
Evaluating the Explainers: Black-Box Explainable Machine
Learning for Student Success Prediction in MOOCs

Vinitra Swamy
EPFL

vinitra.swamy@epfl.ch

Bahar Radmehr
Sharif University

radmehr.bahar@ee.sharif.edu

Natasa Krco
EPFL

natasa.krco@epfl.ch

Mirko Marras
University of Cagliari
mirko.marras@acm.org

Tanja Käser
EPFL

tanja.kaeser@epfl.ch

ABSTRACT
Neural networks are ubiquitous in applied machine learning
for education. Their pervasive success in predictive perfor-
mance comes alongside a severe weakness, the lack of ex-
plainability of their decisions, especially relevant in human-
centric fields. We implement five state-of-the-art method-
ologies for explaining black-box machine learning models
(LIME, PermutationSHAP, KernelSHAP, DiCE, CEM) and
examine the strengths of each approach on the downstream
task of student performance prediction for five massive open
online courses. Our experiments demonstrate that the fam-
ilies of explainers do not agree with each other on feature
importance for the same Bidirectional LSTM models with
the same representative set of students. We use Principal
Component Analysis, Jensen-Shannon distance, and Spear-
man’s rank-order correlation to quantitatively cross-examine
explanations across methods and courses. Furthermore, we
validate explainer performance across curriculum-based pre-
requisite relationships. Our results come to the concern-
ing conclusion that the choice of explainer is an important
decision and is in fact paramount to the interpretation of
the predictive results, even more so than the course the
model is trained on. Source code and models are released at
http://github.com/epfl-ml4ed/evaluating-explainers.

Keywords
Explainable AI, LIME, SHAP, DiCE, CEM, Counterfactu-
als, MOOCs, LSTMs, Student Performance Prediction

1. INTRODUCTION
The steep rise in popularity of neural networks has been
closely mirrored by the adoption of deep learning for educa-
tion. For the majority of educational data modeling tasks
such as student success prediction (e.g., [1]), estimating early
dropout (e.g., [2]), and knowledge tracing (e.g., [3, 4]), the
recent literature relies on neural networks to reduce human
involvement in the pipeline and boost overall prediction ac-

curacy. Unfortunately, these advances come at a significant
cost: traditional machine learning techniques (e.g., linear re-
gression, SVMs, decision trees) are simple, but interpretable,
where deep learning techniques trade transparency for the
ability to capture complex data representations [5].

There is a compelling need for interpretability in models
dealing with human data, especially in education. [6] em-
phasizes that explainability and accountability should be in-
corporated in machine learning system design to meet social,
ethical and legislative requirements. Other work [7] strongly
argues for the necessity of interpretable models in educa-
tion, specifically in settings where students can see the ef-
fect of a decision but not the reasoning behind it (e.g., Open
Learner Models). Predictions of student performance are of-
ten used to determine underachieving students for targeted
downstream interventions. Identifying important features
motivating failure or dropout predictions is crucial in de-
signing effective, personalized interventions.

However, there exists only a handful of papers focusing on
explainability in the field of machine learning for education.
For example, [8] examined the inner workings of deep learn-
ing models for knowledge tracing through layer-relevance
propagation. Other researchers [9] experimented with tra-
ditional machine learning models for student success pre-
diction and implemented local explanations with LIME for
transparency in the best performing model. Additionally,
[10] used SHAP feature importances to interpret student
dropout prediction models. [11] suggested interventions for
wheel-spinning students based on Shapley values. Finally,
[12] explored LIME on ensemble machine learning methods
for student performance prediction, [13] integrated LIME
explanations in student advising dashboards, and [14] used
LIME for interpreting models identifying at-risk students.

While field of neural network explainability is also nascent in
the broader machine learning community, the last five years
have shown a sharp increase in research and industry inter-
est in this topic. Local, instance-based explainability meth-
ods like LIME [15] and SHAP [16] have become immensely
popular. These methods have been successfully applied on
models predicting ICU mortality [17], non-invasive ventila-
tion for ALS patients [18], and credit risk [19]. Recent work
in counterfactual explanations [20, 21, 22] searches for a min-
imal subset of features that leads to the prediction alongside
a minimal feature subset that needs to be changed for the

V. Swamy, B. Radmehr, N. Krco, M. Marras, and T. Käser. Eval-
uating the explainers: Black-box explainable machine learning for
student success prediction in MOOCs. In A. Mitrovic and N. Bosch,
editors, Proceedings of the 15th International Conference on Edu-
cational Data Mining, pages 98–109, Durham, United Kingdom, July
2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852964

https://doi.org/10.5281/zenodo.6852964

prediction to change. Counterfactuals have been used in
tasks like image classification [23], loan repayment [24], and
grouping websites into topics for safe-advertising [25].

Although the explainability corpora is growing, there is a
clear gap in explainability literature for education, with an
even more pressing need for work (quantitatively) comparing
different explainability methods. To the best of our knowl-
edge, current research on explainability in education is ex-
clusively applied: the majority of previous research imple-
ments only one specific explainability method to interpret
the predictions of their proposed approach.

To address this research gap, we examine and compare five
popular instance-based explainability methods on student
success prediction models for five different massive open
online courses (MOOCs). We formulate comparable fea-
ture importance scores for each explainer, scaled between
[0, 1] on a uniformly sampled, stratified representative set
of students. To quantitatively compare the feature impor-
tance distributions, we propose the use of different mea-
sures: rank-based metrics (Spearman’s rank-order correla-
tion), distance metrics (Jensen Shannon Distance), and di-
mensionality analysis (Principal Component Analysis). We
validate the explanations through an analysis of feature im-
portance on a MOOC with known prerequisite relationships
in the underlying curriculum. With our experiments, we
address three research questions: 1) How similar are the
explanations of different explainability methods for a spe-
cific course (RQ1)? 2) How do explanations (quantitatively)
compare across courses (RQ2)? 3) Do explanations align
with prerequisite relations in a course curriculum (RQ3)?

Our results demonstrate that the feature importance distri-
butions extracted by different explainability methods for the
same model and course differ significantly from each other.
When comparing the feature importances across courses, we
see that LIME is far apart from all other methods due to se-
lecting a sparse feature set. Furthermore, our findings show
that the choice of explainability method influences the fea-
ture importance distribution much more than the course the
model is predicting on. Our examination on prerequisite re-
lationships between features further indicates that the three
families of methods are only partially able to uncover pre-
requisite dependencies between course weeks. Source code
and models are released on Github1.

2. METHODOLOGY
The goal of this paper is to compare explanations from deep
learning models tasked with identifying student success pre-
diction in MOOCs. In this section, we formalize the stu-
dent success prediction task addressed in this paper includ-
ing the data collection and preprocessing, feature extraction,
and model preparation. We then introduce the considered
explainability methods and describe the process to extract
explanations for student success predictions from a trained
model, showcased as feature importance weights.

2.1 Formal Preliminaries
We consider a set of students S enrolled in a course c part
of an online educational offering C. Course c has a prede-

1
http://github.com/epfl-ml4ed/evaluating-explainers

fined weekly schedule consisting of N = |O| learning objects
from a catalog O. Students enrolled in a course interact
with the learning objects included in the course schedule,
generating a time-wise clickstream (e.g., a sequence of video
plays and pauses, quiz submissions). We denote a click-
stream in a course c for a student s ∈ S as a time series
Is = {i1, . . . , iKs} with Ks being the total number of inter-
actions of student s in course c. Each interaction i ∈ Is is
represented by a tuple (t, a, o), including a timestamp t, an
action a (videos: load, play, pause, stop, seek, speed; quiz:
submit), and a learning object o ∈ O (video, quiz). Given
the weekly course schedule, we assume that tw identifies the
time t where the course week w ∈ {0, . . . ,W} ends, and
that the clickstream of student s generated until the end of
the w week can be denoted as Itws . We also assume that
the course schedule includes one or more assignments per
week and that the grade record of student s across course
assignments is denoted as Gs = [g1, . . . , gW], where gw ∈ Gs

is the grade student s received on the assignment in week
w. In the case of multiple graded assignments for a certain
week, we considered the average score of graded assignments
for that week and scored non-attempted assignments with
0. We denote as ys ∈ {0, 1} the success label for student s.

2.2 Data Preprocessing
A significant portion of MOOC students enroll just to watch
a few videos or find that the curriculum material is not what
they expected and drop out of the course in the first weeks
[26, 27]. It follows that it is easy to predict the success la-
bels ys for this selection of students by simply looking at
their initial few weekly assignment grades in Gs. There-
fore, optimizing complex deep learning models for predict-
ing student success on early-dropout students is inefficient.
Using these complex deep models also leads to less inter-
pretable predictions in comparison with traditional models.
For this subset of early-dropout students, traditional mod-
els can both achieve a comparable accuracy and still remain
interpretable. To identify early-dropout students, we fit a
Logistic Regression model on the assignment grades of the
first two course weeks. The input data is the vector GW

s ,
where W is the number of course weeks (W = 2 in our ex-
periments) whereas the ground truth is the student success
label ys. Once the model is fitted, we filter out the students
that had a predicted probability of course failure p̂s > 0.99.
We determine the optimal threshold via a grid search over
{0.96, 0.97, . . . , 0.999}, maximizing the model balanced ac-
curacy. Henceforth, we consider S to be the student popu-
lation obtained after the early-dropout student filtering.

2.3 Feature Extraction
As an input for our student success prediction models, we
consider a set of behavioral features extracted for each stu-
dent s ∈ S based on their interactions Is. We include four
feature sets proved to have high predictive power for success
prediction in MOOCs [28]. Given the size and variety of the
course data considered in our study, we included all features
of the four features sets, instead of considering only the spe-
cific features identified as important by at least one course
[28]. Formally, given interactions Is generated by students

S until a course week w, we create a matrix H ⊂ R|S|×w×f

(i.e, each feature in the feature set is computed per student
per week), where f ∈ N is the dimensionality of the feature
set. We focus on the following behavioral aspects:

Figure 1: Our experimental pipeline, from data processing to post-hoc explainability methods.

• Regularity features (H1, shape: |S| × w × 3) monitor the
extent to which a student follows regular study habits [29].

• Engagement features (H2, shape: |S| × w × 13) monitor
the extent to which a student is engaged in the course [30].

• Control features (H3, shape: |S| × w × 22) measure the
fine-grained video consumption per student [31].

• Participation features (H4, shape: |S| × w × 4) monitor
attendance on videos/quizzes based on the schedule [28].

We extract the above features for each student s and con-
catenate features across sets to obtain the final combined be-
havioral features hs per student. The overall matrix of fea-
tures is defined as H ∈ R|S|×w×42, with H = [H1·H2·H3·H4]
(· denotes a concatenation). Due to the different scales, we
perform a min-max normalization per feature in H (i.e., we
scale the feature between 0 and 1 considering all students
and weeks for that feature). We elaborate on the most im-
portant features later on in the paper as highlighted by the
analyses in subsequent experiments (e.g., Table 1).

2.4 Model Building
Given a course c, we are interested in creating a success
prediction model that can accurately predict the success la-
bel ys for student s, given the extracted behavioral features
hs. To this end, we rely on a neural architecture based on
Bidirectional LSTMs, which can provide a good trade-off be-
tween effectiveness and efficiency2. The model input is rep-
resented by H, i.e., the extracted behavior features, having
a shape of |S| ×W × 42. NaN values were replaced with the
minimum score the student can receive for each respective
feature. These features are then fed into a neural architec-
ture composed by two simple yet effective BiLSTM layers
of size 32 and 64 (loopback of 3) and a Dense layer (with
Sigmoid activation) having a hidden size of 1. The model
outputs the probability the student will pass the course.

2.5 Explanation
Input behavioral features contribute with varying levels of
importance to the prediction provided by a success predic-
tion model. We unfortunately cannot examine the impor-
tance of these features directly, since deep neural networks
act as black boxes. Explainability methods can therefore be
adopted to approximate the contributions of each feature in
H towards the prediction associated with a specific student
s. To explore this aspect, we consider five instance-based ex-
plainability methods that are popular in the literature and
cover different method families [32, 5]. We then compute
the feature importance vector for each student s, based on

2Experimental details can be found in Appendices A and B.

each explainability method. Formally, given an explainabil-
ity method, we denote es ∈ Rw∗42 as the feature importance
weights returned by the explainability method for student s.
The feature importance weight es[i] is a score, comparable
across explainability methods, that represents the impor-
tance of feature hs[i] to the model’s individual prediction
for student s. The considered explainability methods are
described below.

LIME [15] trains a local linear model to explain each indi-
vidual student instance hs. To this end, it first generates
perturbed instances h1

s, h
2
s . . . h

n
s by shifting the feature val-

ues of hs a small amount. These new instances are then
passed to the original model to get their associated predic-
tions. Finally, a local interpretable model (e.g., a Support
Vector Machine) is trained on the perturbed instances (in-
put) and the corresponding predictions obtained from the
original model (labels), weighting perturbed instances by
proximity to the original instance. Mathematically, the lo-
cal model can be expressed with the following equation:

LIME(hs) = argming′∈G′L(g, g′, πhs) + Ω(g′) (1)

where hs is the instance being explained, G′ is the family of
all possible explanations, L the loss that measures how close
the predictions of the explainer g′ are to the predictions of
the original model g, πhs is the feature proximity measure,
and Ω(g′) represents the complexity of the local model. As
LIME returns feature weights π1 . . . π|hs| representing the
feature influence on the final decision, we consider these ab-
solute values to be the importance scores es, and scale them
to the interval [0, 1], where 1 indicates high importance.

KernelSHAP [16] draws inspiration from game-theory based
Shapley values (computing feature contributions to the re-
sulting prediction) and LIME (creating locally interpretable
models). This SHAP variant uses a specially-weighted local
linear regression to estimate SHAP values for any model.
Let x = hs be the student instance being explained. A
point x′ in the neighborhood of x is generated by first sam-
pling a coalition vector z ∈ R|hs|. The coalition vector uses
a binary mask to determine which features from x will be
kept the same in the new instance x′, and which will be
replaced by a random value from the data distribution of
that feature in H. Feature importance weights for each new
instance x′ are calculated using a predefined kernel, after
which the local model can be trained. A SHAP explanation
is mathematically defined as:

g′(z′) = π0 +

|hs|∑
hs=1

πhsz
′
hs

(2)

Set Feature Description

Regularity

DelayLecture The average delay in viewing video lectures after they are released to students.

RegPeakTimeDayHour Regularity peak based on entropy of the histogram of user’s activity over time.

RegPeriodicityM1 The extent to which the hourly pattern of user’s activities repeats over days.

Engagement

AvgTimeSessions The average of users’ time between subsequent sessions.

NumberOfSessions The number of unique online sessions the student has participated in.

RatioClicksWeekendDay The ratio between the number of clicks in the weekend and the weekdays

StdTimeSessions The standard deviation of users’ time between subsequent sessions.

TotalClicksProblem The number of clicks that a student has made on problems this week.

TotalClicksWeekend The number of clicks that a student has made on the weekends.

TotalTimeProblem The total (cumulative) time that a student has spent on problem events.

TotalTimeVideo The total (cumulative) time that a student has spent on video events.

StdTimeBetweenSessions The standard deviation of the time between sessions of each user.

Control

AvgReplayedWeeklyProp The ratio of videos replayed over the number of videos available.

AvgWatchedWeeklyProp The ratio of videos watched over the number of videos available.

FrequencyEventLoad The frequency between every Video.Load action and the following action.

Participation

CompetencyAnticipation The extent to which the student approaches a quiz provided in subsequent weeks.

ContentAlignment The number of videos for that week that have been watched by the student.

ContentAnticipation The number of videos covered by the student from those that are in subsequent weeks.

StudentSpeed The average time passed between two consecutive attempts for the same quiz.

Table 1: Features used in model explainability analysis. For brevity, we only list the 19 features that have been identified as
important by at least one explainability method in our analysis in Section 3.

where g′ is the local explainer, πhs ∈ R is the SHAP value
(feature attribution) of feature hs, and z′ ∈ {0, 1}|hs| is
the coalition binary value. To achieve Shapley compliant
weighting, Lundberg et al. [16] propose the SHAP kernel:

πhs(z′) =
(|hs| − 1)(

|hs|
|z′|

)
|z′| (|hs| − |z′|)

(3)

where |hs| is the maximum coalition size and |z′| is the num-
ber of features present in coalition instance z′ [5].

SHAP methods directly provide values πhs representing the
feature contribution to the prediction ys of instance s. To
obtain the importance scores es, we apply the same transfor-
mation as LIME, by taking the absolute values of the SHAP
feature attributions and scaling them to the interval [0, 1].

PermutationSHAP (PermSHAP) [16] is very similar to the
KernelSHAP formulation, but does not require the tuning
of a regularization parameter or a kernel function. We made
the decision to include both KernelSHAP and PermSHAP
as a form of validation of our comparative evaluation anal-
ysis; the distance between two very similar SHAP methods
is expected to be smaller than the distance between these
SHAP methods and other families of explainability methods.
PermSHAP approximates the Shapley values of features by
iterating completely through an entire permutation of the
features in both forward and reverse directions (antithetic
sampling). To extract the feature importance vector es, we
again consider the absolute values of the SHAP feature at-
tributions and scale to the interval [0, 1].

Contrastive Explanation Method (CEM) [22] identifies which
features need to be present (pertinent positives) or which
features must be absent (pertinent negatives) in order to

maintain the model prediction ys for a student s with be-
havioral features hs [22]. For our setting, we consider per-
tinent negatives as they are intuitively more similar, and
therefore comparable, to other counterfactual-based explain-
ability methods. For each generated pertinent negative, we
calculate the importance score for each feature by multi-
plying the absolute change from the value in the original
instance to the value in the pertinent negative, modeled as
the standard deviation (SD) of that feature X̃(hs) across
all instances used for the experiment X(hs), as shown in
the following formula:

CEM(hs) = [X(hs) − X̃(hs)] × SD(hs) (4)

The importance score therefore takes into consideration both
the necessary perturbation of the feature as well as the sig-
nificance of the change relative to the feature range. We nor-
malize the scores in the range [0, 1], such that the resulting
feature importance weights es can be directly comparable.

Diverse Counterfactual Explanations (DiCE) [20] generates
example instances to explain the model prediction as well.
However, while CEM describes conditions necessary to keep
the prediction unchanged, DiCE describes the smallest pos-
sible change to the initial instance that results in a different
prediction. In other words, DiCE generates nearest neighbor
counterfactual examples by optimizing the loss:

DiCE(hs) = arg min
c1,...,ck

1

k

k∑
i=1

yloss (g (ci) , y)

+
λ1

k

k∑
i=1

dist (ci, hs)

− λ2 diversity (c1, . . . , ck)

(5)

where ci is a counterfactual example, k is the total number

of examples to be generated, g is the black box ML model,
yloss is a metric that minimizes the distance between the
prediction g′ makes for ci and the desired outcome y, hs

is the original input with |hs| input features, and diversity
is the Determinantal Point Process (DPP) diversity metric.
λ1 and λ2 are hyperparameters that balance the three parts
of the loss function. The stopping condition is convergence
or 5000 time steps per counterfactual. Microsoft’s DiCE
library [20] has a built-in function to compute local feature
importance scores from the counterfactual instances, scaled
in [0, 1]. We use them as feature importance weights es.

3. EXPERIMENTAL ANALYSIS
We evaluated the explainability methods on five MOOCs.
We first explored how feature importance varies across dif-
ferent explainers for one specific course c (RQ1). We then in-
vestigated the similarity of the explainability methods across
the five courses using distance metrics (RQ2). Finally, we
assessed the validity of the explainers using simulated data
from a course c with a known underlying prerequisite skill
structure (RQ3). In the following sections, we describe the
dataset and optimization protocol used for the experiments
before explaining each experiment in detail.

3.1 Dataset
Our experiments are based on log data collected from five
MOOCs of École Polytechnique Fédérale de Lausanne be-
tween 2013 to 2015. We chose the five courses to cover a
diverse range of topic, level, and language. Table 2 describes
the five courses in detail. We include two subsequent itera-
tions of the same computer science course (DSP) with differ-
ent student populations (French Bachelor students vs. En-
glish MSc students). Besides computer science, we also cover
courses in the areas of mathematics (Geomatique), social sci-
ences (Villes Africaines) and engineering (Micro). In total,
the raw data set contained log data from 75,992 students.
After removing the early-dropout students (see Sec. 2.2),
19,805 students remain in the data set. The smallest course
contains 452 students, while the largest course contains 5,643
students. Students’ log data consists of fine-grained video
(e.g., play, pause, forward, seek) and quiz events (e.g., sub-
mit). Interaction data is fully anonymized with regards to
student information, respecting participants’ privacy rights.

3.2 Experimental Protocol
For each course c ∈ C, we trained a BiLSTM model Mc

on features Hc extracted from c. For the optimization, we
used batches of size 32, an Adam optimizer with an ini-
tial learning rate of 0.001, and a binary crossentropy loss.
After an initial grid search3, we selected the same architec-
ture for all models: two BiLSTM layers consisting of 64, 32
units and one Dense layer consisting of 1 unit with a Sig-
moid activation. As this work is not focused on improving
model performance, we did not tune hyperparameters fur-
ther. Formally, we split the data of each course c into a
training data set Strain,c (80% of the students) and a test
data set Stest,c (20% of the students). For each course, we
performed a stratified train-test split over students’ pass/fail
label. We then trained each model Mc on the training data
set Strain,c and then predicted student success on the respec-
tive test data set Stest,c. We chose the balanced accuracy

3Grid search is discussed further in Appendix A.

(BAC) as our primary evaluation metric because of the high
class imbalance of most of the selected courses.

For the first two experiments (RQ1 and RQ2) we used the
student log data collected for the full duration of the course
for training and prediction of our models. In the third exper-
iment, we optimized models for different sequence lengths,
i.e. using only the log data up to a specific week w of the
course (i.e. from week 1 to week w) to predict performance
in the assignment of course week w. Additional replication
details for model training can be found in Appendix B.

For all experiments, we applied the explainability methods
to the predictions of the optimized models Mc. All five
methods are instance-based; they compute the feature im-
portance based on the model predictions for a specific in-
stance. Training explainers on the scale of thousands of
students across five courses is not feasible due to the compu-
tation time required to generate the explanation for one in-
stance (e.g., the counterfactual explainability methods take
a computation time of 30 minutes per instance s). There-
fore, we determined a representative sampling strategy to
pick 100 students from each course c, resulting in explana-
tions for 500 students in total4. For the first two experiments
(RQ1 and RQ2), we used a uniform sampling strategy to
select the representative students sri,c for a course c and en-
sured balance between classes (pass/fail). We first extracted
all failing students and ordered them according to the pre-
dicted probability of the model p̂(lSi = 0). We then uni-
formly sampled 50 failing students from this ordered inter-
val. We repeated this exact same procedure to sample the 50
passing students. This sampling procedure ensures that we
include instances where the model is confident and wrong,
instances for which the model is unsure, and instances where
the model is confident and correct. For the last experiment
(RQ3), we used performance in the assignment of a given
week w as the binary outcome variable. We then followed
exactly the same uniform sampling procedure as for RQ1 and
RQ2, ensuring class balance on assignment performance.

3.3 RQ1: Explanations for one course
In a first experiment, we compared the explanations of the
instance-based methods for one specific course (DSP 1).
The BiLSTM model MDSP1 trained on this course achieved
a BAC of 93.9%. We then ran the explainability methods on
MDSP1 and extracted normalized feature importance scores
for 100 representative students of each course.

Figure 2 illustrates the features identified as most impor-
tant by each explainability method. The heatmaps were
computed by averaging importance scores for each feature
and week across 100 representative students for DSP 1 (see
Sec. 3.2). To ensure interpretability of Figure 2, we only in-
cluded the top five features for each method, resulting in 13
distinct features. The description of all the features can be
found in Table 1. We used a log scale within the heatmaps,
with darker colors indicating higher feature importance.

We observe that the top features cover all the different be-
havioral aspects included in the feature set: Regularity, En-
gagement, Control, and Participation. However, some as-
pects seem to contain more important features. For exam-

4Sampling strategy is discussed further in Appendix C.

Title Identifier Topic1 Level Language
No.

Weeks
No.

Students2
Passing
Rate (%)

No.
Quizzes

Digital Signal Processing 1 DSP 1 CS Bsc French 10 5629 26.8 17
Digital Signal Processing 2 DSP 2 CS MSc English 10 4012 23.1 19

Éléments de Géomatique Geomatique Math MSc French 15 452 45.1 27
Villes Africaines Villes Africaines SS BSc English 13 5643 9.9 17
Comprendre les Microcontrôleurs Micro Eng BSc French 13 4069 5.1 18

1Topic abbrev. Eng : Engineering; Math: Mathematics; CS : Computer Science; SS : Social Science
2No. Students is calculated after filtering out the early-dropout students, as detailed in Sec. 2.2.

Table 2: Detailed information on the five MOOCs included in our experiments.

Figure 2: Heatmap of normalized feature importance scores (log scale) across explainability methods for DSP 1.

ple, 43% of the Participation features (3 out of 7 features)
are in the top five features of at least one method, while this
is the case for only 23% (5 out of 22 features) of the Control
features. For Regularity and Engagement, 33% and 31% of
the features get selected into the top feature set.

We also immediately recognize that the heatmap of LIME
looks very different from the heatmaps of all the other meth-
ods. LIME assigned high importance scores to a small sub-
set of features and weeks, while all the other explainability
methods tend to identify more features and weeks as impor-
tant, resulting in generally lower importance scores. We also
observe that LIME does not consider student behavior in the
first weeks of the course important; all importance is placed
onto the second half of the course. Moreover, LIME seems
to put more emphasis on Control than on the other three
aspects: the features related to Control (AvgReplayedWeek-
lyProp, AvgWatchedWeeklyProp, FrequencyEventLoad) are
important from week 5 through week 10, while the fea-
tures related to Participation (CompetencyAnticipation) and
Engagement (RatioClicksWeekendDay) are important only
during the last 2 to 3 weeks of the course.

Interestingly, while CEM and DiCE are both counterfac-
tual methods, their heatmaps look quite different: the fea-
ture importance scores of DiCE tend to be more similar
to KernelSHAP and PermSHAP than CEM. We note that
CEM shows a higher diversity in feature importance scores
than the other three methods (KernelSHAP, PermSHAP,
and DiCE), for which the importance values seem to be quite
equally distributed across the top features. Furthermore,
in contrast to all the other explainability methods, CEM
seems to also identify features in the first weeks of the course
as important (e.g., AvgWatchedWeeklyProp, ContentAlign-

ment, and FrequencyEventLoad in week 1). In contrast to
all the other methods, CEM identifies features related to be-
ing engaged in quizzes as relevant (TotalClicksProblem and
TotalClicksWeekend). Finally, as expected, the heatmaps of
KernelSHAP and PermSHAP look very similar, with only
small differences in importance scores.

In summary, while there is some agreement on the top fea-
tures across explainability methods (the union of the top five
features of each method only contains 13 distinct features),
we observe differences across methods when it comes to exact
importance scores.

3.4 RQ2: Comparing methods across courses
Our second analysis had the goal to quantitatively com-
pare the explanations of the different methods across all five
courses. Explainability method evaluation is an emerging
field; most existing research focused on assessing the qual-
ity of explanations [33, 34] with only few works suggest-
ing a quantitative ‘goodness’ score for each explainability
method (e.g., [35, 36]). In contrast, we examined the dis-
tance between the feature importance scores per explain-
ability method in comparison to each other, instead of in-
dividually. We first visualized the similarity of importances
across courses using a Principal Component Analysis and
then computed Spearman’s Rank-Order Correlation as well
as Jensen-Shannon Distance to assess similarity regarding
the feature importance ranking as well as their exact values.

Principal Component Analysis (PCA) We performed a PCA
on the importance scores for each feature and week (length:
wc×h) separately for each explainability method and course
c. Figure 3 shows the results for all explainability methods
and courses. Each marker in Figure 3 represents a specific

course, while each color denotes an explainability method.

We observe that the two SHAP methods (KernelSHAP and
PermSHAP) cluster together very strongly. This result is ex-
pected, as the methodologies of KernelSHAP and PermSHAP
are very similar. DiCE feature importances are quite close
to the SHAP methods, showing that the three methods have
similar notions of feature importance. LIME is quite differ-
ent from all other methods, with high values on both PCA
components. Based on differences in methodology, we would
have expected that the difference between the counterfactual
methods (DiCE and CEM) and the SHAP methods would
be larger than the difference between LIME and the SHAP
methods. The most notable takeaway from Figure 3 is that
there are clearly identifiable clusters based on explainability
method and not on course. It therefore seems that the re-
sulting feature importance scores are mainly influenced by
the explainability rather than by the model or data (i.e. the
characteristics of the course and students’ data).

Spearman’s Rank-Order Correlation. Often referred to as
Spearman’s ρ [37], this metric identifies the rank correlation
(statistical dependence between the rankings) between two
variables and is defined as the Pearson correlation coefficient
between the rankings of two variables. We chose this metric
for evaluating explainability methods to highlight the im-
portance of feature ranking order in explanations. To com-
pute Spearman’s Rank-Order Correlation rm1,m2,c between
two explainability methods m1 and m2 on a course c, we
first converted the vectors em1,s and em2,s of feature impor-
tance scores (length wc×h) for each student s into rankings
R(em1,s) and R(em1,s). We then computed rsm1,m2,c sepa-
rately for each relevant student s and then averaged over all
relevant students to obtain rm1,m2,c.

Figure 4 illustrates the pairwise similarities between explain-
ability methods using Spearman’s Rank-Order Correlation.
Higher values imply stronger correlation between methods.
We see similarities between KernelSHAP and PermSHAP

Figure 3: PCA of feature importance scores for five explain-
ability methods across five courses.

prevalent once again as a center square for each course, af-
firming our intuition that two similar methodologies would
result in similar rank-order scores. It can be observed that
LIME consistently shows rank-order correlation scores with
all other explainability methods. Additionally, for DSP 1
and to some degree also Villes Africaines, DiCE is much
closer to KernelSHAP and PermSHAP then to CEM. For
DSP 2 and Geomatique, DiCE and CEM are both equally
correlated to the SHAP methods, but less correlated among
themselves. Finally, the model trained on Micro has strong
correlations across all explainability methods except LIME.

Jensen-Shannon Distance. We used the Jensen-Shannon dis-
tance [38] to compute pairwise distances between exact fea-
ture importance score distributions obtained with different
explainability methods. The Jensen–Shannon distance is
the square root of the Jensen-Shannon divergence, originally
based on the Kullback–Leibler divergence with smoothed
values. It is also known as the Information Radius (IRad)
[39]. To compute the Jensen-Shannon distance jsdm1,m2,c

between two explainability methods m1 and m2 on a course
c, we first calculated the distance jsdsm1,m2,c between the
feature importance scores (length wc × h) em1,s and em2,s

separately for each representative student s and then aver-
aged across all representative students to obtain jsdm1,m2,c.

Figure 5 shows the pairwise distance between explainabil-
ity methods for all courses using Jensen-Shannon Distance.
Larger numbers represent higher dissimilarity. The Jensen-
Shannon Distance heatmaps confirm the observations made
using Spearman’s Rank-Order Correlation (see Figure 4).
Again, LIME consistently has a high distance to all other
explainability methods across all courses. As expected, Ker-
nelSHAP and PermSHAP have low pairwise distances for
all courses. However, when comparing feature importance
scores directly instead of using rankings, we observe even less
differences between courses. DiCE is closer across all courses
to the SHAP methods than CEM. While LIME exhibits the
highest distances to all other explainability methods, the
explanations of CEM are also far away from all methods.

In summary, the two SHAP methods and DiCE seem to de-
liver the most similar explanations, while the feature impor-
tance scores obtained with CEM and LIME are different from
the other explainability methods. More importantly, all our
analyses (PCA, Spearman’s Rank-Order Correlation, Jensen
Shannon Distance) demonstrate that the choice of explain-
ability method has a much larger influence on the obtained
feature importance score than the underlying model and data.

3.5 RQ3: Validation of explanations
The previous experiments delved into mapping the similar-
ities and differences between explainability methods. While
our analyses demonstrated that there are clear disparities
across method choice, they do not give an indication re-
garding the ‘goodness’ of the obtained explanations. Recent
work discusses traits of ideal explanations [40] and targets
metrics to measure explanation quality [36, 41]. However,
these metrics tend to be over-specialized to one explain-
ability method over others due to the similarities in their
methodologies. The community does not yet have a set of
standard metrics for evaluating explainability methods. In
our last experiment, we hence use information inherent to

Figure 4: Comparison of feature importance scores across courses using Spearman’s Rank-Order Correlation.

Figure 5: Comparison of feature importance scores across courses using Jensen-Shannon Distance.

Figure 6: Prerequisite skill structure for DSP 1.

our model’s setting to perform an initial validation of the
explanations provided by the different methods.

Specifically, we evaluated the explainability methods on a
course with a known underlying skill map and used the
prerequisite relationships between weeks of the course as a
ground truth for the explanations. Based on the results
obtained for the first two research questions (Sections 3.3
and 3.4), we selected one representative method from each
methodological group for the analysis, while keeping the ob-
served explanation diversity: PermSHAP (the most widely
used SHAP method), CEM (chosen as a representative of
counterfactuals for its further disparity from the SHAP meth-
ods), and LIME. In terms of courses, we used DSP 1 as a
basis for the analysis as the instructor of this course provided
us with the skill map derived from the curriculum.

Figure 6 illustrates the underlying skills, their relationships,
as well as their mapping to the weeks of the course. The
arrows denote the prerequisite relationships, while the num-
bers denote the unique skills in the order they are introduced
in the course. The skills colored in pink (6, 8, and 13) re-
fer to applied skills learned in the course. The middle track
refers to core skills learned in the course (colored in blue)
and the purple skills at the top (5, 9, and 11) are theory-

based extensions of core material. The skill prerequisite map
allows us to analyze the dependencies between the different
weeks of the course. For example, in order to understand
Modulation taught in week 5, students need to already have
learned the skills taught in weeks 3 and 4 (DFT, DTFT,
and DFS). Intuitively, a model predicting performances in
assignments in week 5 would have highly correlated features
based on week 4. We assume that these dependencies would
logically be uncovered by the explainability method.

We, therefore, adjusted our predictive task: using the opti-
mization protocol and experimental design described in Sec-
tion 3.2, we aimed at predicting the performance (binary
label: below average or above average) of a student s in the
assignment of week w based on features extracted from stu-
dent interactions for weeks 1 to w. Given the prerequisite
structure for the course, we ran experiments for w ∈ {5, 9}.
For each predictive model MDSP1,w, we then picked the 100
representative students using uniform sampling and taking
into account class balance (see Section 3.2 for a detailed de-
scription of the sampling procedure) and applied the selected
explainability methods to these representative instances.

Figure 7 shows the features for LIME, PermSHAP, and CEM
for the prediction model of week 5. In the heatmap, darker
values indicate a higher score. The scores for the heatmap
have been computed based on a ranking of features and
weeks: for each student sri , we first ranked the features in
order of feature importance as determined by the respective
explainability method. We then scored each of the top 10
features according to its rank: 10 points for the top feature,
9 points for the second most important feature, and so on.
Finally, we averaged the scores for each feature across the
100 representative students sr1 through sr100 and normalized
them. This rank-based scoring allows us to compare ex-
plainability methods without having the relative feature im-
portance scores bias the analysis. We only selected features
with a score of at least 0.33 in any course week, showing
only the top two-thirds of features per method.

Figure 7: Importance scores for LIME, PermSHAP, and CEM
for week 5.

For LIME, we observe that four features have been identi-
fied as important for predicting assignment performance in
week 5. Two of these features directly relate to student be-
havior on the week 5 assignment: TotalTimeProblem (the
total time the student spent solving the assignment) and
StudentSpeed (the time between consecutive trials of assign-
ments). The high scores of these features for week 5 are
thus expected. LIME also assigns high scores to these two
assignments based features for week 4. This result is en-
couraging as week 4 teaches the prerequisite skills of week
5 and therefore, LIME seems to (at least partially) uncover
the prerequisite structure of the course.

In PermSHAP results, we see again that the scores are more
uniformly distributed across features and weeks. However,
we observe again that the assignment-based features (To-
talTimeProblem and StudentSpeed) have comparably high
scores for week 4 and therefore PermSHAP also seems to
(partially) uncover the prerequisite relationships. Curiously,
watching videos and solving quizzes scheduled for subse-
quent weeks (CompetencyAnticipation and ContentAntic-
ipation) is also considered important, hinting that being
proactive when learning increases learning success.

CEM seems to be able to partially uncover the prerequisite
relationship between weeks as well. For week 4, one fea-
ture related to assignment behavior (StudentSpeed) exhibits
a high score. Additionally, watching content of the subse-
quent week (in this case, week 4’s ContentAnticipation for
week 5 material) is important for assignment performance.
Otherwise, CEM mainly explains performance in the assign-
ment of week 5 with student behavior in week 5: besides the
assignment-related features, the students’ actions in the in-
ference week are considered important.

Figure 8 shows the importance scores for LIME, PermSHAP,
and CEM for the prediction model of week 9. Again, darker
colors in the heatmaps indicate higher scores. The scores in
the heatmaps were computed using the same ranking-based
procedure as for Figure 7. In week 9, Figure 6 indicates
that weeks 5 and 6 cover the prerequisite skills. From Fig-
ure 8, we observe that LIME does not seem to be able to
capture this prerequisite relationship. The top scores for
LIME appear in week 9 itself for an assignment-based feature
(StudentSpeed) as well as for video control behavior (AvgRe-
playedWeeklyProp, which computes the relative number of
video replays). Furthermore, StudentSpeed seems to be gen-
erally important also in the weeks just before the predicted
week (weeks 7 and 8). For PermSHAP, we again obtain

a more equal distribution, with only the two assignment-
related features (TotalTimeProblem and StudentSpeed) in
weeks 8 and 9 showing relatively higher scores. Further-
more, PermSHAP also assigns relatively higher importance
to these features for week 6, which is a prerequisite for week
9. For CEM, we again observe that mainly student behav-
ior in the actual week, i.e. week 9, seems to explain as-
signment performance. Only one feature (TotalTimeVideo)
shows medium importance for weeks 5 and 6.

In summary, all the evaluated methods were able to (par-
tially) detect the prerequisite relationship between week 4
and week 5. For week 9, detecting the prerequisite struc-
ture proved to be difficult; results differed between methods.
However, we should take into account that none of the fea-
tures of the feature set directly measure student performance
and therefore, the generated explanations rely on behavioral
features only. It appears that recent and actual behavior is a
much stronger indicator for performance than past behavior.

4. DISCUSSION AND CONCLUSION
Explainability methods allow us to interpret a deep model
in a way that is understandable not only to machine learn-
ing experts, but also end-users of educational environments,
including instructors tailoring course designs and students
the model is predicting on [6, 7]. In this paper, we aimed
to understand explainers’ behaviour and the ways in which
they differ for the task of student success prediction.

Our results demonstrate that all explainability methods can
derive interpretable motivations behind student success pre-
dictions, confirming the similar yet coherent observations
made by [8] for the knowledge tracing field. However, while
there was some agreement regarding the top features across
the five explainability methods, key differences across meth-
ods emerged when we considered the exact importance scores
(RQ1). We observed substantial similarities between Ker-
nelSHAP, PermSHAP, CEM and DiCE with regards to the
top ranked feature-weeks. Conversely, LIME only ranked
very few features as important, and these less important
feature similarities made the other explainability methods
appear closer to each other. Overall, looking beyond top
ranked features, we noted considerable differences in feature
importances across explainability methods. Interestingly,
LIME-detected features are more in line with the features
marked as important by Random Forests in [28], still in a
MOOC context. This observation further demonstrates the
generalizability of the features’ predictive power even among
very different experimental settings.

In a subsequent experiment, we compared the different ex-
plainability methods across five MOOCs. Our findings in-
dicate that the choice of explainability method has a much
larger influence on the obtained feature importance score
than the underlying model and data (RQ2). With distance
(Jensen-Shannon distance) and ranking-based metrics (Spear-
man’s Rank-Order Correlation), we uncovered that LIME is
farthest from the other explainability methods. The sparsity
of LIME-detected important features was also observed by
[13], where the conciseness of LIME explanations supported
integration in visual dashboards for student advising. We
also detected a close relationship between KernelSHAP and
PermSHAP, which strongly validates our evaluation strat-

Figure 8: Importance scores for LIME, PermSHAP, and CEM for week 9.

egy. Using PCA, we identified clear clusters of explanations
by explainability method and not by the course the model
was trained upon, suggesting that an explainability method
might be prone to mark specific features as important re-
gardless of the model (and the course).

Our analyses also confirmed that all the evaluated meth-
ods were able to (partially) detect the prerequisite relation-
ship between weeks, while relying on behavioral features
only (RQ3). Our experimental design was inspired by [11]’s
work on predicting effectiveness of interventions for wheel-
spinning students by simulating prerequisite relationships.
While we have no way to examine the true underlying fea-
ture importances of our week n assignment performance pre-
diction model, we intuit that a student’s prerequisite week
performance should be important to predicting their per-
formance in week n. We observed that the three families
of methods (LIME, SHAP, and counterfactual) were able to
partially capture the prerequisite relationship in week 5, but
struggled to capture the prerequisite relationships in week
9. While there were few similarities in the top ranked fea-
tures, each method found different groups of feature-weeks
as most important for the same models. Our results in-
dicate that recent and current behavior is more important
than past behavior, implying that proximity of behavioural
features correlates strongly with their perceived importance.
A limitation is that the prerequisite relationships we deem
important might not actually be used as the true features of
the model since our feature set included only features that
examined student behavior and not direct performance.

Our results indicate that there are noteworthy differences in
generated explanations for student performance prediction
models. However, our analyses also show that these expla-
nations often recognize prerequisite-based relationships be-
tween features. That being said, our study still has several
limitations that warrant future research, including our focus
on a singular downstream task (student success prediction),
specific modality of dataset (MOOCs), choice of model ar-
chitecture (BiLSTM), and lack of assessment of the obtained
explanations’ impact in the real world. First, extending
our experiments beyond success prediction to a multi-task
analysis (e.g., dropout prediction) across multiple modali-
ties (e.g., flipped classrooms, intelligent tutoring systems)
would allow us to build stronger intuitions about explain-

ability method differences. Second, extending our black-box
BiLSTM model architecture to multiple traditional and deep
machine learning architectures could examine whether cer-
tain explainability methods have stronger explanation affin-
ity to different predictors. Choosing transparent shallow ar-
chitectures instead of black-boxes could also allow us to val-
idate our results against ground truth feature importances.
Third, further research should be conducted to check which
explanations (and explainability methods) lead to interven-
tions that better improve learning outcomes. It follows that
an assessment of the obtained explanations should be car-
ried out involving educators. Finally, the disagreement of
our selected explainability methods motivate an extension
in an ensemble expert-weighting scheme, which might have
merit in closely estimating the true feature importances.

Explainability in educational deep learning models can lead
to better-informed personalized interventions [2, 42], cur-
riculum personalization, and informed course design. If we
were considering global interventions (as it might be too re-
source intensive to perform interventions on each student
individually), we could take the mean feature importance
vector over all students and try interventions in the order
of the scores of this mean vector. If we were only able to
intervene on k features due to resource constraints, Spear-
man’s rank-order metric could also be modified to include
the size of the intersection between the features with the
top k scores. However, it is important to note that when the
model explanations are biased by explainability method and
do not accurately reflect the inner workings of the model, the
impact of incorrect predictions are further exacerbated by
teachers and students’ misplaced confidence in the model’s
justification. We implore data scientists to not take the choice
of explainability method lightly as it does have a significant
impact on model interpretation, and instead urge the com-
munity to (1) carefully select an appropriate explainability
method based on a downstream task and (2) keep potential
biases of the explainer in mind when analyzing interpretabil-
ity results. Overall, our work contributes to ongoing research
in explainable analytics and to the generalization of theories
and patterns in success prediction.

5. ACKNOWLEDGMENTS
We thank Professor Paolo Pardoni, Valentin Hartmann, and
Natasa Tagasovska for their expertise and support.

6. REFERENCES
[1] Ali Shariq Imran, Fisnik Dalipi, and Zenun Kastrati.

Predicting student dropout in a MOOC: An
evaluation of a deep neural network model. In 5th
International Conference on Computing and Artificial
Intelligence, pages 190–195, 2019.

[2] Wanli Xing and Dongping Du. Dropout prediction in
MOOCs: Using deep learning for personalized
intervention. Journal of Educational Computing
Research, 57(3):547–570, 2019.

[3] Chris Piech, Jonathan Bassen, Jonathan Huang,
Surya Ganguli, Mehran Sahami, Leonidas J Guibas,
and Jascha Sohl-Dickstein. Deep Knowledge Tracing.
Advances in Neural Information Processing Systems,
28, 2015.

[4] Ghodai Abdelrahman and Qing Wang. Knowledge
tracing with sequential key-value memory networks. In
42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 175–184, 2019.

[5] Christoph Molnar. Interpretable Machine Learning.
2nd edition, 2022.

[6] Mary E Webb, Andrew Fluck, Johannes Magenheim,
Joyce Malyn-Smith, Juliet Waters, Michelle
Deschênes, and Jason Zagami. Machine learning for
human learners: opportunities, issues, tensions and
threats. Educational Technology Research and
Development, 69(4):2109–2130, 2021.

[7] Cristina Conati, Kaska Porayska-Pomsta, and Manolis
Mavrikis. AIin education needs interpretable machine
learning: Lessons from open learner modelling. 2018.

[8] Yu Lu, Deliang Wang, Qinggang Meng, and Penghe
Chen. Towards interpretable deep learning models for
knowledge tracing. In International Conference on
Artificial Intelligence in Education, pages 185–190.
Springer, 2020.

[9] Khan Md. Hasib, Farhana Rahman, Rashik Hasnat,
and Md. Golam Rabiul Alam. A machine learning and
explainable AIapproach for predicting secondary
school student performance. In IEEE 12th Annual
Computing and Communication Workshop and
Conference, pages 0399–0405, 2022.

[10] Máté Baranyi, Marcell Nagy, and Roland Molontay.
Interpretable deep learning for university dropout
prediction. In 21st Annual Conference on Information
Technology Education, pages 13–19, 2020.

[11] Tong Mu, Andrea Jetten, and Emma Brunskill.
Towards suggesting actionable interventions for
wheel-spinning students. International Educational
Data Mining Society, 2020.

[12] Alexandra Vultureanu-Albişi and Costin Bădică.
Improving students’ performance by interpretable
explanations using ensemble tree-based approaches. In
IEEE 15th International Symposium on Applied
Computational Intelligence and Informatics, pages
215–220. IEEE, 2021.

[13] Hanne Scheers and Tinne De Laet. Interactive and
explainable advising dashboard opens the black box of
student success prediction. In European Conference on
Technology Enhanced Learning, pages 52–66. Springer,
2021.

[14] Bo Pei and Wanli Xing. An interpretable pipeline for

identifying at-risk students. Journal of Educational
Computing Research, page 07356331211038168, 2021.

[15] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. ”Why Should I Trust You?”: Explaining the
predictions of any classifier. In 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1135–1144, 2016.

[16] Scott M Lundberg and Su-In Lee. A unified approach
to interpreting model predictions. Advances in Neural
Information Processing Systems, 30, 2017.

[17] Gajendra Jung Katuwal and Robert Chen. Machine
learning model interpretability for precision medicine.
arXiv preprint arXiv:1610.09045, 2016.

[18] André Ferreira, Sara C Madeira, Marta Gromicho,
Mamede de Carvalho, Susana Vinga, and Alexandra M
Carvalho. Predictive medicine using interpretable
recurrent neural networks. In International Conference
on Pattern Recognition, pages 187–202. Springer, 2021.

[19] Alex Gramegna and Paolo Giudici. Shap and lime: An
evaluation of discriminative power in credit risk.
Frontiers in Artificial Intelligence, 4, 2021.

[20] Ramaravind K Mothilal, Amit Sharma, and Chenhao
Tan. Explaining machine learning classifiers through
diverse counterfactual explanations. In Conference on
Fairness, Accountability, and Transparency, pages
607–617, 2020.

[21] Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti,
and Alexandru Coca. Alibi explain: algorithms for
explaining machine learning models. Journal of
Machine Learning Research, 22(181):1–7, 2021.

[22] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss,
Chun-Chen Tu, Paishun Ting, Karthikeyan
Shanmugam, and Payel Das. Explanations based on
the missing: Towards contrastive explanations with
pertinent negatives. Advances in Neural Information
Processing Systems, 31, 2018.

[23] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi
Parikh, and Stefan Lee. Counterfactual visual
explanations. In International Conference on Machine
Learning, pages 2376–2384. PMLR, 2019.

[24] Martin Pawelczyk, Klaus Broelemann, and Gjergji
Kasneci. Learning model-agnostic counterfactual
explanations for tabular data. In The Web Conference,
pages 3126–3132, 2020.

[25] David Martens and Foster Provost. Explaining
data-driven document classifications. Management
Information Systems Quarterly, 38(1):73–100, 2014.

[26] Daniel FO Onah, Jane Sinclair, and Russell Boyatt.
Dropout rates of massive open online courses:
behavioural patterns. 6th International Conference on
Education and New Learning Technologies,
1:5825–5834, 2014.

[27] Joselyn Goopio and Catherine Cheung. The mooc
dropout phenomenon and retention strategies. Journal
of Teaching in Travel & Tourism, 21(2):177–197, 2021.

[28] Mirko Marras, Julien Tuang Tu Vignoud, and Tanja
Kaser. Can feature predictive power generalize?
benchmarking early predictors of student success
across flipped and online courses. In 14th International
Conference on Educational Data Mining, pages
150–160, 2021.

[29] Mina Shirvani Boroujeni, Kshitij Sharma, Lukasz

Kidziński, Lorenzo Lucignano, and Pierre Dillenbourg.
How to quantify student’s regularity? In European
conference on technology enhanced learning, pages
277–291. Springer, 2016.

[30] Fu Chen and Ying Cui. Utilizing student time series
behaviour in learning management systems for early
prediction of course performance. Journal of Learning
Analytics, 7(2):1–17, 2020.

[31] Sébastien Lallé and Cristina Conati. A data-driven
student model to provide adaptive support during
video watching across MOOCs. In International
Conference on Artificial Intelligence in Education,
pages 282–295. Springer, 2020.

[32] Pantelis Linardatos, Vasilis Papastefanopoulos, and
Sotiris Kotsiantis. Explainable AI: A review of
machine learning interpretability methods. Entropy,
23(1):18, 2020.

[33] Kacper Sokol and Peter Flach. Explainability fact
sheets: a framework for systematic assessment of
explainable approaches. In Conference on Fairness,
Accountability, and Transparency, pages 56–67, 2020.

[34] David B Leake. Evaluating explanations: A content
theory. Psychology Press, 2014.

[35] An-phi Nguyen and Maŕıa Rodŕıguez Mart́ınez. On
quantitative aspects of model interpretability. arXiv
preprint arXiv:2007.07584, 2020.

[36] Jianlong Zhou, Amir H Gandomi, Fang Chen, and
Andreas Holzinger. Evaluating the quality of machine
learning explanations: A survey on methods and
metrics. Electronics, 10(5):593, 2021.

[37] Charles Spearman. The proof and measurement of
association between two things. 1961.

[38] Jianhua Lin. Divergence measures based on the
shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

[39] Christopher Manning and Hinrich Schutze.
Foundations of statistical natural language processing.
MIT press, 1999.

[40] Diogo V Carvalho, Eduardo M Pereira, and Jaime S
Cardoso. Machine learning interpretability: A survey
on methods and metrics. Electronics, 8(8):832, 2019.

[41] Yunzhe Jia, Eibe Frank, Bernhard Pfahringer, Albert
Bifet, and Nick Lim. Studying and exploiting the
relationship between model accuracy and explanation
quality. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 699–714. Springer, 2021.

[42] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel
Valera. Algorithmic recourse: from counterfactual
explanations to interventions. In ACM Conference on
Fairness, Accountability, and Transparency, pages
353–362, 2021.

[43] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. {TensorFlow}: A system for {Large-Scale}
machine learning. In 12th USENIX symposium on
operating systems design and implementation (OSDI
16), pages 265–283, 2016.

APPENDIX
A. MODEL ARCHITECTURE
We experimented with traditional machine learning models
(e.g., Support Vector Machines, Logistic Regression, Ran-
dom Forest) and deep-learning models (e.g., Fully-Connected
Networks, RNNs, LSTMs, CNNs, and BiLSTMs), and found
that BiLSTM models perform best against the other base-
lines for our use case. To determine the optimal model archi-
tecture, we evaluate validation set performance on the course
DSP 1 as it is used in all three RQs. BiLSTMs have a 26.8%
average increase in balanced accuracy over traditional ma-
chine learning methods. For the BiLSTM architecture grid
search, we examined the following layer settings {32, 64,
128, 256, 32-32, 64-32, 128-32, 128-64, 128-128, 256-128, 64-
64-32, 128-64-32, 64-64-64-32-32} before determining 64-32
performed best in balanced accuracy for DSP 1. We used
the Tensorflow library to train our models [43].

B. MODEL TRAINING
Model training took approximately 35 minutes per model on
an Intel Xeon E5-2680 CPU with 12 cores, 24 threads, and
256 GB RAM. Each model was trained for 15 epochs, and
the best performing model checkpoint was saved. The five
models’ performance metrics are showcased in Table 3.

C. SAMPLING STRATEGY
We experimented with several strategies to extract a appro-
priate representative sample including the greedy algorithm
SP-LIME [15], random sampling, two sets of extreme stu-
dents (those which the model predicts very well on and very
badly on), and uniform sampling. We determined that our
uniform sampling approach was the most fair with respect
to the variable class imbalance between courses.

Identifier Accuracy Balanced Accuracy F-1 Score

DSP 1 99.3 97.4 99.6
DSP 2 99.1 93.5 99.5
Geomatique 97.7 96.2 98.7
Villes Africaines 98.4 95.5 99.1
Micro 89.5 90.9 90

Table 3: Performance of the BiLSTMs trained on the five
MOOCs included in Section 3.

