
Building a Reinforcement Learning Environment from
Limited Data to Optimize Teachable Robot Interventions

Tristan Maidment1, Mingzhi Yu2, Nikki Lobczowski3, Adriana Kovashka1,2,
Erin Walker1,2,3, Diane Litman1,2,3,

Timothy Nokes-Malach3

1Intelligent Systems Program, 2Computer Science Department, 3Learning Research and Development Center

University of Pittsburgh
tdm51@pitt.edu

ABSTRACT
Working collaboratively in groups can positively impact per-
formance and student engagement. Intelligent social agents
can provide a source of personalized support for students,
and their benefits likely extend to collaborative settings, but
it is difficult to determine how these agents should interact
with students. Reinforcement learning (RL) offers an op-
portunity for adapting the interactions between the social
agent and the students to better support collaboration and
learning. However, using RL in education with social agents
typically involves training using real students. In this work,
we train an RL agent in a high-quality simulated environ-
ment to learn how to improve students’ collaboration. Data
was collected during a pilot study with dyads of students
who worked together to tutor an intelligent teachable robot.
We explore the process of building an environment from the
data, training a policy, and the impact of the policy on dif-
ferent students, compared to various baselines.

Keywords
Reinforcement learning, teachable robots, balance of partic-
ipation, lexical entrainment

1. INTRODUCTION
Pedagogical agents have demonstrated the potential to pos-
itively impact student learning and motivation in an educa-
tional setting [38, 39]. They are commonly characterized as
either physical robots or virtual agents and provide an extra
opportunity for students to have a social, interactive, and
personalized learning experience. Pedagogical agents can be
scaled by deploying multiple instances for students to use.
While robots are not as easily deployed as virtual agents,
recent research suggests that robots can be more effective
than virtual agents in engaging students [32]. There is in-
creasing interest in understanding how robots might play a
role in formal and informal learning environments [31, 40].

One potential advantage of a robotic agent over a virtual
agent is its ability to physically interact with the students.
Some work has explored the use of robots capable of facial
expressions and found its behavior increased the learning
efficiency of students [51]. It had been observed that the
physical embodiment of a robotic agent resulted in a higher
level of social influence [46]. Other work has explored using
gestures from a humanoid robot to help provide feedback to
students about multiplication table problems [30].

Robots can take on multiple roles in interactions with a
learner, including a tutor, a peer learner, or a tutee [4].
When robots take on the role of tutee, they are often called
teachable robots. There are examples of success with teach-
able robots and a single student [23, 59, 37]. However, there
has been less exploration of the use of teachable robots in a
collaborative learning setting [12], with a student dyad [58].
This is a limitation of prior work since student collaboration
is a powerful tool for improving learning [8, 14, 41]. Collab-
oration among peers in a computer-supported group setting
can be supported by specially designed tasks that encour-
age interaction. [13]. Computer-supported group settings
can encourage collaboration by targeting specific areas and
difficulties of group interaction [57].

There are many ways that pedagogical agents adapt and
personalize to students. One standard method is a statisti-
cal approach, such as multi-armed-bandit [11, 53], but these
approaches have some trade-offs [47]. These systems require
task-specific expert-authored rules; this may not be a sus-
tainable approach for multi-disciplinary use. In contrast, a
data-driven and automated approach is an exciting new way
of understanding how to implement personalization.

Reinforcement learning (RL) is a data-driven approach for
learning a policy for interacting with the students [44]. While
multi-armed bandit approaches identify one action as the
best and only select that action, RL policies use context
about their environment to choose the best action for a spe-
cific moment1. Traditionally, reinforcement learning uses a

1We note that contextual multi-armed bandits exist. How-
ever, they make the assumption that the actions picked have
no effect on the environment (in this case, the students). We
aim to model how the students’ behaviors change over time
in response to the actions selected, and thus a contextual
multi-armed bandit does not fit this problem.

T. Maidment, M. Yu, N. Lobczowski, A. Kovashka, E. Walker, D. Lit-
man, and T. Nokes-Malach. Building a reinforcement learning en-
vironment from limited data to optimize teachable robot interven-
tions. In A. Mitrovic and N. Bosch, editors, Proceedings of the 15th
International Conference on Educational Data Mining, pages 62–
74, Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853129

https://doi.org/10.5281/zenodo.6853129

virtual environment, which is used to train an initial policy,
that is then transferred to the real world.

The RL-controlled robotic tutor described in Park et al.
[44] does not involve the use of a virtual environment to
train, instead training directly on the students. The ex-
periences collected are always using the latest iteration of
the policy, which is continually changing. While real-world
RL ensures that the students interact with the most up-
to-date policy, it actively uses students to test potentially
sub-optimal actions during training, which might lead to
confusion and unnatural interactions. With this approach,
the policy learns through extensively interacting with stu-
dents, requiring many months of training and needs to build
a profile about each student. Real-world RL is also well-
known as being particularly challenging [16].

Learning an RL policy in a virtual environment has two
main benefits over real-world reinforcement learning. A pol-
icy can be trained in just a few hours by simulating millions
of different versions of the environment and their outcomes.
Furthermore, by training solely in a simulation, there is no
need to train a policy through extensive experimentation on
students. However, building such a simulation of the real
world is challenging. One solution is offline reinforcement
learning, in which an algorithm learns from a set of previ-
ously collected data, which obviates the need for a simulated
virtual environment. Unfortunately, offline reinforcement
learning requires an extensive collection of saved experience
data [17], which is infeasible to collect from students.

We, therefore, assume a hybrid approach, using the set of
previously collected data to model and build a data-driven
simulation, effectively allowing for online reinforcement learn-
ing in an offline reinforcement learning setting. We explore
the process of building a high-quality data-driven virtual
environment, the difficulties in modeling the students, and
ensuring environmental continuity.

We aim to see how a pedagogical robot can assist students
in a group setting. The humanoid robot interacts with two
students concurrently, as a social learning companion. We
attempt to use Reinforcement Learning to aid in the de-
cisions made by the teachable robot, to improve student
learning outcomes and motivation by supporting students
in a personalized manner.

The robot, named Emma, interacts with students via natu-
ral language. As the students work out the multi-step prob-
lems, they explain their solutions to Emma. Emma responds
to the students’ solutions, clarifying the purpose of the most
recent step or occasionally asking thought-provoking follow-
up questions. These actions are combined with gestures to
make interacting with the robot feel more natural.

Student interactions with Emma were collected using an
expert-authored natural language dialogue script. We built
a simulation describing the interactions between the stu-
dents and modeled the different types of interactions those
students had with Emma. The simulation uses collected
data to represent various types of student groups.

Extensive testing of the policies trained and tested in the

simulation demonstrates that RL methods outperform the
dialogue script baseline in terms of collaboration metrics.
Furthermore, in our simulation, we find that the RL methods
improve collaboration among all student groups, unlike our
baseline method, which fails to improve collaboration for
some groups. Our contributions include:

• A hybrid approach to perform offline RL in a robot-
student setting using online RL trained in a virtual
environment.

• A novel method for building a virtual environment
from previously collected data, to simulate student col-
laboration.

• An early exploration of applying RL for a teachable
robotic agent in a collaborative setting with students.

2. BACKGROUND
Reinforcement Learning (RL) has provided recent break-
throughs in solving complex machine learning tasks, high-
lighted by applications in self-driving vehicles [29], super-
human performance in competitive board and video games
[54, 55], and advanced autonomous robotic control [1, 42].
RL allows an agent or policy to sequentially select actions
to achieve some (potentially non-differentiable) goal.

Reinforcement Learning differs from the more traditional
supervised learning, where a classifier is exposed to a set of
labeled examples, with the goal of correctly classifying an
unseen example. There is often no label or ground truth for
what actions are right or wrong for an RL agent to select
in the settings where reinforcement learning is used. Ad-
ditionally, each action may have cascading effects on the
environment’s future, and similar actions may have varying
effects that depend on the current state of the environment.

The policy in RL is a function, typically modeled with a
neural network, that selects actions to navigate some envi-
ronment given information about the current state of the
environment and a reward that grades the actions. In the
described reinforcement learning scenarios above, such as
self-driving, competitive gaming, and autonomous robots,
an agent is typically trained from scratch in a simulated en-
vironment. This policy, trained in the simulation, is then
transferred to the real world.

For example, consider the case of autonomous robots. A
realistic virtual environment, like those created with video
game engines, is used, with an accurate model of the robot
and the various motors involved in its control [7]. The policy
can then control the motors of the simulated robot to try
and attain some reward or goal. Transferring a policy from
a simulated space to the real world is easier when the simu-
lation is similar to the real world, emphasizing the quality of
the simulated environment to decrease the domain gap [64].

Constructing an environment requires a deep understand-
ing of how actions cause the environment to respond. In
some settings, such as competitive chess playing, this is triv-
ial: strict rules define how the pieces move and there is no
stochasticity that affects the outcome of each action. In the
case of self-driving, the actions and how the environment
responds have a measure of stochasticity. While turning the

wheel to the left typically turns the vehicle to the left, fea-
tures of the environment, e.g. a patch of ice on the road,
can affect the car’s trajectory in a unintended manner.

In our setting, the effects of a policy’s actions on the sim-
ulated environment are not easily defined. For example,
similar actions performed by the policy may vary in their
outcome due to differences between students. Even when
asking two different students the exact same question, their
responses will most likely differ. The environment, there-
fore, must use the collected data to model many potential
outcomes for actions taken.

2.1 Education and Reinforcement Learning
Reinforcement learning in education has been a topic of ex-
ploration since the early 1960s [24], specifically for the se-
quencing of instructional activities. Various approaches have
been built on this concept over the years [3, 33, 11]. A sur-
vey performed by Doroudi et al. found that 21 of 36 studies
of RL-sequenced instructional policies determined that the
RL policy outperformed baseline policies [15].

Singla et al. present a recent survey of the use of RL in
education [56], which identifies five main research directions
of RL in education. Singla found RL was used for: person-
alizing curriculums [15, 48], personalizing hints/scaffolding/
quizzing [2, 62, 45], A/B testing educational methods [34,
63, 49], modeling human students [22, 60, 26], and content
generation [28, 27, 20]. Our work combines personalizing
constructive feedback and modeling human students. In our
setting, where we attempt to maximize collaboration be-
tween students, we model the students’ interactions regard-
ing the feedback and hints provided.

2.2 Emma: The Teachable Robot
Our study context involves Emma, a humanoid NAO robot
who interacts with a pair of students tasked to solve multi-
ple ratio word problems, using natural language and basic
gesture. NAO robots are commonly used and have been ef-
fective in social robot student learning settings [25]. The stu-
dents work together to solve the problem and teach the so-
lution to Emma. This collaboration has two benefits. First,
we can obtain more data regarding student thinking, as they
must vocalize more between themselves, compared to when
working alone. Second, there are known benefits for student
collaboration for improving student learning [8, 14].

During a study session, each question is shown to the pair of
students, who need to solve the problem and then describe
to Emma how to calculate the solution. The problems re-
quire multiple steps to solve, and the students need to convey
each step to Emma. If one of the steps is wrong, Emma is
designed to either ask a question to guide the students in
the right direction or make a statement regarding the stu-
dents’ response. An example interaction between students
and Emma is shown below:

1. Emma: So I know that I need 66 hours worth of batter-
ies and I know how much time I need for one battery.

2. Student B: So we can tell her 66 hours divided by 3
and three quarter hours.

3. Student A: Yeah, that’s right

4. Student B: So you’re going to divide 66 hours by 3 and
three quarter hours.

5. Emma: Since we need to figure out what times 3 and
three quarters is 66. So then 66 divided by 3 and three
quarters is 17.6 Is that it?

6. Student B: Yes, that is correct.
7. Emma: I need 18 batteries because I need more than

17. I will put the answer as 18.

Students use an in-house web interface to see the math prob-
lem that the robot was solving, which provides controls to
advance to the next step, a button to “push to speak” with
the robot, and to see what the robot most recently said (as a
backup to hearing it over the video chat service). The video
feeds from each session (group) were recorded, along with
the audio from each participant. The audio feeds for each
participant were transcribed using IBM Watson’s Speech-
to-Text system, with word timings maintained.

Our work follows two theoretical frameworks for identifying
productive collaboration. First, the interactive-constructive-
active-passive (ICAP) framework of cognitive engagement
[10] hypothesizes that students collaborate best when ac-
tively interacting, taking turns to contribute constructively
to the task at hand. In our environment, this would in-
volve the students both working to teach Emma, partici-
pating relatively equally and engaging in dialogue with each
other rather than pursuing independent parallel work. Sec-
ond, we draw on the Interactive Alignment Model (IAM),
which postulates that in order for two collaborators to align
their understanding, they must align their communication
[19]. One indication of this alignment is lexical entrainment,
which is indeed related to student success in group learning
settings [18]. Lexical entrainment measures the similarity
between the language used by speakers in a group over time
[6], and might be a sign of students converging to a shared
mental model [18], which can lead to successful group per-
formance [61]. We are interested in exploring both balance
of participation and lexical entrainment as rewards in an RL
environment.

2.3 Data Corpus
Due to the COVID-19 pandemic, sessions were held using
an online video-chat service to connect the students with
Emma. For our pilot studies, we collected data from twenty-
eight undergraduate students who interacted with the robot
in groups of two (i.e., 14 dyadic sessions; 11% Male, 89%
Female; 32% Asian, 14% Black, 46% White, 7% no response;
Mean age = 19.4 years, SD = 1.19)2. Each session lasted
approximately 30 minutes.

In addition, students were individually tested and surveyed
before and after collaboratively interacting with the robot.
These assessments were used to determine pre-existing (i.e.,
pre-collaboration) factors that may impact mid-collaboration
interactions and participation and post collaboration learn-
ing outcomes. The pre-collaboration measures included: mo-
tivation (i.e., interest, utility, efficacy, attainment, and cost),
goal orientations (i.e., mastery approach, performance ap-
proach, performance-avoidance), attitudes towards robots

2This data is part of a more extensive study that includes
another condition in which individuals taught Emma. For
the purposes of the current work, we focus on the dyads.

and collaboration (i.e., work quality, peer support, inter-
dependence), affinity for technology, and prior knowledge
(i.e., pretest on ratios). The post-collaboration measures in-
cluded ratings of rapport with their partner and Emma (i.e.,
general, positivity, or attentiveness), perceptions of Emma
(i.e., anthropomorphism, likeability, animacy, and intelli-
gence) [36, 35], and posttest scores (i.e., counterbalanced
with pretest). Given the need to consider the group as the
unit of analysis, we used the dyads’ average measures for our
analyses, with higher averages representing a larger presence
of each construct. In total, 27 metrics were collected from
the surveys and assessments. This study was approved by
the Institutional Review Board.

3. METHODOLOGY
We construct our simulated environment using real-world
data collected from interactions with real students. The
environment models the conversational interactions between
all participants and uses probabilistic methods to capture
the various sources of stochasticity. This allows us to model
potential outcomes that could occur when Emma interacts
with the students, even when such an interaction was not
captured in the pilot study. We then train a set of three RL
algorithms using the environment and compare the results
of each algorithm with a series of baselines.

3.1 Data and Setup
Building an end-to-end RL environment is highly task-specific
but can be generally simplified into two steps. We first
extract the data gathered during the student interaction
sessions. Next, we use the extracted data to model stu-
dent interaction and observations in the environment in con-
junction with various probabilistic sequence modeling tech-
niques. This process involves identifying reward metrics and
modeling how the environment responds to stimuli.

3.1.1 Student Participation Metrics
Our data-driven simulation uses various metrics captured
during the data collection studies. Specifically, we capture
the change in student participation metrics after Emma per-
forms an action. We observe how these metrics change
throughout the study as the students interact with each
other and the robot. We use metrics that approximate
the balance of interactive participation (following the ICAP
framework) and lexical entrainment between the students.
For our environment, we use Measure of Participation and
Word Co-Occurrence metrics, respectively.

The text transcripts were tokenized at the sentence level
using NLTK [5]. The Measure of Participation and Word
Co-Occurrence were calculated as shown below, and asso-
ciated with each sentence. This methodology allows us to
estimate the balance of participation and lexical entrainment
at intermediate points of the session.

Measure of Participation (MoP) MoP indicates the balance
of group participation as proposed by Paletz and Schunn
[43]. MoP computes the average level of involvement in the
group, scaled between 0 (equal) and 1 (dominated) partici-
pation. MoP is defined in Equation 1, where n̄ is the average
number of people during the session, N is the max number
of people present (always 2 in our setting), M is the total

number of utterances said in the session, nk is the number
of people present on utterance K (always 2), i is the index
representing a student, and mi is the number of utterances
where person i is present.

Ps = n̄2 ∗
∑N

i=1 |
∑M

K=1 f(nk, i,K)|
2(n̄− 1)

∑N
i=1 mi

(1)

f(nk, i,K) =
{nk − 1

nk
=

1

2
if i is speaking during utt. K

=
{−1

nk
= −1

2
if i is silent during utt. K

For example, given two utterances and one participant speaks
during each, MOP=4*(|1/2-1/2|+|-1/2+1/2|)/[2*(2+2)] =0.
If only the first participant speaks during each utterance,
MOP=4*(|1/2+1/2|+|-1/2-1/2|)/[2*(2+2)]=4*2/8=1.

This metric is invariant to changes in group size and sup-
ports groups of different sizes. In our RL environment, since
the agent’s goal is to maximize the reward, we use 1−Ps for
the feedback. This, in turn, rewards the agent for achieving
equal participation.

Word Co-Occurrence (WCO) WCO provides a simple esti-
mate of lexical entrainment. WCO is defined as the number
of lemmas common between both participants. Lemmatiza-
tion was performed using WordNet in NLTK. To get WCO
in the same range as MoP, the value is normalized between
0 and 1 by dividing by the number of unique words said in
the session. The size of the shared set of words increases
only if both participants are contributing and talking about
similar material.

3.2 Overview of the RL Environment
A reinforcement learning environment requires four essential
components. The first is the set of potential actions A that
the agent can take at each step. The second is the set of
states that the environment can take S. The last is the set
of rewards R that the agent will be attempting to maximize.

The first step to building an environment is defining each
of the required components of the environment and at what
level of abstraction these components will be represented.
We define how the environment responds when the robot
interacts with it, the information provided by the environ-
ment to the robot, and the options the robot can take at
each step.

3.2.1 States
The environment state is used to describe to the RL policy
what is happening at a specific point in time. In this case,
we model the environment state as a representation of the
sentence said directly to Emma by one of the students - this
is what Emma observes and uses to select her next action.
For example, a student may tell Emma, “If you use 3/4 of
your battery in 1 hour, you multiply that by 3 to figure out
how much you use in 3 hours”.

Figure 1: A high-level overview of the different parts of the environment. Emma’s actions each use a Markov chain, trained
using collected data, to transition between states. The current state of the environment conditions the state transition. States
are represented as sentence embeddings.

3.2.2 Actions
In the case of determining the action space of the environ-
ment, we look at what Emma was capable of during the data
collection sessions. As a proof of concept for our reinforce-
ment learning approach, we simplify the action space to in-
clude the two general responses – questions and statements.
For example, one response from Emma is this question-based
reply: “So if I have forty-five hot dogs and I now know how
much it costs for one, can I figure out how much it costs for
forty-five hot dogs by multiplying?”. For the statement-based
reply for the same problem, she says, “With the unit rate, I
know it costs two dollars and fifteen cents for each hot dog. I
don’t remember what I am supposed to do with that, though.”
As we can see, while the responses convey similar informa-
tion about the problem, they could potentially invoke very
different responses in the student participants.

3.2.3 State Transitions
In addition to defining the states and actions of the envi-
ronment, we need to define how the actions cause the states
to transition from one to another. Our state transitions de-
scribe how the students react to Emma’s responses. Between
Emma’s actions, there are a series of interactions between
the students, where they decide what to say to Emma or
work on the problem solution. We model the progression of
these inter-student interactions probabilistically to describe
how the students’ conversations lead to different interactions
with Emma.

3.2.4 Reward
The purpose of the reward is to coerce the policy towards
performing the actions needed to achieve the required out-
come. There are broadly two ways to reward the agent: at
constant intervals throughout a session or once at the end,
but the latter sparse option is more complex than frequent
rewards [21]. Our student participation metrics (Sec. 3.1.1),
derived from learning theory hypotheses, can be calculated
at intermediate points during the session. To keep the envi-
ronment simple, we give an intermediate reward after each
of the robot’s actions. The value of the reward is the sum of
the student participation metrics associated with the current
state (MoP + WCO), as observed during data collection.

3.3 Simulation
Now that we have presented a high-level view of the envi-
ronment that was designed, we will delve into the technical

Figure 2: An example of the interactions between the stu-
dents and Emma. The black blocks signify a sentence said by
a student to another student, the orange blocks a sentence
said to Emma, and blue blocks a response to the students.

details about how it is implemented. In the sections below,
we highlight three difficulties in implementing a data-driven
environment from previously collected data. First, the con-
versations between the students can vary significantly but
need to be accurately modeled. Second, with data collection
limits, we must handle missing information when simulating
the outcome of actions. Third, the simulation must provide
a reward to provide feedback for the selected actions.

3.3.1 Simulation Design
An overview of the environment is shown in Figure 1. Emma
is capable of two responses, to either reply with a question or
a statement. Each action has a unique Markov chain, which
generates a sequence of simulated interactions between stu-
dents. The generation of the simulated interactions is de-
pendent on the current state of the environment and is used
to generate the subsequent state. This subsequent state is
associated with a reward for Emma.

In Figure 2, we depict an example of the structure of the
collected data, with time represented on the x-axis. Here,
the black blocks signify a sentence said by a student to an-
other student, the orange blocks represent a sentence said to
Emma, and the blue blocks indicate Emma’s response to the
students. The students say four sentences among themselves
before one student says a sentence that is an input to Emma.
The 6th block is the reply Emma chooses for the students.
The students talk between themselves for three sentences
before interacting with Emma again. Emma responds, the
students continue talking, and the cycle repeats.

We can see that the interactions between the students have
a structured turn-taking nature, which follows a repeated

pattern: 1. students converse between themselves, 2. stu-
dents provide an input to Emma, 3. Emma replies to the
student’s input. Using this general structure of interaction,
we can define the necessary portions of the environment.
The state of the environment, as observed by the RL policy,
is the sentence that is said directly to Emma. The actions in
the environment are the replies from Emma to the students.
The rewards of the environment are the changes in the lev-
els of the Measure of Participation and Word Co-Occurrence
scores that occur as the students discuss. The rewards are
provided at the end of each sentence. The state transitions
occur due to Emma’s responses (actions) to the students -
this invokes conversation between the students, resulting in
a specific response from the student (state).

3.3.2 State Space (S)
The first step in building the environment is setting a level of
abstraction to represent the states, S. This step is important
for modeling the environment input to the RL agent and
is necessary in describing how the environment transitions
from one state to the next. The interactions between the
students and Emma can be modeled using the input sentence
tokens, which are the orange blocks in Figure 2.

The tokens are encoded using Google’s pre-trained Univer-
sal Sentence Encoder [9]. The Universal Sentence Encoder
provides embedding vectors of each token, for the tokens
said between the students and the tokens said as input to
Emma. Embedding vectors are high-dimensional represen-
tations in a semantic space. The embeddings of semantically
similar tokens will have a higher cosine similarity score than
semantically different tokens.

Let p ∈ P be a sentence in the set of sentence tokens said
as input to Emma, collected during data collection, and
encode(x) converts a token to a 512-dimensional embedding
with the Universal Sentence Encoder. A state in the envi-
ronment is defined as s ∈ S, where s = encode(p), ∀p ∈ P .

3.3.3 Action Space (A)
In Figure 2, Emma’s “actions” are her natural language
replies shown as the blue blocks. For simplicity, Emma has
the same set of actions that can be taken at each step. The
replies to the students are roughly split into two categories:
question-based replies and statement-based replies. An ac-
tion at,p ∈ A at timestep t has an indicator, p, to describe
the type of action taken. p can be one of (q, s), i.e. Emma
can reply with a question at,q or a statement at,s.

3.3.4 State Transitions
One vital mechanism for an environment is the state-action
transition. The state-action transition defines for some state
st and action at at time step t, the next state st+1 emitted
by the environment, at time step t + 1. Referring again
to Figure 2 (black-colored sentence tokens), we see that an
action is followed by dialogue between students, which takes
place when transitioning between states.

We model this state-action transition using the Markov chain,
a probabilistic sequence model. We choose to use the Markov
chain for this simulation due to its simplicity and ability to
model time-series data. A Markov chain is a simple model

where the probability of the nth event et,n at time t, is con-
ditioned and only dependent on the previous event et,n−1.
Here, each event is a sentence uttered by a student, and
the chain represents the transitions of the conversation had
between the students before they converse with Emma.

To build the Markov chain, we must simplify the events from
the continuous space (sentence embeddings) to a countable
space. With semantically similar sentences existing close
together in the embedding space, unsupervised clustering
methods allow for an intelligent way to represent the sen-
tence tokens in a countable space. The embeddings for the
transitional sentences are assigned to clusters in an unsuper-
vised manner via KMeans clustering. Each sentence is as-
signed and represented by a cluster c via this method. The
set of clusters C, c ∈ C is the countable space for the Markov
chain. We denote here a function ct,n = k(et,n) which for
event embedding et,n, returns the cluster identifier of each
embedding, ct,n. For simplicity, we extend k(x) to support
operations on a sequence of events, which it converts to a
sequence of cluster identifiers in the same order.

The state-action transition sequences collected from the pi-
lot study are used to build the chains. For each state-
action transition sequence, we store the action at, the start-
ing state st, the transitional sequence of sentence embed-
dings Et = et,1, et,2..., et,n and ensuing state st+1. The
transitional sentences, and ensuing state are combined as
a sequence of embeddings Êt = et,1, ..., et,n, st+1. This se-
quence of embeddings is then transformed to be represented
in terms of each sentence’s cluster identifier, Ht = k(Êt).
We also define another function, j(c), which randomly sam-
ples and returns a sentence (its embedding) from cluster c.
These sequences of cluster identifiers are used to build a
Markov chain. A separate Markov chain is built for each
action to separate the state transitions of the two types of
actions. These action-specific Markov chains are mq and
ms, respectively.

State transitions are modeled using a conditional genera-
tion of the Markov chains. Sequences generated by Markov
chains are typically initialized randomly by selecting a ran-
dom event as the starting point. Conditional generation
involves selecting a specific event as a starting point, which
affects the subsequent generation of events in a cascading
manner. This conditioning ensures the actions selected by
Emma in the virtual environment affect the following simu-
lated interactions between the students. To describe con-
ditional generation, we provide the example mq(et,1), to
represent the conditional generation of the next state us-
ing the question Markov chain. The output of mq(et,1), is
a sequence of cluster identifiers Ht, that starts with cluster
identifier k(et,1).

Mappings, rs,a = [(st, at) → et,1], are extracted from the
recorded state-action transitions, to be used for the data-
driven conditional generation. For an observed state st with
action at, the Markov chain conditionally generates with
starting point k(et,1), and ends with some cluster identifier
ct,n. For example, we generate the following sequence of
events, Et = et,1, et,2..., et,n, and use the last event to obtain
our sampled cluster identifier, ct,n = k(et,n). This cluster is
used to sample next state, st+1 = j(ct,n). We denote the set

Figure 3: A scenario where an action’s outcome is not con-
tained in the collected data. To approximate the effect of the
action, we substitute in a similar state-action transition from
the collected data in a probabilistic manner.

of recorded state-action transition mappings R.

State-Action Map Substitution The data-driven mappings,
rs,a ∈ R, are a straightforward way to conditionally gener-
ate the next state, for some observed set of state and action,
(st, at). However, consider the example in Figure 3. Dur-
ing data collection, we observed and recorded the mapping
(st, at,q) → et,1, shown in the top row. However, we may,
during the simulation, want to test what happens for the
state-action set (st, at,s), for which no recorded mapping
exists. With no existing mapping, we need to find a substi-
tute - a recorded mapping with a state that is similar to st,
that instead contains action at,s.

We propose to find a substitute mapping by filtering the set
of all recorded state-action transition mappings R. Within
R, we filter and keep recorded mappings that contain the
desired action, at,s in this example. For each mapping in the
filtered set, we calculate the cosine similarity score simt,m =
cos(st, sm) between the current state st of the environment,
and the state sm stored in the mapping. This similarity
score is used to assign a probability for being selected as
the substitute mapping to each mapping in the filtered set.
The probabilities are proportional to the similarity score so
that the most similar states have the highest probability of
being selected. The filtered set is then sampled using the
probabilities to find a new mapping, with a similar state
sm, the selected action at,s, and a new substitute event for
conditional generation e′t,1.

3.3.5 Reward (R)
The formulation of the environment reward is simple since
each entry in the Markov chain has an associated change in
WCO and MoP that was observed during data collection.
Therefore, during a state transition, we aggregate the WCO
and MoP across the sequence generated by the Markov chain
while generating the next step. The sum of the rewards over
the chain is the reward provided for the action.

As a reminder, each entry in the chain is a specific cluster
identifier in which various sentences reside. We use the clus-
ter’s mean reward (using all the sentences in the cluster).
As an example, if Emma selects a question as her action,
we sample the Markov chain, mq(et,1), to generate the next
state st+1. This generates the chain: Et = et,1, ..., et,n where
st+1 = j(k(et,n)). Each entry, et,m, in the chain has an as-
sociated reward (WCO + MoP). Let rt,m be the average
reward for cluster ct,m, where ct,m = k(et,m). To get an
action’s full reward, we compute the sum of the associated
rewards along the sampled chain Rt =

∑n
m=1 rt,m.

Time Constraints To ensure that the environment does not
provide rewards that bias policies towards selecting actions
that have longer Markov chains, we add a time limit to how
long an environment can run. The sentences said during
data collection are timestamped, which describes how much
time was required to say each sentence. Throughout the
simulation, a timer is kept, and if a sentence is sampled by
the Markov chain, the timer increments by the amount of
time required to say the sentence, using the word timings
extracted from the automated Speech-to-Text system. The
time limit is a 30-minute cutoff, which mirrors the cap to
session length that was in place during data collection. Any
reward obtained after the cutoff is excluded.

3.3.6 Additional Implementation Details
Random Student Initialization The environment is designed
to create a policy that is capable of handling different types
of learners, different styles of student participation, and dif-
ferent levels of student interaction with Emma. To emulate
this, during the environment initialization, Emma is blindly
assigned to a random student group (one of the 14 from the
pilot study); the policy is not provided information about
which group was selected. Emma interacts with a version of
the environment that uses state, state transition, and reward
parameters collected from only the selected student group
during that session. For subsequent sessions in the simula-
tion, the student group is blindly and randomly re-assigned,
ensuring that the learned policy can generalize to multiple
types of students. These parameters differ per group, mean-
ing the environments respond quite differently, depending
on the current student group being represented.

Environment Tuning The first step, before training the Rein-
forcement Learning policy, is to make sure that the environ-
ment works as intended given the assumptions we used to
model the states, actions, rewards, and state transitions. To
do so, we built a deterministic policy for each group, which
selects actions exactly as were selected by Emma in the pilot
study - we call this deterministic policy the mirror policy.
To be specific, in the simulation, she only picks actions that
have an observed state-action transition, so no action sub-
stitution is used. While there is some stochasticity in the
environment that comes from sampling the Markov chains,
the environment should respond, on average, similarly to the
outcomes that were observed during the pilot study.

To calculate the environment similarity, we directly com-
pare the mirror policy’s action distribution and the action
distribution of the studies during data collection. This com-
parison is made by comparing the ratio of mirror policy’s
action distribution and the study action distribution, using
mean squared error (MSE). We call this metric the action
distribution difference. A low action distribution difference
indicates that the environment reacts as expected.

Policy Tuning We tested three standard methods for rein-
forcement learning, Deep Q-Network (DQN), Proximal Pol-
icy Optimization (PPO), and Advantage-Actor Critic (A2C).
DQN is a Q-learning method where a neural network learns
the value of actions for a particular state. PPO is a policy-
gradient method, which estimates the policy gradients di-
rectly with respect to the reward. A2C is an actor-critic
method, where the critic learns the value of a state, and

Figure 4: The environment’s action distribution differ-
ence varied with the k-value for the sentence KMeans clus-
tering. After about k = 400, we see little change.

an actor to learn how to select actions. These policies are
implemented using the Stable Baselines package [50].

4. RESULTS
Comparing RL Policy to Observed DecisionsOnce we identify
the best RL policy, we compare the actions and rewards it
achieves to those of the deterministic policy used during data
collection, as a sanity check for our environment.

Comparing RL Policy to Random Baseline To see the perfor-
mance of the learned policy against an unbiased policy, we
compare the former against a random policy, which selects
actions with equal probability. Consistently outperforming a
random policy demonstrates that the learned policy learned
to navigate the environment and correctly select actions.

Group Equality The amplitude of a policy’s reward in the
environment is not the only goal for a successful policy. On
top of maximizing the reward, we look to ensure group equal-
ity, i.e. positive reward across all groups - to verify that the
learned policy helps different types of students.

Correlations of RL Policy Gains with Student Survey and
Test Metrics The survey and assessment measures were not
used in the environment design or parameters but could im-
pact, or be impacted by, our RL metrics. Thus, we used the
Pearson correlation coefficient to determine which dyadic
factors (i.e., from the average survey and assessments met-
rics) were most highly associated with our RL Policy’s im-
provement in rewards. Doing so provides insight into how
pre-existing factors connect to rewards during interactions
with the robot and how these interactions connect to post-
collaboration perceptions and assessments.

4.1 Evaluating the Environment
The mirror policy is used to tune the environment, and en-
sure that the environment works as expected. The number
of clusters used for the sentence representation affects the
level of stochasticity in the environment. This stochasticity
is present in the language generated via the Markov Chains.
An insufficient amount of clusters can result in a loss of the
structure in the environment. With less clusters, the lan-
guage generation becomes more random, and fails to capture
the information from the pilot study. An excessive amount
of clusters can cause the environment to respond only as was

Figure 5: The action distributions of the various policies. In
the simulated environment, the mirror policy acts similarly
to the actions observed in the pilot study. The RL policies all
tend to prefer statements.

observed during the pilot study, generating nearly-identical
language to what was observed.

To determine the correct number of clusters, the mirror pol-
icy’s action distribution was evaluated while varying the
number of clusters compared to the real distribution, as
shown in Figure 4. Under 100 clusters, we see a large differ-
ence in how the environment responds to the mirror policy’s
actions compared to the observed distribution. However, as
we increase k, we see a decrease in the difference, with little
improvement when k ≥ 400. For that reason, we set k = 400
for all further experiments to ensure that there is some vari-
ability in the environment without deviating from what was
observed in data collection.

In Figure 5, we display the action distribution of the mirror
policy in the simulated environment compared to the ob-
served real-world data. We can see the mirror policy acts
quite similarly to what was observed in the real world – dif-
ferences in actions come from the various sources of stochas-
ticity in the environment.

4.2 Evaluating the Policy
Questions are used more often than statements in both the
pilot study and the mirror policy, but all RL policies flip
the action distribution around - preferring statements over
questions, indicating that there may be deficiencies in the
deterministic policy used for the pilot study.

Tuning and validating the policy were done via two types
of cross-validation. We tested the environment using tradi-
tional 5-fold cross-validation, where the 14 groups are sep-
arated into five subsets or folds, and each fold is used as
a testing set. This methodology models the scenario where
Emma is trained then evaluated with multiple unseen groups
of students. This setting aims to demonstrate that learned
policies provide benefit to more than one group.

To further validate policies learned in the environment, we
also test leave-one-out cross-validation, where each student
group is used as a testing set. In this scenario, we model the
event where Emma is trained in a simulated environment,
then evaluated with a single unseen group of students. This
setting is to demonstrate that learned policies provide ben-
efit to all groups.

Figure 6: The difference in the performance of the RL policies
and the mirror policy, per fold in K-fold cross-validation.

We compared various learning rates in both scenarios and
three RL policy optimization algorithms, PPO, DQN, and
A2C. In total, 7087 different policies were trained and tested.
Cross-validation takes 75W of power and runs for approx-
imately 35 minutes. Training was performed on 2 Nvidia
GTX 1080ti ($699 MSRP each). Data collection was per-
formed with one NAO Robot ($12990 MSRP).

4.2.1 RL Method Performance Differences
We refer to the difference in reward between an RL method
and the mirror policy baseline as the Magnitude of Reward.
In 5-fold cross-validation (Figure 6), the mirror policy out-
performed the median A2C and DQN policies, as demon-
strated by the slightly negative magnitude of reward. A2C’s
magnitude of reward distribution is roughly normal, while
DQN’s is negatively skewed. The median PPO policy out-
performed the mirror policy, with a positive magnitude of
reward. Furthermore, the PPO magnitude of reward distri-
bution is positively skewed. PPO has an average magnitude
of reward of 0.20, while A2C and DQN both have an average
magnitude of reward of −0.11 and −0.10, respectively.

In leave-one-out cross-validation (Figure 7), we see that the
median magnitude of rewards for all RL policies is slightly
negative. However, while A2C is negatively skewed, DQN is
positively skewed - the average DQN magnitude of reward
is slightly positive. The mean rewards of A2C, DQN, and
PPO are −0.03, 0.06, and 0.02, respectively. In both settings
a higher learning rate resulted in an increase in the policy’s
reward on average.

A2C under-performed the mirror policy in both cross-validation
settings, indicating that it does not work well in this envi-
ronment. While DQN outperformed PPO in leave-one-out
cross-validation, it under-performed the mirror policy in 5-
fold cross-validation, indicating a lack of stability between
settings. PPO outperformed the mirror policy in both set-
tings, demonstrating positive and stable performance.

4.2.2 Gains for Individual Groups
The magnitude of reward of the policy is not the only goal of
using an RL policy. We also aim to help improve groups that
performed poorly during the diagnostic testing so that there
is equal performance and improvement among all groups.
Gains among low-performing groups mean that the policy
may potentially aid students who learn in non-standard ways.

Figure 7: The difference in the performance of the RL policies
and the mirror policy in leave-one-out cross-validation.

Figure 8: Average reward of the PPO RL policy in K-fold
cross-validation, compared to the mirror policy and the ran-
dom policy. The learned policies have a more consistent and
positive average final reward.

Figure 8 shows that the learned PPO RL policies achieve a
consistent and positive average final reward in cross-validation
among all folds. Here, the mirror policy achieves very incon-
sistent results among folds and a negative reward for Fold 3.
The random-action baseline outperforms the mirror policy
here but achieves approximately 0 reward for Fold 3.

We see similar trends in leave-one-out cross-validation (Fig-
ure 9) but slightly more variation. Here, the PPO RL poli-
cies again achieve a positive reward, while the mirror policy
and random-action baseline do not. The mirror policy and
random baseline both achieved a negative reward for Fold 7,
and the random baseline achieved a slightly negative reward
for Fold 2. We note that Fold 2 generally did not respond sig-
nificantly to any method, but the PPO RL policies achieved
the highest average reward.

4.3 Correlations with Diagnostic Metrics
To determine the connections of our simulated environment
to different dyadic factors, we calculated correlations be-
tween the Magnitude of Reward and metrics obtained by
the questionnaire and assessments administered to students.
These correlations may reveal which students are most pos-
itively affected by the boost in MoP and WCO that the
learned policies can achieve in the simulated environment.
We select the three diagnostic metrics with the highest Pear-
son correlation coefficients (in amplitude).

First, the large positive Pearson correlation (+0.672, P =

Figure 9: Average reward of the PPO RL policy in the leave-
one-out cross-validation setting compared the random policy
and mirror policy. The learned policies have a consistently
positive average final reward.

.008) between the dyads’ average self-reported values for
quality of work in groups and the Magnitude of Reward
suggests that students who more highly value the quality of
work in collaborative settings may have benefited more from
the actions of the learned policies. We would expect to see
this correlation, given the overlapping nature of the group-
work quality construct and key components of Magnitude of
Reward (i.e., balance of participation and entrainment).

Furthermore, the high negative correlation between the dyads’
average pretest scores (−0.634, P = .015) and the Magni-
tude of Reward of the policy may suggest that the groups
with lower prior knowledge before the activity would likely
have benefited more (i.e., better entrainment and balance
of participation) from a policy that was trained in the rein-
forcement learning environment. Similarly, the high correla-
tion between Magnitude of Reward and the dyadic-average
understanding of ratios at posttest (−0.781, P = .001) im-
plies that the groups who performed worse, on average,
than their counterparts could have been benefited by the
improved balance of participation and word co-occurrence
from the reinforcement learning policies.

5. DISCUSSION AND CONCLUSION
Our tests show that our environment exhibits a similar be-
havior under the mirror policy as was observed during the
pilot study, in terms of action distribution (Figure 5). No-
tably, the policies learned in the environment differ signifi-
cantly from the pilot study and the mirror policy, heavily fa-
voring statements over questions, opposite to the rule-based
approach used for the mirror policy. One explanation is that
a question occasionally resulted in a direct response from the
student who originally spoke to Emma. We observed that
statements more often resulted in the students reconvening
and then discussing how to reply to Emma.

This assignment of actions may have its merits, based on
its improvements in both the amplitude and consistency of
environment reward. In both forms of cross-validation, the
policies trained with PPO outperform the mirror policy. We
note that other RL methods had inconsistent performance
across different types of cross-validation. In the Proximal
Policy Optimization algorithm paper [52], the author finds
a improvement in performance and sample efficiency using

PPO over DQN and A2C. In our setting, we are limited
in our number of data-driven samples, and therefore PPO’s
strong performance may be from this data efficiency.

When looking at the results of the individual folds for both
forms of cross-validation, we see that the PPO RL policies
consistently achieve a net positive reward. In 5-fold cross-
validation, RL’s rewards are consistent across folds, while
the mirror policy and random baselines were inconsistent
and even resulted in a significant decrease in one fold’s av-
erage reward. This trend extends to leave-one-out cross-
validation, where the PPO RL policies again achieved a pos-
itive reward on all folds. From our testing, we believe that
the PPO RL policies may benefit all students and demon-
strate performance equity among groups.

These findings are further highlighted by the connections
between the learned policies’ Magnitude of Reward and the
metrics obtained by the questionnaire and students’ diag-
nostic tests. The Pearson correlations may reveal which stu-
dents are most positively affected by the additional MoP and
WCO that the learned policies can achieve in the simulated
environment. The actions of the learned policies may help
the most for students who care highly about their quality of
work in a group setting and may provide the most benefit
for underperforming students. Further empirical investiga-
tion into these links might reveal new understanding of how
interventions under the ICAP and IAM frameworks interact
with individual differences to improve collaboration.

However, the policies trained in this environment have not
yet been validated in a real-world setting with students.
Additionally, the pilot study was performed using a hand-
crafted and deterministic script for interacting with the stu-
dents. The data collected by the script’s actions may have
biases, which could affect the accuracy of the environment.
Furthermore, the pilot study data collection was performed
with undergraduate school students, held virtually. We aim
to test this system in-person and with middle-school stu-
dents. We expect some of our findings in this study may
not carry over to this new setting. In addition, our investi-
gation only looked at one modality. In the future, we aim to
extend this work, adding additional actions such as verbal
references towards particular students and adding physical
gestures and gaze to the robot.

The framework presented here provides a hybrid approach
for using RL in a robot-student setting, by building a envi-
ronment from collected student interaction data. This envi-
ronment can be adapted to any number of actions and stu-
dents without requiring extensive training in the real world.

Acknowledgements: This work was supported by Grant No.
2024645 from the National Science Foundation, Grant No.
220020483 from the James S. McDonnell Foundation, and
a University of Pittsburgh Learning Research and Develop-
ment Center internal award. We would also like to thank
Mike Diamond for his help with the pilot study.

6. REFERENCES
[1] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi.

Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence,

1(8):356–363, Aug. 2019. Number: 8 Publisher:
Nature Publishing Group.

[2] V. Aleven, E. A. McLaughlin, A. Glenn, and
K. Koedinger. Instruction Based on Adaptive
Learning Technologies. 2016.

[3] R. Atkinson. Optimizing the Learning of a
Second-Language Vocabulary. Journal of
Experimental Psychology, Vol.96(No 1):124–129, 1972.

[4] T. Belpaeme, J. Kennedy, A. Ramachandran,
B. Scassellati, and F. Tanaka. Social robots for
education: A review. Science Robotics, 2018.

[5] S. Bird, E. Klein, and E. Loper. Natural Language
Processing with Python: Analyzing Text with the
Natural Language Toolkit, 2009. original-date:
2009-09-07T10:53:58Z.

[6] S. Brennan. Lexical Entrainment In Spontaneous
Dialog, 1996.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. OpenAI
Gym. June 2016.

[8] A. L. Brown and A. S. Palincsar. Guided, cooperative
learning and individual knowledge acquisition. In
Knowing, learning, and instruction: Essays in honor
of Robert Glaser, pages 393–451. Lawrence Erlbaum
Associates, Inc, Hillsdale, NJ, US, 1989.

[9] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco,
R. St. John, N. Constant, M. Guajardo-Cespedes,
S. Yuan, C. Tar, B. Strope, and R. Kurzweil.
Universal Sentence Encoder for English. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 169–174, Brussels, Belgium,
Nov. 2018. Association for Computational Linguistics.

[10] M. T. H. Chi and R. Wylie. The ICAP Framework:
Linking Cognitive Engagement to Active Learning
Outcomes. Educational Psychologist, 49(4):219–243,
Oct. 2014.

[11] B. Clement, D. Roy, P.-Y. Oudeyer, and M. Lopes.
Multi-Armed Bandits for Intelligent Tutoring Systems.
Journal of Educational Data Mining, 7(2):20–48, June
2015. Number: 2.

[12] P. Dillenbourg. Chapter 1 (Introduction) What do you
mean by ’collaborative learning’?
Collaborative-learning: Cognitive and Computational
Approaches, Vol. 1, Jan. 1999.

[13] P. Dillenbourg, S. Järvelä, and F. Fischer. The
evolution of research on computer-supported
collaborative learning. In Technology-enhanced
learning, pages 3–19. Springer, 2009.

[14] W. Doise, G. Mugny, and A.-N. Perret-Clermont.
Social interaction and the development of cognitive
operations. European Journal of Social Psychology,
5(3):367–383, 1975. Place: US Publisher: John Wiley
& Sons.

[15] S. Doroudi, V. Aleven, and E. Brunskill. Where’s the
Reward?: A Review of Reinforcement Learning for
Instructional Sequencing. International Journal of
Artificial Intelligence in Education, 29(4):568–620,
Dec. 2019.

[16] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li,
C. Paduraru, S. Gowal, and T. Hester. Challenges of
real-world reinforcement learning: definitions,

benchmarks and analysis. Machine Learning,
110(9):2419–2468, Sept. 2021.

[17] D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and
Y. Xu. Offline Reinforcement Learning: Fundamental
Barriers for Value Function Approximation. Nov. 2021.

[18] H. Friedberg, D. Litman, and S. B. F. Paletz. Lexical
entrainment and success in student engineering
groups. In 2012 IEEE Spoken Language Technology
Workshop (SLT), pages 404–409, Miami, FL, USA,
Dec. 2012. IEEE.

[19] S. Garrod and M. J. Pickering. Joint Action,
Interactive Alignment, and Dialog. Topics in Cognitive
Science, 1(2):292–304, 2009. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1756-
8765.2009.01020.x.

[20] L. Gisslen, A. Eakins, C. Gordillo, J. Bergdahl, and
K. Tollmar. Adversarial Reinforcement Learning for
Procedural Content Generation. In 2021 IEEE
Conference on Games (CoG), pages 1–8, Copenhagen,
Denmark, Aug. 2021. IEEE.

[21] J. Hare. Dealing with Sparse Rewards in
Reinforcement Learning. arXiv:1910.09281 [cs, stat],
Nov. 2019. arXiv: 1910.09281.

[22] L. Haug, S. Tschiatschek, and A. Singla. Teaching
Inverse Reinforcement Learners via Features and
Demonstrations. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[23] D. Hood, S. Lemaignan, and P. Dillenbourg. When
Children Teach a Robot to Write: An Autonomous
Teachable Humanoid Which Uses Simulated
Handwriting. In Proceedings of the Tenth Annual
ACM/IEEE International Conference on
Human-Robot Interaction, HRI ’15, pages 83–90, New
York, NY, USA, Mar. 2015. Association for
Computing Machinery.

[24] R. A. Howard. Dynamic programming and Markov
processes. Technology Press of Massachusetts Institute
of Technology, Cambridge, 1960.

[25] W. Johal. Research Trends in Social Robots for
Learning. Current Robotics Reports, 1(3):75–83, Sept.
2020.

[26] P. Kamalaruban, R. Devidze, V. Cevher, and
A. Singla. Interactive Teaching Algorithms for Inverse
Reinforcement Learning. In Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 2692–2700, Macao, China,
Aug. 2019. International Joint Conferences on
Artificial Intelligence Organization.

[27] B. Kartal, N. Sohre, and S. J. Guy. Data driven
sokoban puzzle generation with monte carlo tree
search. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2016.

[28] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius.
PCGRL: procedural content generation via
reinforcement learning. In Proceedings of the Sixteenth
AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE’20, pages
95–101. AAAI Press, Oct. 2020.

[29] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion,
A. A. A. Sallab, S. Yogamani, and P. Pérez. Deep
Reinforcement Learning for Autonomous Driving: A

Survey. IEEE Transactions on Intelligent
Transportation Systems, pages 1–18, 2021. Conference
Name: IEEE Transactions on Intelligent
Transportation Systems.

[30] E. Konijn and J. Hoorn. Robot tutor and pupils’
educational ability: Teaching the times tables.
Computers & Education, 157:103970, July 2020.

[31] M. Lanz, R. Pieters, and R. Ghabcheloo. Learning
environment for robotics education and
industry-academia collaboration. Procedia
Manufacturing, 31:79–84, Jan. 2019.

[32] J. Li. The benefit of being physically present: A
survey of experimental works comparing copresent
robots, telepresent robots and virtual agents.
International Journal of Human-Computer Studies,
77:23–37, May 2015.

[33] R. V. Lindsey, M. C. Mozer, W. J. Huggins, and
H. Pashler. Optimizing Instructional Policies. In
Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013.

[34] C. Liu, R. Fang, and J. Chai. Towards Mediating
Shared Perceptual Basis in Situated Dialogue. page 10.

[35] N. G. Lobczowski. Bridging gaps and moving forward:
Building a new model for socioemotional formation
and regulation. Educational Psychologist, 55(2):53–68,
Apr. 2020. Publisher: Routledge eprint:
https://doi.org/10.1080/00461520.2019.1670064.

[36] N. Lubold, E. Walker, H. Pon-Barry, Y. Flores, and
A. Ogan. Using Iterative Design to Create
Efficacy-Building Social Experiences with a Teachable
Robot. July 2018. Publisher: International Society of
the Learning Sciences, Inc. [ISLS].

[37] S. Matsuzoe, H. Kuzuoka, and F. Tanaka. Learning
English words with the aid of an autonomous
care-receiving robot in a children’s group activity. The
23rd IEEE International Symposium on Robot and
Human Interactive Communication, 2014.

[38] D. Miller, I. Nourbakhsh, and R. Siegwart. Robots for
Education. In Springer Handbook of Robotics. Jan.
2008. Journal Abbreviation: Springer Handbook of
Robotics.

[39] R. Mitnik, M. Nussbaum, and A. Soto. An
autonomous educational mobile robot mediator.
Autonomous Robots, 25:367, Nov. 2008.

[40] D. P. Newton and L. D. Newton. Humanoid Robots as
Teachers and a Proposed Code of Practice. Frontiers
in Education, 4, 2019.

[41] T. J. Nokes-Malach, J. E. Richey, and S. Gadgil.
When is it better to learn together? Insights from
research on collaborative learning. Educational
Psychology Review, 27(4):645–656, 2015. Place:
Germany Publisher: Springer.

[42] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej,
M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider,
N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang. Solving Rubik’s Cube
with a Robot Hand. Oct. 2019.

[43] S. B. F. Paletz and C. D. Schunn. Assessing
group-level participation in fluid teams: Testing a new
metric. Behavior Research Methods, 43(2):522–536,
June 2011.

[44] H. W. Park, I. Grover, S. Spaulding, L. Gomez, and
C. Breazeal. A Model-Free Affective Reinforcement
Learning Approach to Personalization of an
Autonomous Social Robot Companion for Early
Literacy Education. Proceedings of the AAAI
Conference on Artificial Intelligence, 33:687–694, July
2019.

[45] T. Patikorn and N. T. Heffernan. Effectiveness of
Crowd-Sourcing On-Demand Assistance from Teachers
in Online Learning Platforms. In Proceedings of the
Seventh ACM Conference on Learning @ Scale, L@S
’20, pages 115–124, New York, NY, USA, Aug. 2020.
Association for Computing Machinery.

[46] A. Powers, S. Kiesler, S. Fussell, and C. Torrey.
Comparing a computer agent with a humanoid robot.
In Proceedings of the ACM/IEEE international
conference on Human-robot interaction, pages
145–152, 2007.

[47] A. Rafferty, H. Ying, and J. Williams. Statistical
Consequences of using Multi-armed Bandits to
Conduct Adaptive Educational Experiments. Journal
of Educational Data Mining, 11(1):47–79, June 2019.
Number: 1.

[48] A. N. Rafferty, E. Brunskill, T. L. Griffiths, and
P. Shafto. Faster Teaching via POMDP Planning.
Cognitive Science, 40(6):1290–1332, Aug. 2016.

[49] A. N. Rafferty, H. Ying, and J. J. Williams. Bandit
assignment for educational experiments: Benefits to
students versus statistical power. In International
Conference on Artificial Intelligence in Education,
pages 286–290. Springer, 2018.

[50] A. Raffin, A. Hill, A. Gleave, A. Kanervisto,
M. Ernestus, and N. Dormann. Stable-Baselines3:
Reliable Reinforcement Learning Implementations.

[51] M. Saerbeck, T. Schut, C. Bartneck, and M. Janse.
Expressive Robots in Education Varying the Degree of
Social Supportive Behavior of a Robotic Tutor.
volume 3, pages 1613–1622, Jan. 2010.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs], Aug. 2017. arXiv: 1707.06347.

[53] A. Segal, Y. B. David, J. J. Williams, Y. Gal, and
Y. Shalom. Combining Difficulty Ranking with
Multi-Armed Bandits to Sequence Educational
Content. In AIED, 2018.

[54] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of
Go with deep neural networks and tree search. Nature,
529(7587):484–489, Jan. 2016. Number: 7587
Publisher: Nature Publishing Group.

[55] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel, T. Lillicrap, K. Simonyan, and
D. Hassabis. Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm.
arXiv:1712.01815 [cs], Dec. 2017. arXiv: 1712.01815.

[56] A. Singla, A. N. Rafferty, G. Radanovic, and N. T.
Heffernan. Reinforcement Learning for Education:

Opportunities and Challenges. July 2021.

[57] A. Soller. Supporting Social Interaction in an
Intelligent Collaborative Learning System. page 24.

[58] F. Tanaka, K. Isshiki, F. Takahashi, M. Uekusa,
R. Sei, and K. Hayashi. Pepper learns together with
children: Development of an educational application.
2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), 2015.

[59] F. Tanaka and S. Matsuzoe. Children teach a
care-receiving robot to promote their learning. HRI
2012, 2012.

[60] S. Tschiatschek, A. Ghosh, L. Haug, R. Devidze, and
A. Singla. Learner-aware Teaching: Inverse
Reinforcement Learning with Preferences and
Constraints. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[61] P. Van den Bossche, W. Gijselaers, M. Segers,
G. Woltjer, and P. Kirschner. Team learning: building
shared mental models. Instructional Science,
39(3):283–301, May 2011.

[62] J. J. Williams, J. Kim, A. Rafferty, S. Maldonado,
K. Z. Gajos, W. S. Lasecki, and N. Heffernan. AXIS:
Generating Explanations at Scale with
Learnersourcing and Machine Learning. In Proceedings
of the Third (2016) ACM Conference on Learning @
Scale, L@S ’16, pages 379–388, New York, NY, USA,
Apr. 2016. Association for Computing Machinery.

[63] J. J. Williams, A. N. Rafferty, D. Tingley, A. Ang,
W. S. Lasecki, and J. Kim. Enhancing Online
Problems Through Instructor-Centered Tools for
Randomized Experiments. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, pages 1–12. Association for Computing
Machinery, New York, NY, USA, Apr. 2018.

[64] W. Zhao, J. P. Queralta, and T. Westerlund.
Sim-to-Real Transfer in Deep Reinforcement Learning
for Robotics: a Survey. In 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pages
737–744, Dec. 2020.

