SQL-DP:A Novel Difficulty Prediction Framework for SQL
Programming Problems

*
Jia Xu
Guangxi University
Guangxi, China
Xujia@gxu.edu.cn

ABSTRACT

In an Intelligent Tutoring System (ITS), problem (or ques-
tion) difficulty is one of the most critical parameters, di-
rectly impacting problem design, test paper organization,
result analysis, and even the fairness guarantee. However,
it is very difficult to evaluate the problem difficulty by orga-
nized pre-tests or by expertise, because these solutions are
labor-intensive, time-consuming, leakage-prone, or subjec-
tive in some way. Thus, it is of importance to automatically
evaluate problem difficulty via information technology. To
this end, we propose a novel difficulty prediction framework,
named SQL-DP, for Structured Query Language (SQL) pro-
gramming problems, mastering which plays a vital role in
learning the database technology. In SQL-DP, semantic fea-
tures of problem stems and structure features of problem an-
swers in the form of SQL codes are both computed at first,
using the NLP and the neural network techniques. Then,
these features are used as the input to train a difficulty pre-
diction model with the statistic error rates in tests as the
training labels, where the whole modeling does not intro-
duce any experts, some as knowledge labeling. Finally, with
the trained model, we can automatically predict the diffi-
culty of each SQL programming problem. Moreover, SQL
programming problem answering log data of hundreds of
undergraduates from Guangxi University of China are col-
lected, and the experiments conducted on the collected log
data demonstrate the propped SQL-DP framework outper-
forms the state-of-the-art solutions apparently. In particu-
lar, SQL-DP decreases the RMSE of difficulty prediction by
at most 7.23%, compared with the best-related framework.

Keywords
Problem difficulty prediction, SQL programming problem,
Code structure, Neural network, Intelligent tutoring system

1. INTRODUCTION

*Corresponding author.

Corresponding author.

J. Xu, T. Wei, and P. Lv. SQL-DP: A novel difficulty prediction
framework for SQL programming problems. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 86-97, Durham, United King-
dom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852986

Tingting Wei
Guangxi University
Guangxi, China
tingtingwei@st.gxu.edu.cn

Pin Lv'
Guangxi University
Guangxi, China
lvpin@gxu.edu.cn

Query the name of students who have taken the
course with the course id 'C1".

SELECT Sname FROM Student WHERE Sno IN
(SELECT Sno FROM SC WHERE Cno ='C1");

Difficulty: 0.4

Stem:

Answer:

Figure 1: An example of SQL programming problem.

With the progress of information technology, Intelligent Tu-
toring System (ITS) services are broadly applied, where
problem (or question) difficulty has become one of the most
critical parameters. The problem difficulty refers to the per-
centage of students who wrongly answer the problem [14].
Given the information of problem difficulty, an ITS can rec-
ommend exercises of suitable difficulty to students with var-
ied knowledge proficiency [31], can automatically organize
a test paper by choosing questions with different difficulty
levels [12], and can better achieve a fairness guarantee for
various other types of education tasks [29]. However, the
difficulty of a problem is not directly observable before the
test is conducted. To predict the problem difficulty in ad-
vance, traditional methods often resort to expertise (e.g.,
experienced teachers) who are asked to manually label the
question difficulty according to their experience, or artificial
tests organization [15]. Unfortunately, these human-based
solutions are limited in that they are labor-intensive, time-
consuming, leakage-prone, or subjective in some way [16].
Therefore, there is an urgent need to design problem diffi-
culty prediction methods without manual intervention.

Recently, several non-human-based solutions that rely on
machine learning techniques have been proposed [16, 23, 29,
18, 21, 8, 11]. For example, in [16], Huang et al. present
TACNN, a test-aware attention-based convolutional neural
network to automatically solve the difficulty prediction task
for reading comprehension problems in standard English
tests. In specific, TACNN utilizes the information of read-
ing passage, question, option, and answer together to predict
the difficulty. As another example, Qiu et al. in [23] pro-
pose a document enhanced attention-based neural Network
(DAN) to predict the difficulty of multiple-choice problems
in medical exams. Besides considering stem, option, and
answer, DAN fetches relevant medical documents to enrich
the information of each question. Moreover, in [29], Tong
et al. design a group of salable data-driven models, i.e.,
C-MIDP and R-MIDP, based on CNN and RNN neural net-
work architectures to predict the difficulty of mathematical

https://doi.org/10.5281/zenodo.6852986

Student Course SC

Sno | Sname | Sex | Age | Dept Cno Cname Credit Sno | Cno | Grade
S1 Emma F 20 CSs Cl1 Database Technology 4 S1 Cl 92
S2 Edith M 19 MA C2 Information System 4 S2 Cc2 85

(a) An Instance of Student-Course Database

SQL Programming Problem 1

Stem: Query the id of students who have taken the course with the course id 'C1".
Answer: SELECT Sno FROM SC WHERE Cno = 'Cl";

Problem Difficulty: 0.2

SQL Programming Problem 2
Technology'.

(SELECT Cno FROM Course WHERE Cname = 'Database Technology'));
Problem Difficulty: 0.6

Stem: Query the name of students who have taken the course with the course name 'Database

Answer: SELECT Sname FROM Student WHERE Sno IN (SELECT Sno FROM SC WHERE Cno IN

(b) Two Example SQL Programming Problems

Figure 2: Examples of SQL programming problems and different code structures of their answers.

questions, which are leveraged by the historical test logs and
the corresponding item materials (e.g., stem, option). How-
ever, no work is still proposed to estimate the difficulty of
Structured Query Language (SQL) programming problems.
Structured Query Language (SQL) is the de-facto database
query language widely used in industry and taught in al-
most all computer-related majors in universities [19, 28], we
thus focus on solving the difficulty prediction for SQL pro-
gramming problems in this paper. Figure 1 shows a SQL
programming problem containing a stem, an answer, and a
difficulty label.

Being different from the existing non-human based solutions
which only emphasizes the analysis of stem and option of
problems, the difficulty of a SQL programming problem is
not only influenced by the stem, options, or answer of the
problem, but also depends to a great extent upon the struc-
ture of the SQL code answer to the problem. Taking the
two SQL programming problems defined over the ‘Student-
Course Database’ in Figure 2 as an example. Note that
the ‘Student-Course Database’ has three tables, namely Stu-
dent, Course, and SC, which records student-course selection
relationships. Though the two examples of SQL program-
ming problems in the figure have very similar stems, their
standard answers in the form of SQL codes exhibit signifi-
cantly different code structures depicted by Abstract Syntax
Trees (ASTs) [17], which makes their difficulty values appar-
ently different from each other.

To this end, we propose SQL-DP, a novel difficulty predic-
tion framework for SQL programming problems and name it
as SQL-DP. SQL-DP consists of two major modules. First,
the feature extraction module is responsible for computing
representations of SQL programming problems by not only
considering the semantic information in their stems, but also
taking the structure information of their answers in the form
of SQL code into account. Using the computed representa-
tions of SQL programming problems as the input, then the
difficulty prediction module in SQL-DP trains a difficulty
prediction model with the statistic error rates in tests as
the training labels. The trained difficulty prediction model
can be applied to estimate the difficulty of a SQL program-

ming problem in an automatic manner. Note that the whole
modeling in SQL-DP does not introduce any human inter-
vention or knowledge labeling, ensuring the usability of the
solution in a wide range of application scenarios. The Main
contributions of this paper include:

e We propose SQL-DP, a novel difficulty prediction frame-
work for SQL programming problems, which not only
considers the semantics of problem stems, but also
leverages the information of code structures of problem
answers to quantify the difficulty of the problem. As
far as we know, this is the first systematic solution to
predict the difficulty of SQL programming problems.

o We collect the stems, answers, and answering results of
hundreds of SQL programming problems by organizing
undergraduates to complete tests of SQL programming
problems using our self-developed SQL online judge
(OJ) system.

e We conduct a group of experiments using the collected
physical-world dataset, and the experimental results
show the superiority of the proposed SQL-DP frame-
work in predicting the difficulty values of SQL pro-
gramming problems.

The rest of our paper is organized as follows. Section 2
discusses the related works; Section 3 states the preliminar-
ies of this work; Section 4 describes details of the proposed
SQL-DP framework for the prediction of SQL programming
problems; then Section 5 evaluates the effectiveness of the
proposed SQL-DP framework using physical-world dataset;
finally Section 6 concludes the paper and points out future
research directions.

2. RELATED WORKS

Problem (or question) difficulty prediction is an important
problem having been widely studied in educational domain.

Traditionally, the difficulty of a question is predicted and
labeled by expertise (e.g., experienced teachers) according

to their experience[l], which is labor-intensive and subjec-
tive, and not applicable when there are too many questions.
An alternative solution is to organize an artificial test (also
called as pretest) [1, 15], where a small group of students
are required to take part in the artificial test and their er-
ror rates are then used to estimate the question difficulty.
To improve the estimation precision, a group of educational
measurement theories are applied, including Classical Test
Theory (CTT) [6], Item Response Theory (IRT) [9], and
Cognitive Diagnosis Theory [30]. Many well-known tests,
such as Test of English as Foreign Language (TOEFL) and
Scholastic Assessment Test (SAT) predict question difficulty
following such solution. Unfortunately, the artificial tests
based difficulty prediction solution is limited in that it is
not only labour-intensive, time-consuming, but also has the
risk of question leakage [16].

To overcome the shortcomings of traditional methods, with
the development of machine learning technologies, many
non-human based solutions of problem difficulty prediction
emerge, which can be divided into two categories, i.e., sim-
ple regression analysis based and artificial neural network
based.

Simple regression analysis based methods establish a simple
regression model (e.g., linear regression, multiple regression,
and SVM) to construct a mapping function between ques-
tion difficulty and its influence factors, and the difficulty
of new questions can be predicted based on the regression
model. As an early example, Chon and Shin [3] built a
difficulty prediction model for multiple-choice reading test
items by using the multiple regression technique and maxi-
mum likelihood estimation. Several features of items, such
as response time of testees and paragraph length, are set
as the influence factors of item difficulty. A difficulty esti-
mation model based on correlation and regression analysis
for English vocabulary questions was then discussed in [27].
As another example, in [25], Makoto Sano proposed to ex-
tract a series of language features from multiple-choice ques-
tions of reading comprehension, and analyze the extracted
features using multiple regression models to obtain the fea-
tures most related to the question difficulty. Moreover, in [8],
Masri et al, proposed to analyze influence factors (e.g., topic
and depth of knowledge) of difficulty questions in the sixth
grade science test of British primary schools, and establishes
a stepwise regression model to predict the difficulty of ques-
tions. A difficulty prediction model was also presented to-
wards suggestive blank filling questions for English Tenses
[21], which employs the ridge regression model to analyze
many factors (e.g., questions text and blank filling words)
affecting the question difficulty. These regression analysis
based methods, however, have limitations, since they require
some domain knowledge and artificially define the factors af-
fecting the question difficulty.

In view of the limitations of simple regression analysis, many
researchers proposed to learn the complex relations between
influencing factors and question difficulty via artificial neu-
ral networks, and as a result achieved the goal of automatic
question difficulty prediction. For example, in [16], Huang
et al. proposed a model, named TACNN, to predict the dif-
ficulty of reading comprehension questions in English test
via Convolutional Neural Network (CNN), by using the in-

formation of reading passage, question, options, and answer
of each question. Similarly, Tong et al. in [29] proposed a
prediction method for the difficulty of mathematical ques-
tions based on both of CNN and Recurrent Neural Network
(RNN), by analyzing stem, options, and answers of every
question. Besides, in [11], Hsu et al. introduced a novel
method for automated estimation of multiple-choice items
which consist of the following item elements: a question and
alternative options. The proposed method utilizes neural
network to learn embeddings of question materials in se-
mantic space. Then, it computes the semantic similarities
among the stem, answer, and distractors, which are then
together fed to a SVM for training the question difficulty
prediction model. Then, in [18], Lin et al. proposed a ques-
tion difficulty prediction model for Chinese reading compre-
hension problems based on long-term and short-term mem-
ory artificial neural network, while in [23] proposed a diffi-
culty prediction method, named as DAN, for multiple-choice
questions in medical examination based on neural network
model. In specific, besides considering stem, options, and
answer, DAN fetches relevant medical documents to enrich
the information of each question.

Although recent years have witnessed many works that pre-
dict problem difficulty automatically without manual inter-
vention. However, none of these works focus on solving the
difficulty prediction of SQL programming problems whose
answers in the form of SQL codes are significantly different
from their answers. Considering the structure information
of SQL codes has great impact on the difficulty of SQL pro-
gramming problems, all existing works hence can not well
handle the difficulty prediction problem for SQL program-
ming items which is discussed in this paper.

3. PRELIMINARY

In this section, we first introduce the method of capturing
code structure information. Then we formally define the
problem of difficulty prediction for SQL programming prob-
lems.

3.1 Code Structure Extraction

In [13], Hindle et al. demonstrate that programming lan-
guages, similar to natural languages, also contain abundant
statistical properties. However, there are also obvious differ-
ences that the code of programming language contains rich
and clear structural information between programming lan-
guage and natural language[20]. By extracting the structure
information in the code, we can better analyze the source
program. Therefore, some works have studied how to cap-
ture the code structure information[2, 20, 22].

In [20], Mou et al. parse code into AST and design a
novel Tree-Based Convolutional Neural Network (named as
TBCNN) to capture code structural information. In TBCNN
model, an AST node is first represented as a distributed,
real-valued vector so that the (anonymous) features of the
symbols are captured. The vector representations are learned
by a coding criterion in [22]. Then Mou et al. design a set
of subtree feature detectors, called the tree-based convolu-
tion kernel, sliding over the entire AST to extract structural
information of a program. Thereafter they apply dynamic
pooling [26] to obtain information over different parts of the
tree. Finally, a hidden layer and an output layer are added.

Feature Extraction Module i

Word SQL Text 5
Embedding Semantic Feature | |

SQL Parser

o, 10
E Programming
L7

Problems

SQL Code ;
Structure Feature E

Difficulty Prediction

Module
: : Regression :
: » : Algorithm . :
: H Predicted E

Difficulty |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: SQL-DP: A difficulty prediction framework for SQL programming problems.

Because the TBCNN model can capture code semantics ef-
ficiently, it has become one of the most classical models of
code structure feature extraction.

As a programming language, SQL can generate AST through
SQL syntax parsers, and then we can use the TBCNN model
to extract the structure information of AST, that is, the
structure information of SQL code. In short, to obtain more
problem information to predict the problem difficulty, ex-
cept the stem of SQL programming problems, we use the
TBCNN model to capture the code structure information
from the answers to SQL programming problems.

3.2 Problem Definition

This paper focuses on the difficulty prediction of SQL pro-
gramming problems. The example of SQL programming
problem is shown in Figure 2. The goal of this paper is
to train problem difficulty prediction model by using prob-
lem stems, answers and real difficulty of SQL programming
problems, and then predict the difficulty of new SQL pro-
gramming problems.

Formally, given the SQL programming problem set P =
{p1,p2, - -,pm} and the corresponding real problem diffi-
culty set D = {di1,d2, - -,dm}, the goal is to use the above
data P and D to train a model M, and the trained model
M can estimate the difficulty of new SQL programming
problems without test logs. Where P includes the prob-
lem stem text set T' = {t1,t2, - ,tm} and the problem an-
swer set A = {a1,a2, -, am}. In addition, p; = {¢;, as,d;}
4 €{1,2,---,m}, p; represents the SQL programming prob-
lem 4, t; represents the problem stem text of p;, a; represents
the answer to SQL programming problem ¢, d; represents the
real difficulty of p;, and m represents the total number of
SQL programming problems.

In addition, We obtain the real difficulty of each SQL pro-
gramming problem from the test logs, followed the previous
works[23, 16, 29]. Specifically, we calculate the proportion of
incorrect answers by dividing the number of students who
have answered the problem incorrectly by the number of
students who have responded to the problem[23]. The cal-
culation equation of the difficulty of the problem p; is as
follows:
Si

a=2 1)
where d; is real difficulty of p;, s; represents the number of
students who have answered p; incorrectly, and S; represents

the total number of students who have responded to the
problem p;.

4. SQL-DP FRAMEWORK

This section will describe the difficulty prediction framework
of SQL programming problems in detail. As shown in Fig-
ure 3, the difficulty prediction framework of SQL program-
ming problems can be divided into two modules: 1) Fea-
ture extraction module, which mainly extracts features from
the stem and answer of SQL programming problems. The
extracted features include stem text semantic features and
code structure features; 2) The difficulty prediction module,
which uses machine learning to predict the difficulty value
of SQL programming problems. Briefly, given the SQL pro-
gramming problem include stem, answer, and difficulty, we
use the feature extraction model to obtain the text semantic
features and code structure features from the stems and an-
swers. Then we take the above features and real difficulty as
the input of the difficulty prediction module, where the real
difficulty is the trained label. Finally, we can use the trained
model, the stem and answer of new SQL programming prob-
lems to predict the difficulty of new problems, that is, the
new SQL programming question without test logs.

4.1 Feature Extraction Module

The feature extraction module consists of SQL text semantic
feature extraction module and SQL code structure feature
extraction module. The former module uses word embed-
ding techniques to obtain the text semantic features from
the stem of SQL programming problems, and the last mod-
ule extracts SQL code structure features from the answer
to problems. The two modules mentioned above will be de-
scribed in detail below.

4.1.1 SQL Text Semantic Feature Extraction Module

In the task of question difficulty prediction, word embed-
ding technique is often used to obtain the text features of
the question, including word2vec, Term Frequency—Inverse
Document Frequency (TF-IDF), etc[16, 18, 29]. To extract
textual semantic features in SQL programming problems ef-
fectively, we adopt various word embedding techniques used
in [16] and [29] to extract textual information, including
Bag-of-Words (BoW), TF-IDF, and word2vec. Finally, we
select the optimal word embedding technique for follow-up
experiments.

BoW does not consider the order of words in the sentence.

SelectStmt

TN

Target ‘WhereClause

ColunmRef 1D A_Const

Vector Representation
and Coding

Tree-Based Convolution

Max Pooling Full Connection Full Connection

= mam

Tree Struct Vector Output

Dynamic Pooling

Figure 4: The structure of TBCNN model.

Figure 5: Tree-based convolution.

Still, it only counts the number of occurrences of words, so
the value of each position of the text vector calculated by
the model is the number of occurrences of the corresponding
word. Because the model only records the first occurrence
of each word and the number of occurrences of each word,
the text features calculated by the model do not contain
important information such as the grammar and semantics
of the text.

TF-IDF is a word embedding technique used to calculate the
importance of each word. The importance of the evaluation
word is based on the term frequency and the inverse docu-
ment frequency of the word appearing in the text. The term
frequency counts the number of times each word appears in
the text. And the inverse document frequency is used To
measure the commonness of each word. The more common
words have smaller IDF values.

word2vec is a technique that can efficiently learn the vec-
tor representation of text, which can accurately capture the
syntactic and semantic word relationships in the text. When
using word2vec to extract semantic information in the stem
of SQL programming problems, we firstly take all the stem
texts of SQL programming problems to train the word2vec
model and obtain the word embedding vector of each word
or character. Then, we segment the stem, remove the stop
word, and replace the remaining words or characters with
the corresponding word embedding vector in order to ob-
tain the representation vector of the stem. Next, the input
of the difficulty prediction module is a fixed length feature,
but the length of words in the different stems is not the same.
According to the method of [29], we set the text semantic
feature of the stem to a fixed length J. If the length of stem
vector is less than J, it is filled with zero. Otherwise, the

word behind J is deleted. Finally, we get the text seman-
tic feature vector of SQL programming problem, which can
retain certain semantic features.

4.1.2 SQL Code Structure Feature Extraction Mod-

ule
Inspired by [20] and [32], in order to capture the tree struc-
ture information of the code as much as possible and en-
rich the input of the difficulty prediction of SQL program-
ming problems, we apply TBCNN model to capture SQL
code structural information. The TBCNN model structure
is shown in Figure 4.

TBCNN model includes embedding layer, tree-based con-
volution layer, dynamic pooling layer, and output layer.
TBCNN first converts the abstract syntax tree of SQL code
into a vector representation suitable for later calculation.
Then, local features are extracted by tree-based convolution,
and a new set of feature vectors with the same structure as
the input tree are obtained. However, the tree structure of
different SQL codes will be different. Therefore, in order to
input it into the final full connection layer, the tree struc-
ture obtained from the convolution layer is simplified into a
fixed vector shape through the dynamic pooling layer. Fi-
nally, classification or regression is carried out through the
full connection layer. This paper applies TBCNN model to
the regression problem, and the training label of the model
is the real difficulty of the problem.

Specifically, the input of TBCNN model is the serialized
abstract syntax tree (AST). Therefore, the model first uses
the pre-training method in [22] to obtain the representation
vector of nodes in ASTs. The more specific representation
method of node vector can be found in [22].

Then, in the tree-based convolution layer, a set of fixed-
depth feature detectors that can slide on the whole AST
is designed to extract the structure information of the pro-
gram. The subtree feature detectors can be viewed as con-
volution with a set of finite support kernels, so the subtree
feature detector is called tree-based convolution. The out-
put of the feature detector is calculated by Equation 2.

Yy = tanh(z Wcon'u,i s X+ bconv) (2)

i=1

where y € RNe, x1,x9,- - -, 2, is the vector representation

of nodes in the sliding window, and Weonv,i € RNeXNf g
the parameter, beony € R™¢ is the bias, N, is the number of
feature detectors.

In addition, continuous binary tree (as shown in Figure 5) is
proposed to handle the different number of child nodes. The
convolution layer uses three weight matrices as parameters,
including W, Wione, and W2 .. in which superscript
t, I, and r refer to “top”, “left”, and “right” respectively.
The weight matrix of node z; in the sliding window is a
linear combination of W, Wione, and W2 .. (as shown
in Equation 3). 7f, !, and n! are the coefficients. In this
paper, we use the method in [32] to calculate the coefficient
nt, nt, and 0!, as shown below:

Wcon'u,i - an(fonv + néWclonv + n:WcTonv (3)

t dma:c — dz
L/ e—

(4)

dmaz

. =21 —nf) non-leaf
" 0.5(1 — ﬁf) leaf

()

ni = (1—nH)(1—mn) (6)
where dmqz represents the depth of the sliding window and
d; represents the depth of node i in the sliding window.

After convolution, structural features in an AST are ex-
tracted, but the features are still a tree structured set of
vectors, which can not be directly fed into the fully con-
nected layer. Therefore, dynamic pooling [26] is applied to
reduce the tree into a fixed shape vector.

Finally, a full connection layer and an output layer are added
to predict the difficulty of SQL programming problems. The
difficulty prediction task of SQL programming problems in
this paper belongs to regression problem, inspired by [29],
we construct the loss function of the TBCNN model as the
Equation 7.
I~ ~
LZEZ(7 — di)” (7)
i=1

where p; and d; represent the predicted difficulty value and
the real difficulty value of the problem p; respectively.

4.2 Difficulty Prediction Module

The difficulty of SQL programming problems can be pre-
dicted using various regression models. Therefore, the diffi-
culty prediction module of SQL programming problems uses
a variety of regression models to predict the difficulty of
SQL programming problems to obtain the optimal regres-
sion model. Regression models used include linear regres-
sion (LR) [4], support vector machine (SVM) [7], gradient
boosting decision tree (GBDT) [10], random forest (RF) [5]
and back propagation (BP) [24] neural networks. The lin-
ear regression model is one of the basic regression models
commonly used in linear regression problems, but it cannot
solve nonlinear distribution problems. The SVM model is
common in both linear and nonlinear problems. The RF
model is a kind of integrated algorithm with the advantages
of difficult overfitting, strong anti-noise ability, and strong
interpretability. The GBDT model is an iterative decision

Table 1: The statistics of the dataset.

Statistics Value
of answer logs 10952
of students 283

of SQL programming problems 318
Average answer logs per question 34.4
Average answer logs per student 38.7

. []
?a,':&t 'sS0L =
Course ID: DB2021-1 HOMEWORK-1 NESTED QUERY
QL. Please query students studying in the same department as 'Liu Chen'.
B~ Homeworks Full socore: 10 Difficulty: s %4 Answered
2 Scores Q2. Please query the student ID and name of the students who have taken the course
named 'Information system’.
i Ranking Full socore: 10 | Difficulty: sk k- Answer
Q3. Please query the course ID of each student who exceeds his or her average score of
elective courses.
Fullsocore: 10 Difficulty: v
SELECT Sno, Cno
FROM SCx
WHERE Grade >=
(SELECT AVG(Grade)
FROM SCy
Q4. Please query the name and age of any student in the non computer science
O Return CourseList department who is younger than any student in the computer science department.

Figure 6: A graph for self-developed SQL online judge system.

tree algorithm that can be used for regression tasks. The BP
neural network refers to the multilayer feedforward neural
network trained by the BP algorithm. It has strong rep-
resentation ability and nonlinear mapping ability, but its
strong learning representation ability makes it easy to over-
fit.

The following describes the specific process of the difficulty
prediction module:

e Firstly, the text semantic features and code structure
features of the extracted SQL programming problems
are concatenated together and used as the input of
the above regression model. The regression models
are trained using the actual difficulty of the SQL pro-
gramming problems as the training labels.

Secondly, the model with the best results among the
regression models mentioned above is selected as the
regression model of the difficulty prediction module of
SQL programming problems.

Thirdly, input the text features and code structure
features of the SQL programming problems that need
to predict difficulty into the trained regression model.
The difficulty of the SQL programming problems can
be obtained.

S. EXPERIMENTS

In this section, we first introduce the source of the dataset.
Then we raise the evaluation metrics and experimental com-
parison methods used in the experiment. Next, we present
the experimental settings in detail. Finally, we summarize
and analyze the experimental results.

B SVM B GBDT RFOBP
0.29

RMSE

Bow TF-IDF Word2vec

(a) RMSE

B SVM B GBDT RF[OJBP
029 -

027 -

025 -

MAE

0.15

Bow TF-IDF Word2vec

(b) MAE

Figure 7: Results of text semantic features obtained by different word embedding technologies on different algorithms.

5.1 Dataset Description

The dataset in this paper comes from our self-developed SQL
0OJ system (as shown in Figure 6). The data collection lasted
for two years, involving 306 students from Guangxi Univer-
sity of China. In addition, if only a small count of students
have tried to solve a problem, the obtained difficulty of this
problem will have severe randomness|[23]. Therefore we use
the processing method in [23] to process our data. Specif-
ically, we eliminate the problems having no more than ten
test logs, and the detail of dataset after processing is shown
in Table 1.

5.2 Evaluation Metrics

Followed the previous works[23, 29, 16], we use the evalua-
tion metrics commonly used in question difficulty prediction:
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). The above two evaluation metrics are widely used
in question difficulty prediction to measure the distance be-
tween the predicted difficulty value and the actual difficulty
value. The smaller the evaluation metric value is, the better
performance the results have. The two evaluation metrics
are shown in Equation 8 and Equation 9 respectively:

1 M
MAE = — > Ip — dil 9)

i=1

where M represents the number of SQL programming prob-
lems, and p; and d; represent the predicted difficulty and
real difficulty of programming problem ¢ respectively.

5.3 Comparison methods

The difficulty prediction of questions mentioned in the pre-
vious related work is not for SQL programming problems.
Therefore, we modify C-MIDP model, R-MIDP model, and
H-MIDP model of the mathematical questions proposed in
[29] to adapt to the SQL programming problems. The above
three models first use the word2vec to vectorize the texts
of mathematical questions and use the scoring rate of the
students in the mathematical questions as the actual diffi-
culty value of the mathematical questions. Then take the

real difficulty value of the mathematical questions as the
training labels. Finally, input the text representation vector
of the mathematical problem into different neural networks
for learning. The main processes of the C-MIDP, R-MIDP
and H-MIDP models (The structure diagram of C-MIDP,
R-MIDP, and H-MIDP is presented in the appendix Table
10) are given below .

e First, use the word2vec model to train all the texts of
the mathematical questions, and then the text repre-
sentation vector of the math questions can be obtained.

e Secondly, the text representation vector of the math-
ematical question is used as the models’ input. The
actual difficulty of the question is the scoring rate of
each question, and it is used as the training label of the
model. During the training process, different models
extract different mathematical question information.

e Thirdly, considering that the data in the dataset comes
from many different schools. And the student groups
in other schools have differences in the knowledge level
status, which will cause the scoring rate of the question
(i.e., the actual difficulty value) to be affected by the
difference in the level of the student group. To elim-
inate this effect, a context-related training method is
proposed. That is, a new loss function is constructed
for training the model.

e Finally, for new math questions for which there is no
student answer data or insufficient student answer data,
the text vector of the new question can be input into
the trained model to predict the difficulty of the ques-
tion.

The C-MIDP, R-MIDP, and H-MIDP models have the same
process, and the differences between the three models are:
The C-MIDP model uses a multi-layer Convolutional Neural
Network to mine different levels of text semantic informa-
tion from the text of mathematical questions. The R-MIDP
model uses the recurrent neural network (RNN) suitable
for mining long-range logical relations to mine the sequen-
tial logical information of mathematical problems from the
text. The H-MIDP model combines the advantages of the

Table 2: TBCNN’s hyperparameters.

Hyperparameter Value

Initial learning rate 0.001

Learning rate decay 0.001
Node embedding dimension 100
Convolutional layers’ dimension 50

C-MIDP and the R-MIDP and can simultaneously extract
crucial semantic information and sequential logic informa-
tion of mathematical problem text.

5.4 Experimental Setup

Word Embedding: In [16] and [29], Huang et al. and Tong
et al. use BoW, TF-IDF, and word2vec technologies to
obtain the text semantic features of questions. Following
their works, we use the aforementioned methods to process
the text semantic features. The Bow and TF-IDF meth-
ods are relatively simple, so we only introduce the setting
of the word2vec in detail. Specifically, the corpus used for
word2vec training is all the stem texts in the dataset. The
maximum number of words after word segmentation in the
problem stem is 17, so we set the number of words in each
problem to 17, and the word vector dimension of each word
is 50. Therefore, the stem text vector of each problem has
a dimension of 850.

TBCNN Setting: The input of TBCNN model is the AST
of programming code. So we first use SQL parser pglast
! to parse the SQL codes, and then we obtain the AST of
the codes. After that, we serialize the ASTs and take the
serialized ASTs as the input of the TBCNN model. Besides,
TBCNN'’s hyperparameters are shown in Table 2.

Other Setting: All models in the experiment use ten-fold
cross-validation to verify the performance of the model. In
experiment, the programming language we used is python,
and the experiment is configured with 2-core CPU, 8GB
memory, 1TB hard disk, and 64-bit Ubuntu operating sys-
tem.

5.5 Experimental Results

In this section, we run an ablation study to highlight the
individual contribution of each module in SQL-DP and com-
pare the SQL-DP proposed in this paper with the C-MIDP,
R-MIDP, and H-MIDP model proposed in [29].

5.5.1 Text Semantic Feature Extraction

A variety of word embedding techniques can be used in the
SQL-DP framework proposed in this paper, so we need to
experiment with different word embedding techniques to ob-
tain the optimal problem text semantic features for subse-
quent experiments.

Figure 7 shows the results of text semantic features obtained
using different word embedding techniques on various ma-
chine learning algorithms. But the RMSE of the LR algo-
rithm exceeds 0.5, and the result on the MAE is also poor,
so we do not show the results of LR algorithm in Figure 7 in

https://pglast.readthedocs.io/en/v3/index.html

Table 3: Experimental results of regression model selection
Models RMSE MAE

SVM 0.2176 0.1744
GBDT 0.2128 0.1721
RF 0.1977 0.1570
BPNN 0.2022 0.1702

order to a more intuitive display. And the poor experimen-
tal results of LR also prove that LR is not competent for
difficulty prediction problem. Therefore, we will no longer
use the LR algorithm to predict the difficulty of SQL pro-
gramming problems in the subsequent experiments.

In addition, as shown in Figure 7, the text semantic fea-
tures extracted by BoW perform the worst in predicting the
difficulty of SQL programming problems, while the over-
all performance of word2vec is the best. This shows that
the word2vec is more suitable for extracting text semantic
features of problem stems than BoW and TF-IDF for SQL
programming problems. Therefore, we will use word2vec
to obtain the text semantic features of SQL programming
problems in the subsequent experiments.

5.5.2 Regression Model Selection Experiment
SQL-DP can use a variety of regression models to predict the
difficulty of SQL programming problems. Therefore, we ex-
periment with multiple regression models to select the best
model for subsequent experiments. In the regression model
selection experiment, text semantic features and code struc-
ture features are used as the input of the regression model
at the same time. Table 3 shows the results of using the two
features mentioned above as the input of multiple regression
models simultaneously. As can be seen from Table 3, when
both text semantic features and code structure features are
used as the input of the regression model, the results of SQL-
DP using the SVM model are the worst, while the effects of
the RF model are the best. Therefore, in the subsequent
comparative experiment, the SQL-DP framework will use
the RF model to predict the difficulty of SQL programming
problems.

5.5.3 Comparative Experiment

In this section, we compare SQL-DP with C-MIDP, R-MIDP,
and H-MIDP to prove the effectiveness of the difficulty pre-
diction framework of SQL programming problems proposed
in this paper. Given the above text semantic feature extrac-
tion experiment and ablation experiment results, we choose
the SQL-DP framework using word2vec, TBCNN, and RF
algorithm to compare with the C-MIDP, R-MIDP, and H-
MIDP.

Table 4 shows the experimental results of SQL-DP, C-MIDP,
R-MIDP, and H-MIDP. We can see from Table 4 that results
of SQL-DP with respect to the two evaluation metrics, i.e.,
RMSE and MAE, are consistently better than those of C-
MIDP, R-MIDP, and H-MIDP models, which verifies the su-
periority of the proposed SQL-DP in predicting the difficulty
of SQL programming problems. Moreover, we are delighted
to see from the table that SQL-DP increases the RMSE by
7.23%, compared with the best comparison model H-MIDP,

- Real Difficulty -e- C-MIDP -0 R-MIDP -e- H-MIDP —— SQL-DP

_--Q
\

08

0.7

0.6

o
n
T

Question Difficulty
(=]
=

o
)
T

02

0.1 |

Question Number

Figure 8: Comparison between the difficulty predicted by four models and the ground truth on ten SQL programming problems.

which is a great progress made under the context of diffi-
culty prediction for SQL programming problems. Because
the C-MIDP, R-MIDP, and H-MIDP models only extract
information from the text of SQL programming problems
and do not extract the code structure information of the an-
swers. Unlike those three comparison models, in SQL-DP,
in addition to the text semantic feature extraction module,
we can obtain rich semantic information from the stem of
SQL programming problems. The code structure extraction
module can also obtain rich code structure information from
the answers to SQL programming problems. It is the consid-
eration of code structure information in SQL-DP that fur-
ther enhances the difficulty prediction ability of it towards
SQL programming problems, compared with state-of-the-art
models.

In addition, we can observe from Table 4 that the H-MIDP
model performs best among all state-of-the-art models, while
the R-MIDP model performs worst among the three models
C-MIDP, R-MIDP, and H-MIDP. The reason may be that
the RNN in the R-MIDP model is better at capturing the
logical relationship in long sentences. But in the SQL pro-
gramming problem dataset collected in this paper, the de-
scriptions of the stem of the SQL programming problems are
generally short, so the performance of the R-MIDP model
on the SQL programming problems is the worst.

To more intuitively see the advantages of our proposed SQL-
DP in predicting the difficulty of SQL programming prob-
lems, we randomly select 10 problems in the test set. And we
test them with the trained C-MIDP model, R-MIDP model,
H-MIDP model, and our proposed SQL-DP. After that, we
use a broken line diagram (as shown in Figure 8) to show
the distance between the predicted problem difficulty of the
above models and the real problem difficulty. As shown in

Table 4: Comparative experimental results.

Models RMSE MAE
C-MIDP 0.2167 0.1603
R-MIDP 0.2228 0.1785
H-MIDP 0.2131 0.1578
SQL-DP 0.1977 0.1570

Table 5: Ablation experimental results of SQL-DP.

Feature RMSE MAE

Text semantic feature 0.2106 0.1711
Code structure feature 0.2124 0.1721
Text semantic + Code structure 0.1977 0.1570

Figure 8, we can see that the prediction difficulty of SQL-
DP for the selected SQL programming problems is closer to
the real problem difficulty than the C-MIDP, R-MIDP, and
H-MIDP models.

5.5.4 Ablation Experimental

To get deep insights into the contributions of various mod-
ules in the SQL-DP framework proposed in this paper, we
also conduct some ablation prediction outcomes.

As shown in Table 5, we can observe a performance decrease
by removing the SQL text semantic feature extraction mod-
ule or the SQL code structure feature extraction module.
Besides, we can also see that the overall performance of the
SQL text semantic feature extraction module is similar to
that of the SQL code structure feature extraction module.
This observation shows that both SQL code structure fea-

Figure 9: Scenario of a student using self-developed SQL OJ
system.

tures and SQL text semantic features play an essential role
in the difficulty prediction of SQL programming problems.

5.5.5 Application

Given the effectiveness of the SQL-DP framework proposed
in this paper, we use the trained SQL-DP to predict the
difficulty of new SQL programming problems. That is, the
problem without student test logs. And apply it to our self-
developed SQL OJ system, as shown in Figure 6. Specifi-
cally, we map the problem difficulty value from 0 to 1 to 5
stars. Among them, the problem difficulty value from 0 to
0.1 is half a star, value from 0.1 to 0.2 is one star, and so
on. Figure 9 shows a student practicing SQL programming
problems using our self-developed SQL OJ system. The stu-
dent can choose to do simple SQL programming problems
first according to the problem difficulty labels or challenge
herself to choose more difficult SQL programming problems
in our system.

6. CONCLUSIONS

Conclusions. In this paper, we propose SQL-DP, a novel
framework that automatically predicts difficulty of SQL pro-
gramming problems. SQL-DP makes full use of the infor-
mation in problem stems and problem answers in the form
of SQL codes, based on which the difficulty values of SQL
programming problems can be effectively estimated using
machine learning techniques. Besides, we organized many
tests of SQL programming problems in real teaching prac-
tice, which last for two years and involve seven different
undergraduate classes in Guangxi University of China, and
collected a SQL dataset containing materials and student
answering logs of hundreds of SQL programming problems.
Experimental results over our collected physical-world SQL
dataset show that the proposed SQL-DP gains apparently
better prediction performance towards SQL programming
problems, compared with state-of-the-art solutions.

Generalization. Though SQL-DP is discussed for the diffi-
culty prediction of SQL programming problems, it can be
easily generalized to address the difficulty prediction of pro-
gramming problems using other languages (such as C and
Java), since the consideration of structure information of
problem answers is also very important for these program-
ming problems.

Future Works. Two important directions for future works
can be considered. First, we will consider more features
of SQL programming problems, such as equivalent answers,
SQL concepts (e.g., nested queries, multiple tables), etc.
Second, to support the difficulty prediction task of program-
ming problems corresponding to more types of programming
languages, we will modify and adapt the proposed SQL-DP
framework, including the design or use of neural network
layers.

Related Resources. To better promote related study of SQL
programming problems, the source code of the proposed
SQL-DP framework and partial of our collected SQL dataset
used in the experiment are all released and can be assessed
though the link below: https://github.com/SQL-DP/SQL-DP

7. ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (No. 62067001), the Projects of Higher
Education Undergraduate Teaching Reform Project in Guangxi
(Nos. 2017JGZ103 and 2020JGA116), Innovation Project of
Guangxi Graduate Education (No. JGY2021003), and the
Special funds for Guangxi BaGui Scholars. This work is
partially supported by the Guangxi Natural Science Foun-
dation (No. 2019JJA170045). We would like to thank Dr.
Wu, Dr. Tian, and Mr. Zhang for providing data from their
course teaching practices. Finally, thank Aetf for providing
some source code.

8. REFERENCES

[1] S. AlKhuzaey, F. Grasso, T. R. Payne, and V. A. M.
Tamma. A systematic review of data-driven
approaches to item difficulty prediction. In Proceedings
of the 22nd International Conference on Artificial
Intelligence in Education, pages 29-41. Springer, June
2021.

[2] N. D. Q. Bui, Y. Yu, and L. Jiang. Treecaps:
Tree-based capsule networks for source code
processing. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, pages 30-38.
AAAT Press, February 2021.

[3] Y. V. Chon and T. Shin. Item difficulty predictors of a
multiple-choice reading test. ENGLISH TEACHING,
65(4):257-282, December 2010.

[4] D. R. Cox. Corrigenda: The regression analysis of
binary sequences. Journal of the Royal Statistical
Society, 21(1):238, 1959.

[5] A. Cutler, D. R. Cutler, and J. R. Stevens. Random
forests. Springer US, Boston, 2004.

[6] DeVellis and F. Robert. Classical test theory. Medical
Care, 44(3):550-9, December 2006.

[7] H. Drucker, C. J. C. Burges, L. Kaufman, A. J.
Smola, and V. Vapnik. Support vector regression
machines. In Proceedings of the 9th International
Conference on Neural Information Processing
Systems, pages 155-161. MIT Press, December 1996.

[8] Y. H. El Masri, S. Ferrara, P. W. Foltz, and J. A.
Baird. Predicting item difficulty of science national
curriculum tests: The case of key stage 2 assessments.
The Curriculum Journal, 28(1):59-82, November 2017.

[9] X. FAN. Item response theory and classical test
theory: An empirical comparison of their item/person

[17]

[21]

[22]

23]

statistics. Fducational and Psychological Measurement,
58(3):357-381, June 1998.

J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics,
29(5):1189-1232, November 2001.

H. Fu-Yuan, L. Hahn-Ming, C. Tao-Hsing, and

S. Yao-Ting. Automated estimation of item difficulty
for multiple-choice tests: An application of word
embedding techniques. Information Processing &
Management, 54(6):969-984, January 2018.

G. Y. Han and X. Z. Li. An intelligent test paper
generation algorithm based on adjustment of overall
difficulty degrees. Applied Mechanics and Materials,
411-414(APR.):2879-2882, September 2013.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T.
Devanbu. On the naturalness of software. In 34th
International Conference on Software Engineering,
pages 837-847. IEEE Computer Society, June 2012.
P. W. Holland and D. T. Thayer. An alternate
definition of the ets delta scale of item difficulty. ETS
Research Report Series, 1985(2):i-10, December 1985.
P. Hontangas, V. Ponsoda, J. Olea, and S. L. Wise.
The choice of item difficulty in self-adapted testing.
European Journal of Psychological Assessment,
16(1):3-12, 2000.

Z. Huang, Q. Liu, E. Chen, H. Zhao, M. Gao, S. Wei,
Y. Su, and G. Hu. Question difficulty prediction for
READING problems in standard tests. In Proceedings
of the 31th AAAI Conference on Artificial Intelligence,
pages 1352-1359. AAAI Press, February 2017.

P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A
tree-edit-distance algorithm for comparing simple,
closed shapes. In Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, page
696-704. Society for Industrial and Applied
Mathematics, January 2000.

L. Lin, T. Chang, and F. Hsu. Automated prediction
of item difficulty in reading comprehension using long
short-term memory. In International Conference on
Asian Language Processing, pages 132-135. IEEE,
November 2019.

A. Lino, A. Rocha, L. Macedo, and A. Sizo.
Application of clustering-based decision tree approach
in sql query error database. Future generation
computer systems, 93(APR..):392-406, April 2019.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin.
Convolutional neural networks over tree structures for
programming language processing. In Proceedings of
the 80th AAAI Conference on Artificial Intelligence,
pages 1287-1293. AAAT Press, February 2016.

I. Pandarova, T. Schmidt, J. Hartig, A. Boubekki,

R. D. Jones, and U. Brefeld. Predicting the difficulty
of exercise items for dynamic difficulty adaptation in
adaptive language tutoring. Int. J. Artif. Intell. Educ.,
29(3):342-367, 2019.

H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin.
Building program vector representations for deep
learning. In Proceedings of the 8th International
Conference on Knowledge Science, Engineering and
Management, pages 547-553. Springer, October 2015.
Z. Qiu, X. Wu, and W. Fan. Question difficulty
prediction for multiple choice problems in medical

[24]

25]

[26]

27]

(28]

29]

30]

(31]

(32]

exams. In Proceedings of the 28th ACM International
Conference on Information and Knowledge
Management, pages 139-148. ACM, November 2019.
D. E. Rumelhart and J. L. Mcclelland. Parallel
distributed processing. MIT Press, Cambridge, 1986.
M. Sano. Improvements in automated capturing of
psycho-linguistic features in reading assessment text.
In The annual meeting of National Council on
Measurement in Education, pages 1-27. National
Council on Measurement in Education, April 2016.
R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and
C. D. Manning. Dynamic pooling and unfolding
recursive autoencoders for paraphrase detection. In
Proceedings of the 24th International Conference on
Neural Information Processing Systems, pages
801-809. Curran Associates Inc., December 2011.

Y. Susanti, H. Nishikawa, T. Tokunaga, and

O. Hiroyuki. Item difficulty analysis of english
vocabulary questions. In Proceedings of the Sth
International Conference on Computer Supported
Education, page 267-274. SciTePress, April 2016.

T. Taipalus. Teaching tip: A notation for planning
SQL queries. J. Inf. Syst. Educ., 30(3):160-166,
Winter 2019.

W. Tong, F. Wang, Q. Liu, and E. Chen. Data driven
prediction for the difficulty of mathematical items.
Journal of Computer Research and Development,
56(5):1007-1019, May 2019.

J. D. L. TORRE. Dina model and parameter
estimation: A didactic. Journal of Educational and
Behavioral Statistics, 34(1):115-130, March 2009.

Z. Wu, M. Li, Y. Tang, and Q. Liang. Exercise
recommendation based on knowledge concept
prediction. Knowledge-Based Systems, 210:106481,
December 2020.

P. Yu and S. Wang. Deep tree: Sql injection detection
by the power of deep learning.
https://github.com/Aetf/tensorflow-tbcnn/blob/
master/misc/deeptree.pdf, 2017.

APPENDIX

Input layer Hidden layer Output layer

_____________ e
— . L }
Stem | — I | | | : I
[| I
- —) | | l C i |
Solution | — Test || Convolution Y
— ‘I : ‘ I +Pooling : ‘ II
Analysis| —| | L Fal | |
: Word embedding JI I connection | : :
________________________ J —
(a) Structure diagram of C-MIDP model
Input layer Hidden layer Output layer
— 1 [R A
=] | . |
Stem — I | I Lo
N | | . [,
Solution | —| ITest | g || Bi-LST™ B Il
— ‘ I : ‘ : +Pooling I ‘ IIEI:
Analysis | — : I I Fal 1
' Word embedding | | connectionl I I

(b) Structure diagram of R-MIDP model

CINN hidden layer Output
____Inputlayer |I | H, layer
— | | 1 |Convolution| | conﬁgclzltion =7
Stem | — I : I +Pooling I |
I

=5 N I _| |

Solution | — | Test I]
8 Y e 3
Analysis | —| | L o
navsIs I =1 ||| BiLST™ |
3 Word embedding | I +Pooling | I I
____________ L

RNN hidden layer
(c) Structure diagram of H-MIDP model

Figure 10: Structure diagram of C-MIDP, R-MIDP, and H-MIDP model.

