corresponding BKT model as BKT mixed.
The parameters of the considered models are as follows:

p(Ls
0) p(Ss) p(Gs) p(T s)

BKT slow 0.0 0.2 0.2 0.05
BKT fast 0.0 0.2 0.2 0.3

BKT mixed 0.071 0.203 0.209 0.096

We considered the interaction with 400 students, 200 from
the slow and the fast group, respectively, and we compared
the performance of Threshold(0.95) tutoring policies based
on these models for different numbers of skills that ought to
be taught in Table 1. We observe that in the case of mis-
match of the student properties and the BKT models used



Table 1: Equity trade-offs of curricula derived from different models/parameterizations.

1 skill 5 skills 20 skills

slow learners fast learners slow learners fast learners slow learners fast learners

Threshold(0.95) % skills Tstop % skills Tstop % skills Tstop % skills Tstop % skills Tstop % skills Tstop

BKT slow 97.00 24.14 99.50 9.49 97.20 122.80 99.90 66.00 97.55 492.64 99.90 183.84

BKT fast 61.00 13.85 97.50 5.96 62.60 71.98 96.10 29.81 64.20 288.76 97.23 120.59

BKT mixed 95.00 23.51 100.00 8.33 95.40 113.67 99.90 40.93 94.53 466.55 99.68 169.86

B2KT 94.50 24.04 100.00 7.88 97.70 120.87 98.40 32.61 96.68 493.00 96.66 120.05

for the threshold policy, either only a small fraction of the
skills (clearly below 95 %) is acquired or that more than
necessary time is spent exercising. The mismatch issue is
alleviated in the case of the B2KT model (assuming a uni-
form prior over both types of students), in particular for a
larger number of skills. Intuitively this is because, in the
case of multiple skills, the model has more opportunities to
learn about the students’ characteristics and leverage this
knowledge in later tutoring. This fact is also illustrated in
Figure 2 in which we reproduce and extend an experiment
from [4] in which we compare the “equity gap” (the differ-
ence in the percentage of skills mastered by fast and slow
students, respectively) to the number of excess learning op-
portunities. Importantly, B2KT becomes more equitable as
more skills are taught.

Out-of-distribution generalization. We test whether B2KT
can help with aspects relevant to inclusion and diversity. In
particular, we consider a stylized mismatch setting in which
a tutoring system interacts with students who have a learn-
ing behavior not considered when building the system. In
addition to the previous two types of students, we assume a
third type of learner (BKT med) with the following param-
eters: p(Ls

0) = 0.0, p(Ss) = 0.2, p(Gs) = 0.2, p(T s) = 0.18.
We considered Threshold(0.95) policies based on BKT
models of slow and fast learners and the B2KT model with
a uniform prior over slow and fast learners. Our results are
presented in Table 2. We observe that the performance of
the policies derived from the B2KT model have comparable
performance to those derived from the true model (although
the true model has zero posterior probability) whereas other
models yield policies worse in terms of stopping at the right
time or teaching the right amount of skills. This property
of B2KT can be helpful for promoting inclusion, e.g., when
interacting with students who were underrepresented in the
data used for building an intelligent tutoring system.

Fair next step predictions do not necessarily imply equitable
tutoring. We show empirically that models which might
appear to be fair when looking at their AUCs for different
groups of students do not necessarily yield equitable tutoring
policies. In particular, we again focus on a student popula-
tion consisting of two groups of students:

p(Ls
0) p(Ss) p(Gs) p(T s)

Group 1 0.0 0.1 0.4 0.1
Group 2 0.0 0.1 0.2 0.3

We generated data of 400 students (50% from group 1 and
group 2, respectively) in a setting with 20 skills and 1000
random exercises from a BKT model. The true model of
group 1’s students achieved an AUC of 0.7393 for group 1’s
students, while the true model of group 2’s students achieved
an AUC of 0.6710 for group 2’s students.

Looking only at the AUC, the two models appear rather in-
equitable (there is no group parity). Thus it might appear

sensible to aim to use a BKT model for tutoring which has
comparable AUCs for both groups in order to promote eq-
uity. For instance, a BKT model using parameters p(L0) =
0, p(S) = 0.4, p(G) = 0.1, p(T ) = 0.65 achieves an AUC of
0.6719 on group 1’s students and of 0.6733 on group 2’s stu-
dents, respectively. That is, the AUCs on the two groups are
approximately equal. However, when looking at the differ-
ent models with respect to their tutoring performance using
a Threshold(0.95)-policy, we observe a very different pic-
ture, cf. Table 3. In particular, the fraction of skills taught
differs significantly between the two groups: In group 1 only
28.68% of the skills are acquired by the students on aver-
age while in group 2 74.70% of the skills are acquired. This
finding is closely related to the observation that models with
greatly different characteristics can have similar AUCs [13].

Table 2: Out-of-distribution generalization.

1 skill 5 skills 20 skills

BKT med BKT med BKT med

Threshold(0.95) % skills Tstop % skills Tstop % skills Tstop

BKT slow 99.50 11.28 99.55 56.45 99.59 225.25

BKT fast 90.75 7.61 91.55 37.59 91.70 151.36

BKT mixed 99.50 10.46 99.00 51.71 99.21 211.29

BKT med 98.25 8.82 97.35 45.59 97.84 184.20

B2KT 98.75 10.33 97.50 48.80 94.19 168.36

Table 3: Fairness in terms of similar AUCs on different groups
does not imply fairness in terms of the derived curricula.

group fair wrt AUC true model wrt group

group AUC % skills Tstop AUC % skills Tstop

group 1 0.6719 28.68 61 0.7393 96.13 308

group 2 0.6733 74.70 64 0.6710 96.35 105

7. CONCLUSION
We considered the equity and fairness of curricula derived
from knowledge tracing models, and provided a unifying def-
inition of equitable tutoring systems. Our definition is, in
many practical settings, not realizable but suggests that the
individualization of tutoring policies to students is key for
realizing equity. We proposed the B2KT model, a Bayesian
variant of the classical BKT model, and demonstrated in
various experiments that it can be beneficial for realizing eq-
uitable tutoring systems and promoting IDEA more gener-
ally. Furthermore, we highlighted that improving and eval-
uating models with the main focus on next-step predictions
can be insufficient to develop equitable tutoring systems.
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