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ABSTRACT

At present, the educational data mining community lacks
many tools needed for ensuring equitable ability estima-
tion for Neurodivergent (ND) learners. On one hand, most
learner models are susceptible to under-estimating ND abil-
ity since confounding contexts cannot be held accountable
(e.g. consider dyslexia and text-heavy assessments), and on
the other, few (if any) existing datasets are suited for ap-
praising model and data bias in ND contexts. In this pa-
per we attempt to model the relationships between con-
text (delivery and response types) and performance of ND
students with zero-inflated learner models. This approach
facilitates simulation of several expected ND behavioural
traits, provides equitable ability estimates across all stu-
dent groups from generated datasets, increases interpretabil-
ity confidence, and can significantly increase the quality of
learning opportunities for ND students. Our approach con-
sistently out-performs baselines in our experiments and can
also be applied to many other learner modelling frameworks.

Keywords
Neurodiversity, Zero-Inflated Models, Learner Models, Item
Response Theory, Data Simulation

1. INTRODUCTION

In the UK, it is estimated that 15% of the population are
ND, having neurological functions that differ from what is
considered typical [22]. Neurodiversity covers the range of
differences in individual brain function and behavioural traits,
regarded as part of normal variation in the human popula-
tion [37]. Each Neurodivergent Condition (NDC) uniquely
affects how information is absorbed, processed, and commu-
nicated [30, 4]. Our objective is to adapt Learner Models
(LMs) for the individual requirements of a number of NDCs
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in learning environments, focusing specifically on dyslexia,
dyscalculia and Sensory Processing Disorder (SPD) (with
prevalences of 10%, 6% and 5-15% respectively [7, [36] [9]).

Achievement gaps due to NDCs occur early in life and per-
sist through adolescence into adulthood [§]. In many cases,
impeded learning opportunities for ND students result from
unsuitable learning contexts or lack of adequate student
support rather than intrinsically low student ability [29].
However, as learning begins to move further into the digital
space [14} [34], LMs, which are statistical models of student
attainment, will use historic performance to estimate stu-
dent ability. Owing to a legacy of potentially poor learn-
ing contexts, the ability of ND students tends to be under-
estimated by LMs since they are not equipped to distinguish
between context- and ability-based explanations of perfor-
mance. Without deliberate effort, therefore, it is very likely
that LMs will become biased and offer inequitable recom-
mendations for ND students. On the other hand, opportu-
nities to quell these achievement gaps before they grow are at
hand in smart learning environments if LMs are empowered
to reason about alternative explanations of performance.

LM research is highly active in the Educational Data Min-
ing (EDM) community. State-of-the-art approaches include
deep neural networks [33] [I1}, 28], and nonparametric Bayesian
methods [I5]. We find that the literature is sparse for in-
clusive LMs applied to ND populations, and we were unable
to find many bespoke models or datasets (real or synthetic)
even in recent literature reviews [T}, 21]. Kohli et. al. [16] in-
troduced an approach for identifying dyslexic students based
on historic patterns of behaviour and artificial neural net-
works. Mejia et. al. [26] approached the task by estimat-
ing learner’s cognitive deficit specifically for students with
dyslexia or reading difficulties. Ensuring the equity of LM
is an important area of research, and learning interfaces can
be improved by offering multiple assessment Delivery and
Response Type (DRT) [29]. Other works have elaborated
further on scores and metrics for ethical and equitable rec-
ommendation systems with broad stakeholders, including
dyslexic students [25]. Equity is also explored along ex-
plainability and interpretability axes. Some classical LMs
are readily interpretable and offer intuitive explanations of
datasets [31], [24], though caution must be exercised to avoid
over-interpreting models [13].
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ND students face at least two additional hurdles than Neu-
rotypical (NT) students in learning environments: 1) their
ability is inaccurately modelled due to LMs shortcomings;
and 2) choosing the most suitable learning context for them
to express their true ability is rarely considered. Further-
more, the EDM community currently lacks datasets and
simulation tools for developing LMs and assessing equity for
NDC contexts. We address these three limitations in this
work, by motivating and defining equitable LMs for ND stu-
dents (Sec , defining a simulation environment (Sec ,
and demonstrating strong performance in our results and
conclusions (Secs [3| and [4)).

2. METHODS

Due to a lack of available datasets that include ND students,
we explore equitable estimation in simulations. Our model
combines the use of Zero-Inflated Models (ZIMs) [I7] and
Item Response Theory (IRT) [2]20]. Our assumption is that
DRT choices will affect the quality of learning opportunities
for ND students, with unsuitable DRT resulting in lower
Learning Quality Factor (LQF). Without considering the
suitability of DRT's for students, LMs risk recommending
low-quality learning opportunities and mis-interpreting poor
performance on these as an indication of low student ability.
The model and simulation procedure proposed is designed
to be used to identify the best DRTs for each student, and
prevent underestimation of abilities.

2.1 1IRT-based Zero-Inflated Learner Model

Our proposed approach, Zero-inflated Learner Models (ZILMs),

shown in Eqn , builds on the assumption that there are
two explicit explanations of zeros: 1) low ability relative to
difficulty (low p); and 2) low LQF (high 7). With this for-
mulation, a zero from a student with high ability with in an
unsuitable DRT can be explained by the poor LQF since w
has high responsibility for the outcome [3].

m+(1—-m-(1—-p) ify=0
1-m)-p ify=1
In our setting, p is based on IRT, and 7 (which reflects

LQFs) is parameterised by item, NDC and DRT features
(c.f. Sec[2.2)), resulting in IRT-based ZILM (IRT-ZILM).

Pr(Y =y) = { (1)

IRT was chosen as the base LM in IRT-ZILM over alter-
native options as: 1) IRT is well-understood and simple to
interpret; 2) Bayesian Knowledge Tracing (BKT) is known
to have over- and under-estimation problems [0l 18] that
may muddle our understanding of equity for ND students;
3) several technical hurdles need to be overcome to incorpo-
rate our approach into BKT; and 4) although Deep Knowl-
edge Tracing (DKT) [33] models can probably learn latent
representations that correlate to DRT preferences, this is at
the expense of control and interpretation of the effects.

2.2 Simulations

In the simulated dataset, we assume that the ability of ND
and NT students are drawn from the same distribution,
meaning that ability and NDCs are independent. The NDCs
considered in this initial work are dyslexia, dyscalculia, and
SPD. These chosen conditions reflect a wide range of effects
from different delivery and response types, but this work
could be applied to others.

Table 1: Description of parameter distributions used to gen-
erate synthetic dataset. Each parameter was randomly as-
signed from distributions. Users are given an intrinsic ability
and the possibility of one or more ND conditions. Items are
assigned a difficulty, discrimination, guessing, subject, con-
tent type, information density, delivery type and response
type. Information density describes how much information is
provided—~0.1 represents only a few words, 1 is a large block
of text—designed to reflect how clearly an item is presented.

Parameter Value (Range) Probability
Ability (=00, 0) N(0,1)
e Dyslexia,
ND condition Dyscalculia, SPD 0.1, 0.06, 0.11
Difficulty (-2, 2) uniform
Discrimination (0.5, 4) uniform
Guessing (0, 0.15) uniform
Subject Maths, English 0.5, 0.5
- M: 0.1, 0.5, 0.6,
Content type Letter, Digit, Both E: 1,00
No. attempts 20 fixed
Info. density (0.1,1) N(0.35,0.15)
Delivery type Read, Listen, Both 0.3,0.3,04

Written, Speak,
Click Picture,
Click Read

Response type 0.4, 0.2,0.2,0.2

Datasets are created based on the parameters outlined in
Table[l] These features contribute to the estimation of LQF's
and the probability a user will respond to an item. For
example, a dyslexic user’s learning quality is impacted by
delivery types involving reading letters, and response types
involving reading letters to click the correct answer(s) or
writing an answer that includes letters. A dyscalculic user is
affected by delivery and response types involving digits. And
someone with SPD is impacted when the delivery involves
both reading and listening with either letters and/or digits,
as this can cause sensory overload [29].

Collectively, these features are used to describe the suitabil-
ity of DRT to a variety of NDCs, which we now relate back
to Eqn (I). If a poorly chosen DRT is selected for a ND
student, this will result in poor learning opportunities due
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Figure 1: This image shows that LQFs can make the per-
ceived ability of an affected student much lower than their
true unobserved ability. { shows a student’s true ability, o
shows the impact of low LQFs, and [J shows the perceived
ability if LQF is not considered.
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Figure 2: Comparison of attempt outcomes for each NDC
(dyslexia: upper left; dyscalculia: upper right; SPD: lower
left; all: lower right) when a single delivery type is used for all
items (R and L correspond to ‘read’ and ‘listen’ respectively).

to a low LQF (i.e. large ). However, if a suitable DRT is
selected for a student, the suitability is reflected in higher
LQFs. Synthesising datasets that adapt to DRTs and NDCs
requires specification of the weight vectors to adapt 7 to
context (e.g. ‘reading’ should increase m / reduce LQF for
dyslexic but not for dyscalculic students). Although specifi-
cation of weight vectors is a subjective process, it allows us
to express our intuition and instincts about the influential
pathways. These are fully described in our implementatimﬂ

The effect of LQF's on an item’s characteristic curve can be
seen in Fig As the LQF decreases, the upper asympotote
is reduced, indicating that their opportunity to learn from
the interaction is compromised. With this, we interpret LQF
as a measure of the contextual inequity.

3. RESULTS AND DISCUSSION

There are four main questions we want to explore in this
work: 1) how much are ND users learning opportunities
impacted by poor DRTSs; 2) is it possible to identify users
with potential NDC based on their performance on items
with a range of DRTSs; 3) is it possible to estimate user true
abilities, accounting for any poor performance due to other
factors; and 4) can student learning quality and success be
improved through active selection of DRT's?

3.1 How are ND users impacted?

Fig [2] shows how ND student performance is affected if a
learning environment only delivers information in a single
format. Across the full neurodiverse population, the mean
performance is approximately the same for all learning ma-
terial formats. There are also no observable differences in
performance for users with dyscalculia. However, for users
with dyslexia or SPD there are noticeable differences. For
users with dyslexia, they answer 6-11% more attempts cor-
rectly and are able to attempt 9-15% more items when the
item has a listening component. For users with SPD, they
answer an item correctly, and are able to attempt, 19-24%
more attempts when the item is only delivered in one for-
mat compared to multiple formats. The probability of a

lgithub.com/niall-twomey/zero-inflated-learner-models

user succeeding at an item is can be drastically effected by
a poor learning quality.

3.2 Can NDC:s be identified from interactions?

To investigate if users with a potential NDCs can be iden-
tified from the interactions, we have compared individuals
mean performance in different subjects and on items with
different delivery types (Fig|3). When Maths and English
are compared (Fig left), dyscalculic users have attempted
more English items than Maths (large spike on ‘Not an-
swered’). Additionally, when Maths is attempted, there
is a lower success rate than in English (dip in ‘Correct’).
Their performance in terms of ‘Incorrect’ counts in English
and Maths are equivalent. However, this tally is achieved
with 30% fewer attempts, indicating poor performance in
Maths, further illustrating the effect of their NDC (i.e. 10/20
vs. 5/15). The most noticeable effects between read vs. listen
DRT (Fig middle) are seen by a clear increase in number
of not answered items and decrease in the number of cor-
rect answers for ‘dyslexia’ and ‘dyslexia & SPD’ students.
SPD students are unaffected by these DRTs. Comparing the
‘read & listen’ and ‘read’ delivery types (Fig[3|right), there
are features seen with the dyslexia users, as above, but the
SPD users now show a significant difference in performance,
with large increases on ‘not answered’ and decreases on ‘cor-
rect’. So, by comparing individual students’ performance in
different subjects and DRTs, it’s possible to identify the ND
students and their condition. In practices, these compar-
isons could be used to identify what contexts a student may
be struggling with, and additional support they may need.

3.3 Can a user’s true ability be estimated?
One aspect of ensuring each user gets suitable learning ma-
terial is understanding their true ability. Fig[d]compares the
performance of classical IRT and our IRT-ZILM model for
parameter recovery. With IRT, most of the ability values are
under-estimated, particularly for students with 1 or 2 NDCs
(Fig @ Under-estimated ability makes sense given our
expected inflated zero counts. However, the bias of under-
estimated ability for ND students is concerning given that
ND and NT abilities were drawn from the same distribution.
On the other hand, IRT-ZILM is a much better estimator
of true abilities (Fig [Ab). Additionally, there is no obvious
gap in ability estimates for students with NDCs compared
to NT students. Table [2] summarises the predictive accu-
racy of the considered models. Although the performance
of all models is approximately equivalent (only small gains
for our approach) the lack of distorted recovered parameters
may indicate stronger reliability of IRT-ZILM.

Table 3] summarise parameter estimation using Pearson and
Spearman correlation coefficients, and have included linear
KTM [39] (using contextual features) as another baseline.
KTM, like IRT also under-estimates ND ability, and IRT-
ZILM is a significantly better estimator of the true param-
eters.

3.4 Can learning quality be improved?

We explore the effect of actively selecting DRT's to improve
LQFs and the number of successful learning attempts for
ND students in Table@ The table shows the potential that
selecting the most suitable DRT can have on learning qual-
ity, with large lifts on students with 1 or 2 NDCs.
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Figure 3: Performance differences for selected students across subject- and NDC-oriented contexts. Bar chart colour indicates
NDCs. Large positive and negative values in the bar charts indicates that a group has been affected by the context. While every
NDC is affected (indicated in parentheses in subfigure captions), no significant effects present for NT students.
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Figure 4: Scatter plots of true vs. estimated ability param-
eters from IRT and IRT-ZILM. Perfect estimation will place
all points on diagonal. IRT is biased against ND students,
while IRT-ZILM parameter estimation is very reliable.

Table 2: Predictive test metrics. Similar performance ob-
tained with all models, though IRT-ZILM is slightly more
performant than baselines.

Metric IRT KTM IRT-ZILM

Accuracy  0.734 0.742 0.753
F1 0.559  0.567 0.583
NLL 0.513  0.499 0.494
Brier Score 0.170 0.166 0.163

3.5 How can this model be applied?

As already discussed, comparing user interactions in dif-
ferent contexts can identify students who may need addi-
tional support in specific areas. Often, high achieving ND
students needs can be overlooked since their performance
doesn’t tend to require interventions. With IRT-ZILM, sup-
port/adaptions can be put in place early to enable them to
reach their full potential since this model is less susceptable
to the biases of traditional LMs. IRT-ZILM can be used
to better estimate a students true ability, by adapting it to
contexts and underestimating their DRTs preferences. This
can help identify and explain causes for underperforming
students. By understanding which DRTs a student strug-
gles to engage with, alternative items can be provided to

Table 3: Pearson and Spearman correlation coefficients be-
tween true and recovered parameters. Values of 1 indicate
perfect matches. IRT-ZILM parameter estimation is the most
accurate across both metrics for all parameters.

Pearson Spearman
IRT KTM IRT-ZILM IRT KTM IRT-ZILM
Ab  0.839 0.955 0.993 0.929 0.966 0.996
Diff 0.394 0.686 0.953 0.413 0.707 0.954
Disc  0.270 0.544 0.932 0.234 0.610 0.942

Table 4: Increase (and decrease) of learning opportunities
obtained with active (and adversarial) DRT selection.

1 NDC 2 NDCs
Baseline 0.391 0.123

Lift 14321 1.898 1
Drop 0.248 | 0.014 |

help them reach their full potential. These insights can also
be used by teachers to explore if the DRTs of their content
can be expanded to create an accessible learning environ-
ment for all. Education traditionally has taken a one size
fits all approach. By harnessing models that incorporate
contextual understanding, learning can be tailored to each
student, reaching many of those who may previously have
felt dejected in learning, as their needs weren’t being met.

4. CONCLUSIONS

Our application of zero-inflated models in learning contexts
offers a rich simulation environment of neurodivergent condi-
tions in question answering settings, unbiased evaluations of
neurodivergent learners, encourages increased learning qual-
ity, and more reliably recovers unbiased ability parameters.
On the basis of our successful results we believe that further
study and exploration of zero-inflated learner models can
yield an inclusive framework for equitable, explainable, and
reliable learner models in diverse educational data mining
contexts. Future work will expand on the experimentation
to new contexts, and the model to new domains.
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Appendix
This section gives supplementary details of our proposed

model, see Sec

Delivery and Response Weakening

We adapt learner models for NDCs by taking inspiration
from techniques used in Weakly Supervised Machine Learn-
ing(WSML) [4I]. Our approach is to model the interplay
between item DRTs and NDCs. Let a binary random vari-
able be drawn from a Bernoulli distribution, y ~ Ber(p),
and let us assume that a label flipping process acts upon y
and this results in observations of the corrupted labels, 3.
The mixing matrix, M, is defined as follows:

(1—q0 a )_(Pr(if:m/:n Pr(Y:1|Y:0))

o 1-q Pr(Y =0y =1) Pr(Y =0]Y =0)

The gy variables can be selected using prior knowledge and
assumptions on the data distributions [27), [32]. In our set-
ting, we are interested particularly in the contexts when
learning of ND students is being sabotaged by the environ-
ment, i.e. go. We therefore model g (previously introduced
as a global parameter) and parameterise it with ND, LQF
and interaction features.

IRT-based Zero-Inflated Learner Model
Our IRT-ZILM merges LMs and ZILM as follows:

7(%x) + (1 = 7(xx)) (1 = p(xp))
(1 = 7(xx))P(xp)
where 7 and p from Eqn are now functions leveraging

ND/LQF /content features (xr) and LM /collaborative fea-
tures (xp).

ify=0

By separating the functional contribution of confounders ()
and ability (p) in IRT-ZILM, we hope to unambiguously
decouple these aspects from each other and improve inter-
pretability and explainability. The model is learnt by gra-
dient descent of negative log likelihood of the training data
to optimise all parameters. In WSML it is common to learn
in a two-step process, for example, by iteratively fixing and
optimising IRT and weak label weights [32].

ZIMs have been used to account for excess zeros in many
counting tasks using Poisson and negative binomial mod-
els [I7, 40l [38] 23], and in learning analytics as statistical
counting models in self-regulated learning [I12]. An impor-
tant property of statistical models is identifiability as it al-
lows for the precise estimation of the values of its parame-
ters [10}, Sec 4.5]. Parallel theoretical analysis has considered
identifiability of the counting model parameters [35] and the
mixture components [19]. It is worth noting that IRT also
suffers from identifiability problems (c.f. [5l p.6] and [10, Sec
14.]) but using priors or regularisation can alleviate these.

As far as we are aware, this is the first work to incorpo-
rate ZIM in this manner. Choosing IRT as the base LM in
IRT-ZILM over alternative options is motivated for several
reasons. Firstly, IRT is well-understood and simple to in-
terpret, and using this model as a platform to demonstrate
new properties of equity in this early work carries the same
benefits. Secondly, BKT is known to have over- and under-
estimation problems [6l [I8] which may muddle our under-

standing of equity for ND students. Additionally, several
technical hurdles need to be overcome, notably adaptation
for contextualised individualisation in mixed graphs. Fi-
nally, although DKT [33] models can probably learn latent
representations that correlate to DRT preferences, this is at
the expense of control and interpretation of the effects.

Extra Results

Fig shows this effect for four user/item pairs. For example,
the first student should be 60% (orange) successful on this
item, however, their LQF is 0.25 (blue), so their success rate
drops to 15% (green). Therefore, LQF can be interpreted as
a measure of the contextual inequity in these settings.

Although the purpose of this research is to provide equitable
estimates of student ability and to provide enabling technol-
ogy that selects the most appropriate DRT for students, we
note that we may also identify students that need additional
support in specific areas by recognising potentially uniden-
tified NDCs. We can approach this by creating two models:
let Mo be the model for a student’s reported NDC state (the
‘null’ model), and let M; be a model trained on data as-
suming an alternative NDC state (the ‘alternative’ model).
Since we have already shown that metrics and likelihood is
improved with IRT-ZILM, a statistical hypothesis test can
be performed on both likelihoods to determine whether the
null or alternative NDC offers a better explanation of data.
We leave further elaboration of this approach as future work
since it is outside the scope of our direct objectives.
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Figure 5: IRT predictions (f) combining with complementary
LQFs (7) producing IRT-ZILM predictions (p).
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Figure 6: Scatter plots of true vs. estimated difficulty pa-
rameters from IRT and IRT-ZILM. Perfect estimation will
place all points on diagonal. Estimation from IRT-ZILM is
significantly more accurate than IRT.



