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ABSTRACT
Knowledge Tracing (KT), the task of tracing students’ knowl-
edge state, has attracted attention in the field of artificial
intelligence. Recently, many researchers have proposed KT
methods using deep learning to predict student performance
on unknown tasks based on learning history data. Espe-
cially, the latest DeepIRT reportedly has high predictive ac-
curacy and parameter interpretability. Nevertheless, some
room remains for improvement of its prediction accuracy
because it does not optimize the degree of forgetting of past
data. Specifically, although its forgetting parameters are op-
timized solely using current input data, it should use both
current input and past data to optimize them. Therefore,
for better parameter estimation to improve accuracy, this
study proposes a new DeepIRT that optimizes the degree
of forgetting of past data. The proposed method has a hy-
pernetwork to balance both the current and the past data
in memory, which stores a student’s knowledge states. Re-
sults of experiments demonstrate that the proposed method
improves the prediction accuracy compared to earlier KT
methods.
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1. INTRODUCTION
Recently, with the development of online education [24, 25,
26], Knowledge Tracing (KT) has attracted broad attention
for helping students to learn effectively by presenting opti-
mal problems and a teacher’s support. [3, 7, 10, 15, 16, 17,
28, 29, 33, 34, 35]. Important tasks of KT are tracing the
student’s evolving knowledge state and discovering concepts
that the student has not mastered based on the student’s
past learning history data. Furthermore, accurate prediction
of a student’s performance (correct or incorrect response to
an unknown item) is important for adaptive learning. Al-
though KT methods have been proposed as probabilistic

approaches [3, 7, 28, 29, 34] and deep-learning-based ap-
proaches [17, 28, 29, 33, 35], the latter have been studied
more actively in recent years because they reportedly have
high prediction accuracies.

Various deep-learning-based approaches have been proposed
to improve the prediction accuracy of a student’s perfor-
mance[1, 20, 21, 32]. Most recently, Ghosh et al. (2020)
proposed attentive knowledge tracing (AKT) [5], which in-
corporates a forgetting function of past data to attention
mechanisms: the Transformer method [27]. In addition,
AKT optimizes the parameters to weight the data necessary
for student performance prediction from past learning data.
Therefore, AKT has the best performance for predicting a
student’s responses among earlier KT methods. However,
the interpretability of the parameters is limited because it
cannot express a student’s ability transition of each skill [5,
14, 22].

On the other hand, to express a student’s the knowledge
state transition for deep-learning-based approaches, Zhang
proposed the dynamic key-value memory network (DKVMN)
[35]. DKVMN traces the knowledge state transition us-
ing a Memory-Augmented Neural Network and attention
mechanisms. It can estimate the relations between under-
lying skills and items addressed by students. In addition,
DKVMN has a memory updating component to allow for-
getting and updating of the latent variable memory, which
stores the students’ knowledge states in the learning process
[35]. For interpretability of the parameters, the memory
updating component in DKVMN is more effective than the
forgetting function of AKT because it updates the current
latent variable memory, which stores the students’ skills and
abilities, using only the immediately preceding values.

To improve the interpretability of the parameters of DKVMN,
DeepIRT was proposed by combining DKVMN with an Item
Response Theory (IRT) [2, 11, 30] module [33]. It includes
the students’ ability parameters and the items’ difficulty pa-
rameters. However, it was insufficient to improve the in-
terpretability because a student’s ability of DeepIRT de-
pends on each item characteristic. To resolve this short-
coming, Tsutsumi et al. proposed DeepIRT methods with
independent redundant student and item networks [22, 23].
They can learn the student’s ability and item difficulty in-
dependently to avoid impairing the predictive accuracy. For
DeepIRT [23], a student’s ability is constant throughout
a learning process because it is structured for test theory.
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Therefore, it can not be applied to KT. To apply DeepIRT
to KT, DeepIRT [22] was proposed using architecture of
DKVMN. In DeepIRT [22], a student network employs mem-
ory network architecture to reflect dynamic changes of stu-
dent abilities as DKVMN does. Because the student’s abil-
ity parameters of the DeepIRT [22] are independent of each
item characteristic, it has higher interpretability than the
earlier method has [33]. Furthermore, the DeepIRT [22] can
express a student’s ability transition for each skill by esti-
mating relations among the multidimensional skills. Conse-
quently, the DeepIRT provides high interpretability without
impairing the predictive accuracy.

However, room for improvement of prediction accuracy of
the DeepIRT remains [22] because it does not optimize the
degree of forgetting the past data. Specifically, in DKVMN
and DeepIRT methods, the forgetting parameters which con-
trol the degree of forgetting the past data are optimized from
only the current input data: the student’s latest response to
an item. As a result, it might degrade the prediction accu-
racy of the DeepIRT because the value memory insufficiently
reflects the past learning history data. Namely, it might be
difficult to reflect the past data accurately in a long learning
process. It should use not only the current input data but
also past data to optimize the forgetting parameters.

In this study, we propose the new DeepIRT with a hypernet-
work to optimize the forgetting parameters. The hypernet-
work [4, 6, 8, 9, 12, 13, 19, 31] balances both current and the
past data in the latent variable memory, which stores a stu-
dent’s knowledge state data. Before the model updates the
latent variable memory, it optimizes not only the weights of
the forgetting parameters but also the past latent variable
memory. Experiments were conducted to compare the per-
formances of the proposed method and those of the earlier
KT methods. The results demonstrate that the proposed
method improves the prediction accuracy of the DeepIRT
[22]. They also indicate the proposed method as effective,
especially for tasks with a long-term learning process.

2. DKVMN AND DEEP-IRT METHODS
DKVMN and DeepIRT methods [22, 33, 35] have the same
memory updating component to update and forget the stu-
dents’ knowledge states in the learning process [35]. The
value memory Mv

t , which traces the process of student abil-
ity growth, is updated in this memory updating component.
They use cj based on input qj , which reflects a latest stu-
dent’s response data utj to item j at time t.

cj =

{
[0, qj ] utj = 1

[qj ,0] utj = 0.
(1)

Here, 0 is a zero vector consisting of J zero values. They
updated the value memory Mv

t as

vt = W vcj + τ v, (2)

et = σ(W evt + τ e), (3)

at = tanh(W avt + τ a), (4)

(5)

and

M̃v
t+1,l = Mv

t,l ⊗ (1− wtlet) + wtla
⊤
t , (6)

where W v,W e and W a are the weight matrices, and τ v, τ e

and τ a are the bias vectors. Furthermore, wtl signifies the
degree of strength of the relations between the underlying
skill l and skill tags addressed by a student at time t. It is
noteworthy that et, and at are forgetting parameters, which
adjust the degrees of forgetting the past data and reflecting
the current input data. et influences how much the value
memory forgets (remembers) the past ability. Additionally,
at controls how much the value memory reflects the current
input data.

For the interpretability of the parameters, this memory up-
dating component is more effective than the forgetting func-
tion of AKT because it updates the current latent variable
memory which stores the student’s skills and abilities using
only the immediately preceding values. However, the for-
getting parameters are optimized only from current input
data. It should use not only the current input data but also
past data to optimize them. Additionally, the weights are
fixed values and are not optimized for each time point. As
a result, DKVMN and DeepIRT might degrade the predic-
tion accuracies because of value memory Mv

t,l which only
insufficiently reflects past learning history data. Especially,
it might be difficult to reflect past data accurately in a long
learning process.

3. PROPOSED METHOD
The preceding section described that the forgetting parame-
ters of DeepIRT are not optimized using both current input
data and past data. However, when using both current in-
put data and past data, it is difficult to optimize the weight
parameters directly because the number of parameters in-
creases dynamically.

Recent studies in the field of Natural Language Processing
(NLP) proposed the extension components to LSTM [18] in
the form of mutual gating of the current input data and the
previous output hidden variables [6]. These extension com-
ponents are called hypernetworks. A hypernetwork supports
the main recurrent neural network by optimizing the non-
shared weights for each time point in the hidden layers [6].
In standard LSTM [18], the hidden variables change with
time, but the weights used to update them are fixed val-
ues and are not optimized for each time point. To resolve
this difficulty, various hypernetworks have been proposed to
optimize the non-shared weights in the LSTM at each time
point. [4, 6, 8, 9, 12, 13, 31]. Their results demonstrate that
LSTM with a hypernetwork works better than the standard
LSTM [18].

Melis et al. earlier proposed the ”Mogrifier component”
which is a kind of hypernetwork for LSTM in the field of
NLP [12]. Mogrifier also scales the weights and the hidden
variables using not only the current inputs but also the out-
put of the hidden variable at the previous point in time.
They reported that the LSTM with Mogrifier component
outperforms the other methods for a long input data length.
Inspired by those studies, this study proposes a new hyper-
network that optimizes the degree of forgetting of past data
in the DeepIRT [22] to improve prediction accuracy with the
parameter interpretability. We incorporate the proposed hy-
pernetwork in the memory updating component, which up-
dates the latent variable Mv

t , to avoid greatly increasing
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Figure 1: Network architecture of the proposed DeepIRT.

Figure 2: Proposed hypernetwork architecture.

number of parameters. Before the model updates the latent
variable Mv

t+1, the proposed hypernetwork optimizes not
only the weights of the forgetting parameters but also the
past latent variable Mv

t . The proposed hypernetwork esti-
mates the optimal forgetting parameters by balancing both
the current input data and the past latent variable. In adi-
tion, the Mogrifier component [12] used constant values as
the tuning parameters in the hypernetwork. For this study,
we optimize the tuning parameters to adjust the hypernet-
work for each dataset. No report of the relevant literature
has described a study of the use of the hypernetworks for KT
methods. Figure 1 presents the architecture of the proposed
method. The right side of Figure 1 presents the hypernet-
works and the memory updating component. The left side of
Figure 1 shows the independent student and item networks.

3.1 Hypernetwork
To optimize the forgetting parameters at time t, the pro-
posed hypernetwork balances the current input data and the
past value memory Mv

t to store sufficient information of the
learning history data before calculating the latent variables
Mv

t+1. The proposed hypernetwork structure is located at
the beginning of the Memory Updating Component on the
right side of Figure 1 (shown in red).

Figure 2 shows the structure of the proposed hypernetwork.
The inputs of the hypernetwork are the past value memory

Mv
t and current input data (sj , uj) = sj+uj ∗S when a stu-

dent responds to item j of skill sj . Therein, S ∈ {1, 2, ..., 2S}
represents the number of skills. The embedding vector of
(sj , uj) denoted as vt ∈ Rdv . Because of the repeating mul-
tiplications as shown in Figure 2, this hypernetwork balances
current data vt and past value memory Mv

t . For the pro-
posed methods, we optimize the number of rounds r for each
learning dataset.

3.2 Memory Updating Component
Next, we estimate the forgetting parameters et and at us-
ing the optimized vr

t and Mvr
t in the hypernetwork. These

forgetting parameters are important to update the latest
value memory Mv

t+1 optimally. The earlier memory updat-
ing component of DKVMN and DeepIRT methods calculates
the forgetting parameters from vt with only current input
information in equation (3), (4). By contrast, we calculate
them using the optimized current input data vr

t and the past
latent value Mvr

t . Therefore, the forgetting parameters et,
and at are also be estimated as optimizing the degree of
forgetting of past data and as reflecting the current input
data. Furthermore, the proposed method can capture the
student knowledge state changes accurately because the la-
tent knowledge state Mv

t has sufficient information of the
past learning history data.

4. EXPERIMENTATION
4.1 Datasets and Experiment Setting
This section presents comparisons of the prediction accu-
racies of the proposed method with those of earlier meth-
ods (Tsutsumi et al. and AKT) [5, 22]. We use two stan-
dard benchmark datasets ASSISTments2009 and ASSIST-
ments2017 collected from an online tutoring system. Table
1 presents the number of students (No. Students), the num-
ber of skills (No. Skills), the number of items (No. Items),
the rate of correct responses (Rate Correct), and the aver-



Table 1: Summary of datasets

Dataset No. students No. skills No. Items Rate Correct Learning length
ASSISTments2009 4151 111 26684 63.6% 52.1
ASSISTments2017 1709 102 3162 39.0% 551.0

Table 2: Prediction accuracies of students’ performances

Dataset metrics Tsutsumi et al. AKT Proposed
AUC 80.70 +/- 0.56 82.20 +/- 0.25 81.57 +/- 0.39

ASSISTments2009 Acc 76.13 +/- 0.58 77.30 +/- 0.55 76.85 +/- 0.56
Loss 0.54 +/- 0.10 0.49 +/- 0.10 0.53 +/- 0.13
AUC 74.15+/- 0.27 74.54+/- 0.21 76.85 +/- 0.39

ASSISTments2017 Acc 68.73+/- 0.11 69.83+/- 0.15 71.08 +/- 0.50
Loss 0.57+/- 0.06 0.58+/- 0.06 0.55 +/- 0.06
AUC 77.42 78.37 79.21

Average Acc 72.43 73.56 74.00
Loss 0.56 0.54 0.54

age length of the items which students addressed (Learning
length).

We used five-fold cross-validation to evaluate the prediction
accuracies of the methods. The item parameters and hyper-
parameters are trained by 70% of each dataset. Given the
estimated parameters, the students’ abilities are estimated
at each time using the remaining 30% of each dataset accord-
ing to an earlier study [22]. We employ Adam optimization
with a learning rate of 0.003 and batch-size 32. Addition-
ally, 200 items was set as the upper limit of the input length
according to the earlier studies [22, 33, 35]. For this study,
we leverage three metrics for prediction accuracy: Accuracy
(Acc) score, AUC score, and Loss score.

4.2 Prediction Accuracy
The respective values of Acc, AUC, and Loss for ASSIST-
ments2009 and ASSISTments2017 datasets [5, 22] are pre-
sented in Table 2. We compared the performances of the
proposed method with those of DeepIRT [22] and AKT for
each dataset with item and skill tag inputs according to [5].
Additionally, this report describes the standard deviations
across five test folds.

Results indicate that the proposed method, which optimizes
the forgetting parameters, provides the best average scores
for all metrics. Especially, the proposed method outperforms
the Tsutsumi el al. [22] and AKT for ASSISTments2017.
ASSISTments2017 has a long learning length. By contrast,
the proposed method tends to have lower prediction accu-
racies for ASSISTments2009 with a shorter learning length
than AKT has. Results suggest that the proposed hypernet-
work functions effectively, especially for datasets with long
learning lengths.

5. CONCLUSIONS
Recently, to express a student’s the knowledge state transi-
tion for deep-learning-based approaches, DKVMN and Deep-
IRT methods have been proposed. Tsutsumi et al. (2021)
proposed a DeepIRT with independent redundant student
and item networks [22]. It can learn the student’s ability and

item difficulty independently to avoid impairing the predic-
tive accuracy. Furthermore, the DeepIRT [22] can express a
student’s ability transition for each skill by estimating rela-
tions among the multidimensional skills. the DeepIRT [22]
has a memory updating component to allow forgetting and
updating of the latent variable memory, which stores the
students’ knowledge states in the learning process. How-
ever, the forgetting parameters which control the degree of
forgetting the past data are optimized from only the cur-
rent input data. It might degrade the prediction accuracy
of the DeepIRT because the value memory insufficiently re-
flects the past learning history data. It should use not only
the current input data but also past data to optimize the
forgetting parameters.

This study proposed a new DeepIRT with a hypernetwork
that optimizes the degree of forgetting of the past data for
parameter estimation to improve prediction accuracy with
the parameter interpretability. In the proposed method, the
hypernetwork balances the current input data and the past
value memory to store sufficient information of the learning
history data before calculating the latent variables. Specifi-
cally, it scales not only the weights of the forgetting param-
eters but also the hidden variables using the current inputs
and the output of the hidden variable at the previous point
in time.

Experiments conducted with the benchmark datasets demon-
strated that the proposed method improves the prediction
accuracies of the earlier KT methods. Especially, results
showed that the proposed method is effective for tasks with
a long-term learning process. As future work, we will evalu-
ate the interpretability of the ability parameters of the pro-
posed method by comparing the parameter estimates with
those of the earlier DeepIRTs [22, 33]. Furthermore, we will
clarify the mechanism of how the proposed hypernetwork
functions to increase the predictive accuracy.
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