
Code-DKT: A Code-based Knowledge Tracing Model for
Programming Tasks

Yang Shi, Min Chi, Tiffany Barnes, Thomas W. Price
North Carolina State University

Raleigh, NC, USA
{yshi26, mchi, tmbarnes, twprice}@ncsu.edu

ABSTRACT
Knowledge tracing (KT) models are a popular approach for
predicting students’ future performance at practice prob-
lems using their prior attempts. Though many innovations
have been made in KT, most models including the state-of-
the-art Deep KT (DKT) mainly leverage each student’s re-
sponse either as correct or incorrect, ignoring its content. In
this work, we propose Code-based Deep Knowledge Tracing
(Code-DKT), a model that uses an attention mechanism to
automatically extract and select domain-specific code fea-
tures to extend DKT. We compared the effectiveness of
Code-DKT against Bayesian and Deep Knowledge Tracing
(BKT and DKT) on a dataset from a class of 50 students at-
tempting to solve 5 introductory programming assignments.
Our results show that Code-DKT consistently outperforms
DKT by 3.07 − 4.00% AUC across the 5 assignments, a
comparable improvement to other state-of-the-art domain-
general KT models over DKT. Finally, we analyze problem-
specific performance through a set of case studies for one
assignment to demonstrate when and how code features im-
prove Code-DKT’s predictions.

Keywords
Knowledge Tracing, Deep Knowledge Tracing, CS Educa-
tion, Code Analysis, Deep Learning

1. INTRODUCTION
Modeling student knowledge to predict performance on fu-
ture problems, called Knowledge Tracing (KT), is a funda-
mental feature of intelligent tutoring systems [50]. KT mod-
els enable tutoring systems to support mastery learning [14],
select appropriate next problems [1], provide help [46], and
provide analytics to instructors [34], all of which can improve
learning. KT models have increased in complexity from the
early 4-parameter Bayesian Knowledge Tracing (BKT) to
modern models that train deep neural networks with tens of
thousands of parameters using the latest deep learning inno-
vations (e.g. attention [54] and transformers [51]). This has

led to improvement in KT model performance, especially for
larger datasets, e.g. from ASSISTments [41, 17].

The simplest version of the KT problem uses only the se-
quence of: 1) which problems the student has attempted,
and 2) whether or not each attempt was correct. While this
makes KT models widely applicable across domains, this
also omits a potential wealth of information about how the
student attempted each problem. Increasingly, ITS being
built to support complex problem solving tasks, like pro-
gramming in Snap [35] and in games [22], logic proofs [30],
science inquiry [25] and language learning [47]. In these
domains, correctness may not provide enough information
about student knowledge, varying significantly in the rea-
sons both for incorrectness and correctness. In program-
ming, for example, one incorrect attempt may have a minor
syntax error while another includes a clear misconception.
Similarly, two different correct answers could reveal dramat-
ically different levels of concept mastery depending on their
conciseness and the concepts used. Most KT models would
treat all correct and all incorrect attempts identically. A
domain-specific KT model, e.g. those for science by Rowe
et al. [40], might greatly improve KT performance. Little
work has investigated whether domain-general KT models
can predict student success in programming, or how domain-
specific features might improve performance.

In this paper, we explore when and how features extracted
from students’ submitted code can improve a KT model for
programming. To do so, we introduce a novel code-based
deep knowledge tracing (Code-DKT) model, which uses the
code2vec model [4] to learn a meaningful representation of
student code, and combines this with Deep Knowledge Trac-
ing (DKT) [34] to track student progress. Specifically, stu-
dent code submissions are represented with abstract syntax
trees, and split into multiple code paths [4] (explained in Sec-
tion 3). We assign the importance of different code paths
by learning weights guided by the scores students received
for the current and past submissions. We compared the per-
formance of Code-DKT with baseline BKT and DKT mod-
els on a dataset of 50 introductory programming problems
from 410 students, across 5 assignments. Our experiments
show that the Code-DKT model is able to consistently im-
prove DKT’s performance by 3.08-4.00 percentage points in
AUC. This improvement is comparable to that of other mod-
ern KT models over DKT (2-4%) [31, 44], suggesting that
domain-specific features may be just as important as model
structure. Finally, we investigate one assignment through 3

Y. Shi, M. Chi, T. Barnes, and T. Price. Code-DKT: A code-based
knowledge tracing model for programming tasks. In A. Mitrovic and
N. Bosch, editors, Proceedings of the 15th International Conference
on Educational Data Mining, pages 50–61, Durham, United King-
dom, July 2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853105

https://doi.org/10.5281/zenodo.6853105

case studies to explore the mechanisms by which code fea-
tures may improve the model, and when they are most use-
ful. We also show that Code-DKT outperforms more naive
code-feature models. Overall, this paper makes three con-
tributions: 1) the Code-DKT model, which extends DKT
for programming tasks; 2) evidence that Code-DKT outper-
forms both domain-general models and naive code-feature
models; and 3) evidence of when and how Code-DKT’s code
features improve model performance.

2. RELATED WORK
In this section, we present related work on knowledge trac-
ing, student modeling in computer science education, and
deep learning models for code/programs.

2.1 Knowledge Tracing
Knowledge tracing (KT) models student knowledge as they
solve problems to predict future performance. In KT, prob-
lems are labeled with needed skills (i.e. knowledge compo-
nents, KC) [49], the skill or q-matrix can be learned from
data [9], or the problem ID can be used instead. In Bayesian
Knowledge Tracing (BKT), the most popular KT method
[14], a simple Bayesian model is built to model student
knowledge using parameters for guess (getting a problem
right when a skill is not known), slip (getting it wrong when
known), and transition from unlearned to learned after prac-
ticing. These parameters are learned from prior students’
problem sequences, and then used to predict future perfor-
mance. Researchers have improved BKT performance, for
example, by calculating the bound or prior distribution of
parameters [8], adding a priori estimates of student learning
[32], or integrating speed factors [56].

A number of innovations have improved domain general KT,
without using additional features from student’s work (only
the correctness of each problem attempt). With the devel-
opment of machine learning technologies and increasingly
available large datasets, models based on deep learning have
been proven more effective, especially with enough avail-
able data [17]. Piech et al. introduced deep knowledge
tracing (DKT), using recurrent neural networks (RNN) to
predict a student’s knowledge of each skill (or problem) af-
ter each problem attempt, and to learn the relationships
among skills automatically [34]. As our work is based on
this model, we will discuss the details of the model in Sec-
tion 3. Some recent advances in deep learning for knowl-
edge tracing focus on model structure, including SAKT and
SAINT. Self-attentive knowledge tracing (SAKT) [31] added
a self-attention mechanism [54] to DKT, while Separated
Self-Attentive Neural Knowledge Tracing (SAINT) [12] later
integrated a transformer (a type of deep neural network
which has been successfully applied in text and image pro-
cessing areas) into a knowledge tracing model [51]. Both of
these models have outperformed DKT, especially on large
datasets such as EdNet [13], e.g. by 2% AUC.

While these innovations have improved KT performance, of-
ten using complex networks and larger datasets, the datasets
used generally only indicate whether a student’s attempt was
correct, but not the content of a student’s answer or their
process for achieving it, and the models therefore do not use
this information. However, researchers have incorporated
other types of information into deep models, such as course

prerequisites or the relationships among problems. For in-
stance, Chen et al. attached prerequisite information in the
DKT modeling process for a more accurate prediction[10].
The prerequisite concepts were modeled as graph matrices
(as done by Wang et al. [53]), serving as an additional input
to knowledge tracing models, similar to skill or q-matrices
that can also be learned from student data [9]. On the other
hand, Ghosh et al. introduced attentive knowledge tracing
(AKT) [18]. They introduced a decay parameter to explic-
itly reduce the impact of distant problems, and at the same
time used a Rasch model [37] to incorporate problem con-
texts, then embedding the differences among the problems.
Student information can also be used for knowledge tracing
models. Educational priors such as a learning or forgetting
curves can be integrated into deep knowledge tracing mod-
els [11]. The closest such models come to incorporating stu-
dents’ solution processes is including information about how
fast students solved a problem. Yudelson et al. [56] added
speed factors into BKT, and similar temporal information
can also improve the performance of deep models (e.g. [44]).

None of the above work have used the student response in-
formation, besides submission correctness, in their models.
This could be partially because of the simplicity of the prob-
lems. Most of them are true or false, multiple choice prob-
lems, or short answer problems. The availability of the ex-
ercise data is also limited, as some datasets only contains a
sequence of binary correctness scores from students. Recent
work (e.g. EKT, EERNN [45, 26]) used a joint embedding
of exercise text and response correctness, combining the ex-
ercise text embedding together with student scores to repre-
sent student individualized submissions. This achieved bet-
ter performance than the other models without using this
information. However, these models only use problem in-
formation, but no information about the students’ answer
beyond binary correctness information. This suggests an
opportunity to create improved, domain-specific KT mod-
els in areas such as programming, math, science or writing,
where students’ answers include complex written responses
or structured problem-solving steps. Recent work has in-
corporated such problem-specific data in deep learning ap-
proaches used to adapt pedagogical policies for tutoring in
logic [27], probability [58], or predict performance in pro-
gramming [29] but generally have not been used to built
KT models in these domains. In the domain of programming
education, for example, students’ code submissions contain
rich information on the state of their current knowledge. As
proposed in this paper, more structural information could
be extracted from student code submission to infer students’
learning status of certain concepts. We use these code fea-
tures to make better knowledge tracing models.

2.2 Student Modeling in CS Education
Researchers in CS education have explored ways to model
student source code for intelligent tutoring. In 2011, Jin
et al. proposed that a linkage representation that reflected
code structure could be used for programming hint genera-
tion [23]. In 2014, Yudelson et al. extracted code features
from a MOOC on introductory Java programming to explore
code recommendation methods [55]. Their work focused on
using a combination of problem correctness and extracted
code features to predict student success, and use this pre-
diction to recommend an appropriate next problem to a stu-

dent. While they did not evaluate their model on a KT task
per se, their approach of extracting atomic code features is
somewhat similar to our TFIDF baseline (Section 4.3). An-
other work from Rivers et al. used code features for student
learning curve analysis and attempted to directly extract
meaningful knowledge components (and whether they were
successfully applied) from student code [39]. In their work,
student code submissions are represented as abstract syntax
trees (ASTs), with the node types of ASTs (e.g. for, if)
representing knowledge components (KCs). The error rate
curves (referred to as “learning curves”) were plotted over
time, visualizing the mastery of different KCs. They showed
that while code-based KCs produced well-fitting curves, oth-
ers did not. While this suggests the possible validity of AST-
based KC extraction, the work did not directly evaluate the
utility of these KCs for knowledge tracing. Like our current
work, Wang et al. showed that incorporating structural code
features can improve DKT for a single problem from a large
“hour of code” (HoC) dataset [52]. However, this HoC ex-
ercise has a very simple solution, so their results may not
generalize. Additionally, their features were learned in an
unsupervised way from ASTs, while our approach learns an
embedding from the data.

Code features have also been used in tasks other than KT
as well, such as common bug identification in student code.
Traditionally, experts manually examined student code to
identify common bugs in different student levels and pro-
gramming languages, such as Java [48] or block based pro-
grams [20]. However, manual examination is expensive for
large-scale and quantitative studies. More advanced work
takes advantage of the growing size of datasets, and used
data-driven methods to find bugs in student code submis-
sions. For example, Choi et al. used simple machine learn-
ing methods to detect malicious code in code by using sim-
ple feature extraction methods such as counting neighboring
tokens in code text (n-gram). With the recent advance of
computational power and even bigger datasets, more deep
learning methods have emerged. These methods focused on
developing deep neural network methods to extract struc-
tural information for automatic student bug detection. For
example, Gupta et al. used a matrix to represent the ASTs
of student code to localize student code submissions [19] in
a large dataset (270K samples). For smaller sized dataset,
Shi et al. evaluated the bug detection performance with the
help of semi-supervised learning [42], and have also shown
that unsupervised learning is possible with the help of ex-
perts [43]. All these methods reported better performance
than traditional data-driven models on their tasks, showing
the feasibility of similar usage on KT tasks.

While we focus on using student code submissions to ex-
tract features for student programming KT tasks, other less
complicated approaches exist. Original programming tu-
tors such as ACT [15] and Lisp tutor [6] decompose com-
putational problems into small steps and let students make
choices. This facilitates the KT tasks, as in these datasets,
student submissions are simple multiple choices. However,
with the development of newer Intelligent Tutoring Systems
(ITSs), more systems provide intelligent support to students’
written code. This provides better practice for students, but
also makes knowledge tracing in computer science a more
challenging task. Our paper aims at extracting code fea-

tures for KT tasks in these new datasets.

2.3 Deep Code Learning
Besides code feature extraction in the CS education domain,
programming code has also been analyzed with data-driven
models in software engineering research. For example, Al-
lamanis et al. used neighboring tokens in source code (n-
grams) to represent programming code, borrowing methods
from natural language processing studies to predict method
names in big code datasets [3]. Later work further explored
extracting features from code structure, such as Raychev et
al. who used decision trees to model programming code,
making probabilistic predictions on the types of nodes in
AST [38]. However, these simple structural approaches are
often outperformed by newly developed deep learning mod-
els, especially when applied to big datasets.

Deep neural networks have been applied in the software en-
gineering domain, and achieved better performance than
traditional data-driven methods. For example, Allamanis
et al. used convolutional neural networks (CNNs) to clas-
sify code functions [2]; Mou et al. reworked the CNNs
to an AST version, using the parent-children direction in-
formation in tree representations. Both methods greatly
improved method classification tasks on classical machine
learning models. Another recent model, code2vec, outper-
formed these models. Alon et al. designed this model, which
leverages nodes and traversal paths in the ASTs to repre-
sent programs [5]. In their work, the leaf nodes of the ASTs
are selected to represent the semantic information about the
code. In addition, as there is a path through the AST from
every leaf node to any other leaf node, this path is extracted
to represent the code’s structural information. The traver-
sal paths together with the corresponding leaf nodes serve as
the basic units of a representation of code [4]. The code2vec
model calculates the weight of each code path using an at-
tention mechanism [54] to automatically classify function
names. Code-DKT’s code extraction component is based on
the code2vec model, but adds score to the attention mecha-
nism to assign weights to code paths [4] for predictions.

We chose code2vec to represent student code in DKT due
to its recent successes for modeling code, and its attention
mechanism. The attention mechanism learns weights for
different features, allowing the model to directly use score
information to select the most predictive code paths. Future
work could investigate other code representations such as
ASTNN, which has also been applied to make predictions
from student code [28], or more recent advances such as
CodeBERT [16].

3. METHOD
Problem Definition: Knowledge tracing (KT) tasks model
a prediction problem: Given the history of a student’s at-
tempts at various KCs/problems, the model predicts if the
student will succeed on their next attempt 1. Specifically,
we define each student attempt xt at time t as (qt, at, ct),
where qt is the problem ID, at is the correctness, and ct is the
program code submitted for this attempt. Historically, KT
algorithms have only utilized qt and at, and in this work we
extend the input sequence to include ct. At each timestep T ,

1We use problemIDs for KCs in this work

h0

Wxh
 Wxh

Whh
 h1 Whh
 h2 Whh
 hT...

Wxh

x1 x2 xT

Why
 Why
 Why

y1 y2 yT

...

...

Figure 1: Recurrent neural network structure.

the model is given the T -length student attempt sequence
ST = {(q1, a1, c1), (q2, a2, c2), ..., (qT , aT , cT)}, and it pre-
dicts whether the student’s next attempt (T +1) on a given
problem (qT+1) will be correct (aT+1). Note that students
may attempt problems multiple times, and the model will
make a prediction at each attempt.

Our proposed Deep Code Knowledge Tracing (Code-DKT)
model integrates deep knowledge tracing (DKT) [34]) with
the code2vec classification algorithm [5]. In this section we
introduce the DKT model and how we enhance it with code
feature extraction and selection.

3.1 Deep Knowledge Tracing
Deep knowledge tracing uses a recurrent neural network
(RNN) structure to learn the probability that a student will
make a correct attempt on a subsequent problem. In the
original implementation of DKT, the authors also imple-
mented a version of DKT using a long short term memory
(LSTM) model [21], which is widely perceived as an ad-
vancement over RNNs. For simplicity, we explain DKT us-
ing an RNN model; we performed DKT using both RNNs
and LSTMs. In the experiments, the LSTM version yielded
higher performance2 (see performance comparison in Sec-
tion 5.1.4). We chose DKT as our baseline model, to com-
pare with and to extend, as it is a commonly used baseline
in other more recent KT papers [31, 44]. Further, its LSTM
structure makes it straightforward to extend with code fea-
tures and to directly evaluate those features’ contributions.
Some recent models have outperformed DKT, but only by
about 2-4% AUC [31, 44], suggesting that DKT is still rep-
resentative of modern deep KT models.

Model Input: For each student, DKT (RNN) takes as input a
sequence S = {x1,x2, ...xT } of T attempt vectors xt. With
M problems, each attempt consisting of problem-correctness
pair {qt, at} at time t, is one-hot encoded into a binary vector
xt of size 2M , where xqt+M(1−at) is set to 1, and the other
bits are set to 0. For example, with M = 3, for student
success on problem 1, qt = 1, at = 1, so x1+3(1−1) = 1, so
x = {1, 0, 0, 0, 0, 0}, and failure on problem 1 qt = 1, at = 0,
so x1+3(1−0) = 1, so x4 is set to one, and x is {0, 0, 0, 1, 0, 0}.

Model Structure: The RNN version of DKT maps each
input sequence ST into an output sequence of predictions
Y = {y1,y2, ...,yT } with a set of hidden states h1,h2, ...hT .
More specifically, as illustrated in Figure 1, this process is

2See the appendix of [34] for the LSTM DKT equations.

defined as:

ht = tanh(Wxhxt +Whhht−1),

yt = σ(Whyht).

In the equations, element-wise operators tanh(·) and σ(·)
are activation functions of the network, introducing non-
linearity to the network. The parameters learned in the
network are Wxh which transforms input xt into the hid-
den space, Whh which fuses the hidden state ht−1 from the
prior input with the current hidden state ht, andWhy which
translates the hidden state ht into an output. In both equa-
tions, the bias terms are omitted for simplicity, and the h0

is the initial hidden state, the zero-vector.

Model Output: The output sequence Y contains prediction
vectors yt, sized M . Every element of the vector represents
the probability of the student making a correct submission
on corresponding problems in their next attempt. Note that
while the model makes predictions for each problem at each
timestep t, only the value for the next attempted problem
qt+1 is used during training and evaluation.

3.2 Deep Code Knowledge Tracing
We extend DKT into Deep Code Knowledge Tracing (Code-
DKT), by using the code2vec [5] representation of student
code attempts, ct, along with problem and correctness in-
formation.

Code Representation: Abstract syntax trees (ASTs) are used
to represent the hierarchical structure of code, for example
with a node for a function (method) with children represent-
ing the function’s parameter (input) and body (body). AST
leaf nodes often correspond to literal values or identifiers.
Code-DKT extends the code2vec model for code classifica-
tion, which encodes an AST using a set of leaf-to-leaf paths
throughout the AST. For example, in Figure 2, a path from
the leaf node input to the leaf node "value" (highlighted
red in the example) consists of the nodes: [input, method,
body, String, "value"]. Given an AST, code2vec extracts
a set of leaf-to-leaf paths, as explained below.

Model Input: Since a deep learning model cannot operate di-
rectly on code paths, the Code-DKT must next convert this
code-path representation of the AST into a binary vector.
A student’s code submission ct at time t is represented as
{p0, p1, ..., pR} where there are in total R randomly selected
code paths in ct. Every pr has three components, namely
the starting node of the code path sr, the textual represen-
tation of the full path or, and the ending node qr, which
are each one-hot encoded as binary vectors. For instance,
for the example in Figure 2, sr is input, or is a text string:
input|method|body|String|value, and qr is value.

Model Structure: Rather than using a static vector repre-
sentation of students’ code, Code-DKT learns an optimal
embedding of student code. The detailed Code-DKT model
structure is shown in Figure 3. This initial structure is
drawn from code2vec. The nodes for each of R code paths
in ct (ct has in total R paths), including starting and end-
ing nodes (sr,qr) and paths or for a single path r, are re-
spectively embedded by the node embedding matrix Wenode

input

method

body

def method(input):
 doSomething(input)
 return "value"

Code
StringASTdoSomething

input

AST

"value"

Figure 2: A simple AST where red
nodes and edges represent a leaf-to-
leaf path from input to "value".

es,R

eo,R

eq,R

...

es,0

eo,0

eq,0

...

Node

Embed-

ding

Wenode

Attention
Layer

Wa

SoftMax

E

Linear
Layer

W0

Dot

product

s0

o0

q0

sR
oR
qR

Path

Embed-

ding

Wepath

pR

Concatenate

e0

e1

eR-1

eR

...
p0

zt

xt

xt

z2

zT

z1

... LSTM

...

yt

y2

yT

y1

...

...

xt

x2

xT

x1

...

...

Code

Vector

Correctness

Vector

Prediction

Result

Figure 3: Code-DKT model structure.

and the path embedding matrix Wepath. Both matrices are
randomly initialized with a Gaussian distribution, but they
are later updated during model training. The Code-DKT
model structure then diverges somewhat from code2vec, to
account for the specific needs of the KT problem. Specif-
ically, the three embedded vectors representing ct are con-
catenated with the problem-correctness vector xt from DKT
(introduced in Section 3.1). This serves as a numerical rep-
resentation of (qt, at, ct). For a single code path pr, this
process is accomplished with embeddings for the start node
(es,r), path (eo,r), and end node (eq,r):

es,r = Wenodesr; eo,r = Wepathor; eq,r = Wenodeqr,

er = [es,r; eo,r; eq,r;xt].

Score-Attended Path Selection: Code-DKT now has an nu-
merical representation of a single attempt: a set of R em-
bedded vectors, er, one for each code path in ct. Note
that the embedding, er not only includes the code infor-
mation, but also the current correctness score information
xt at the submission t. However, not all parts of a stu-
dent’s code are relevant, and thus not all code paths er are
important for predicting a student’s future success. There-
fore, the model uses an attention mechanism to identify how
much weight to give to each of these paths. The embedding
vectors E = {e0, e1, ..., eR} are multiplied by the attention
matrix Wa to get R scalars a0, a1, ..., aR, representing the
importance (commonly known as the “attention”) of each of
the code paths. The importance ar uses a SoftMax mecha-
nism for normalization, having 1 as the sum. This process
is formulated as:

α = SoftMax(EWa)

SoftMax(a) =
eai∑R
i=1 e

ai

where each elements αr in α = {α1, α2, ..., αR} are the cal-
culated weights for the code path pr. Finally, Code-DKT
weights each code path ei by its attention αi, and sums
them together, giving a weighted average: a single vector
representing the important parts of the code. The weighted
average vector is then multiplied by a matrix W0 to get
the code vector z, representing features extracted from code

submissions, as in equation:

z = W0(

R∑
i=1

αiei).

In a sequence of T student attempts, Code-DKT produces
T code vectors {z1, z2, ..., zT }. The code vectors are con-
catenated with the correctness vectors {x1,x2, ...,xT } as the
input to the final LSTM (as in DKT), giving the predictions
{y1,y2, ...yT }. Even though xt was already used to produce
zt, this final concatenation ensures the Code-DKT model
has direct access to the student correctness score informa-
tion.

4. EXPERIMENTS
We designed an experiment to evaluate 3 research questions
about student modeling in the domain of programming:

RQ1 How effective are domain general KT approaches (DKT,
BKT) on our programming dataset?

RQ2 How can features derived from students’ code be used
to improve KT models?

RQ3 When are these code features most useful, and how
can they lead to improved predictions?

4.1 Dataset & Experiments Setup
Our study uses a dataset of an introductory Java program-
ming class at a large, university in the US, collected in Spring
2019, stored in the ProgSnap2 format [36]. The dataset
includes work from 410 students on 50 problems divided
over 5 assignments. These were completed throughout the
semester as homework, with each assignment focusing on a
specific topic (e.g. conditionals, loops). For these problems,
typical solutions ranged 10 to 20 lines of code. Students
tended to make multiple submissions before succeeding fi-
nally, and 23.68% of the attempts were correct. Student
code was automatically graded using test cases, and We
treated a submission as correct (1) only when all test cases
passed, and incorrect (0) otherwise.

For each assignment, students were then split into training
and testing sets with a ratio of 4 : 1. One quarter of the
training data were used for hyperparameter tuning and vali-
dation (see below). Then, we trained the model on the whole

Table 1: Performance Comparison on all assignments.

Model A1 A2 A3 A4 A5
DKT 71.24% 73.09% 76.84% 69.16% 75.14%

Code-DKT 74.31% 76.56% 80.40% 72.75% 79.14%

Table 2: Overall and the first attempt performance of all
models on assignment A1.

Models
AUC (STD)

Overall First Attempts

Code-DKT 74.31% (0.90%) 75.74% (0.69%)
DKT-TFIDF 69.94% (0.88%) 72.77% (0.79%)
DKT-Expert 69.52% (0.68%) 69.53% (0.72%)

DKT 71.24% (2.54%) 72.26% (3.69%)
BKT 63.78% (4.68%) 50.22% (2.86%)

training dataset, and tested on the holdout test dataset, re-
peating this process 10 times to account for model variation
(e.g. due to random initialization). All deep learning mod-
els were implemented using the PyTorch[33] library, and our
BKT implementation was pyBKT [7].

4.2 Hyperparameter Tuning & Optimization
For hyperparameter tuning, we split the training data into
training and validation sets, and created a model with each
possible set of hyperparameters (described below), and cal-
culated AUC performance on the validation dataset. We
repeated this process 100 times and chose the hyperparam-
eter setting with the best average validation performance to
use in testing/evaluation. Specifically, we selected the em-
bedding size of code feature extraction as 300, from a range
of (50, 100, 150, 300, and 350); learning rate was selected
as 0.0005 from a range of (0.00005, 0.0005, 0.005, 0.01); the
training epochs were set at 40 to save training time while
keeping the best prediction results, selected from a range of
(20, 40, 100). All other parameters were defaulted as the
original settings of code2vec and DKT. We fixed the longest
length of student attempts at 50 to filter extra long sub-
mission traces from students. In cases where more than 50
attempts were submitted, we used the last 50 submissions,
assuming the latest submissions were more useful.

As the models were deep neural networks, we used binary
cross entropy as a loss function to track the difference be-
tween the ground truth and predicted probabilities. The
models used back propagation to update weight matrices
(parameters), using the Adam optimizer [24], which is also
a default for code2vec and DKT.3

4.3 Baselines
We compare the performance of Code-DKT to DKT, BKT,
and two modified DKT methods: DKT-TFIDF adding data-
driven features, and DKT-Expert adding expert features.
Specifically, DKT-TFIDF uses TFIDF, a data-driven feature
that counts the term frequency (TF) of tokens (variables,
functions, and operations, etc.) in code text, and forms a
frequency vector for every term. This frequency is multiplied
by the inverse document frequency (IDF) to show how often
terms show up in unique documents. As students use various

3Repository: https://github.com/YangAzure/Code-DKT

variable names, we limited the top 50 best features (selected
from a range of (30, 50, 100, 300) in hyperparameter tuning)
in TFIDF to remove redundant features. For the DKT-
Expert model, two authors examined the problems in the
dataset, and determined 9 rule-based code features. These
features include code component existence checks such as the
usage of else if statements, the usage of && operations, etc.
These statements and operations represent students’ usage
of certain concepts such as writing alternative conditions, or
using “and” logic to solve a problem.

To improve the TFIDF and Expert models to serve as more
robust baseline models, we added one additional set of fea-
tures (only to baseline models) to encode information about
the skills practiced in each problem, as has been done in prior
work [57]. Two authors examined the problem descriptions
and solutions and agreed on 9 skills we expected students
to learn. For example, one skill was solving problems with
negative conditions in the instructions (using words such
as “unless”, “otherwise”), requiring students to negate these
conditions in their code. We represented each problem as a
binary vector of practiced skills, and we used this skill vector
to represent problems, instead of the one-hot encoded prob-
lem ID (see Section 3.1 for model input encoding). Testing
on the validation dataset showed slightly improved perfor-
mance using these skill vectors.

Metric: Our primary performance metric is AUC, a stan-
dard evaluation metric for KT models [34, 44, 31], as it uses
the predicted probability of success, rather than a binary cor-
rectness prediction, and is more appropriate than accuracy
for imbalanced datasets like ours (23% positive).

5. RESULTS
5.1 Performance Comparison
5.1.1 Code-DKT vs DKT
Table 1 shows a comparison of DKT and Code-DKT across
all 5 assignments (the average of the 10 test runs). Note that
for each assignment, a new model is trained and tested sepa-
rately, without using data from prior assignments. This was
because assignments were spaced out with weeks between
then, including additional learning content, so students’ per-
formance on prior assignments is less relevant. To address
RQ1, we consider the overall performance of the baseline
DKT model on our dataset, which has an AUC of 69-75%
across assignments. This low score means it may be difficult
to use model predictions to inform instruction or an auto-
mated intervention, as we discuss in Section 6. To address
RQ2, we see that Code-DKT consistently outperforms DKT
by 3-4% AUC on each assignment. This shows that our ap-
proach, which augments correctness features with additional
information from student code, can improve DKT predic-
tions. For perspective, this improvement is comparable to
SAINT+’s improvement over DKT on EdNet (+2.76%) [13],
or SAKT’s improvement on various datasets (+3.8%) .

5.1.2 Code-DKT vs Naive Code Features and BKT
We now investigate a single assignment, A1, to illustrate
Code-DKT’s performance, and create a DKT-Expert base-
line using assignment-specific, expert-authored code features.
We selected assignment A1, as it came first (and was there-
fore not influenced by prior assignments) and its skills are

the least complex. Table 2 shows the performance of Code-
DKT, DKT, as well as 3 new baselines: BKT, and 2 simple
code-feature extensions of DKT: DKT-TFIDF and DKT-
Expert (described in Section 4.3). Model performance is
given for predicting all attempts (Overall) and for predict-
ing only first attempts at each problem. The results show
that neither the simple expert features nor the TFIDF data-
driven features improve the overall performance of DKT.
These simple features derived from student code instead neg-
atively affect overall performance. This suggests that a more
effective model structure is necessary for making use of code
features, such as our Code-DKT model. We also see that
BKT has an AUC score of only 63%, suggesting that deep
models are more effective for our dataset.

5.1.3 When is Code-DKT Effective?
We used assignment A1 to investigate when Code-DKT was
more effective than DKT, helping to answer RQ3.

Overall vs First Attempts: We investigated Code-DKT’s per-
formance at predicting a student’s first attempt at each
problem (Table 2, column 3). First attempts are important
in a KT task because they represent points at which an ITS
might make key interventions (e.g. offering a worked exam-
ple if a student might fail at problem solving). Therefore,
many KT evaluations differentiate a student’s first attempt
on a task (where a model must make predictions using only
performance on other problems) from subsequent attempts.
This distinction also helps us understand when the Code-
DKT model is most effective. One might ask, is Code-DKT
using student code submissions to learn a better representa-
tion of student knowledge (which would help it predict first
attempts), or is it simply estimating how close a student is
to solving the current problem (which would only help to
predict subsequent attempts). Our results shows that Code-
DKT actually performs best when predicting first attempts,
and it also shows a similar improvement over DKT for first
attempts (+3.48%), compared to all attempts (+2.93%) .
This suggests that the content of a student’s code is help-
ful for not only predicting how quickly they will solve the
current problem, but also future problems.

Problem-specific Performance: Table 3 shows the decom-
posed AUC performance of Code-DKT and DKT on each
problem. We observe that Code-DKT outperforms DKT
overall on 6 of the 9 problems. The difference ranges from
+15.54% AUC (problem 13) to -4.43% (problem 236), sug-
gesting that the benefit of Code-DKT’s code features de-
pends somewhat on the programming problem. It also shows
that code features can reduce model performance, but the
potential for Code-DKT’s improvement seems to be greater
than the potential for harm.

To understand when Code-DKT’s code features were useful,
we investigated differences between the problems where it
outperformed DKT and those where it did not. We found
that many of the problems where there was improvement
shared similar learning concepts and solution structure. For
example, problems 3, 232 and 234 all used the “independent
choice” programming pattern, which is often solved with
nested if-statements. Similarly, problems 1, 3, 5 and 13 all
included a pattern where one condition changes a value used
in another condition. These common patterns seem to have

Table 3: Decomposed performance of Code-DKT and DKT
AUC performance on different problems in assignment A1.

Problems
Code-DKT DKT

Overall First Overall First
234 64.60% 71.38% 63.75% 73.48%
13 78.45% 86.55% 63.59% 68.81%
232 74.93% 78.99% 72.49% 73.09%
233 64.79% 74.57% 67.18% 76.33%
5 75.38% 81.34% 74.28% 81.79%

235 70.65% 71.96% 75.03% 70.80%
236 74.25% 74.30% 78.68% 77.06%
1 68.62% 70.32% 66.67% 73.20%
3 71.00% 71.00% 64.02% 64.02%

helped the model make better predictions on problems that
used them. However, 2 of the 3 of the problems where Code-
DKT performed poorly involved a unique learning concept
that did not appear in any other problems. For example,
problem 236 requires students to check if any 2 of the 3 given
variables are equal (which has no analog among other prob-
lems) and 233 requires the Math.abs function (which many
students failed to use correctly). Together, these results sug-
gest a hypothesis that Code-DKT’s code features are most
useful at predicting problems that share code structures with
other problems, and less useful at predicting problems that
emphasize novel code structures. This suggests Code-DKT
may be successfully modeling students’ knowledge of com-
mon code patterns.

5.1.4 Ablation Study
Our Code-DKT model design choices include: where to in-
corporate correctness information, how to update the em-
bedding, and what underlying network to use (LSTM or
RNN). Table 4 shows the results of an ablation study on as-
signment A1 to determine which of these choices improved
the performance of our final DKT model (first row). The
final Code-DKT model concatenates the correctness of a
students’ attempt with code features in two places (see Sec-
tion 3.2): before the attention mechanism (the vector er),
and in the final trace fed into the LSTM (zi concatenated
with xi). The model in row 2 only includes correctness in-
formation in the first case, and row 3 includes it only in
the second case. Both models lose performance, but not by
much (0.5%), suggesting that correctness information helps
both in attending to relevant code paths, and final predic-
tions, but this information is somewhat redundant. We also
investigated using an RNN (row 4) instead of an LSTM, but
this was, as predicted, moderately less effective. Finally, re-
call that Code-DKT uses code2vec to embed students’ code
as a vector, and updates this embedding throughout model
training. Row 5 shows a version where we pretrained this
embedding on the training dataset, using code2vec to predict
the correctness of students’ code, and then fixed the embed-
ding when training the LSTM. This model does much worse,
suggesting that the relevant features for predicting the cor-
rectness of code are different from those for predicting future
performance.

5.2 Case Studies

Code-DKT Predictions

234

13

232

233

5

235

236

1

3

Attempted Problem

13 13 13 13 13 232 233 5 5 235 235 235 236 1 1 3
0

0.2

0.4

0.6

0.8

1

Predicted
Probability C

orrect

Case B

Case A

Case C

Pr
ed

ic
te

d
Pr

ob
le

m

Figure 4: Code-DKT generated correctness predictions
heatmap for a student.

DKT Predictions

234

13

232

233

5

235

236

1

3

Attempted Problem

13 13 13 13 13 232 233 5 5 235 235 235 236 1 1 3
0

0.2

0.4

0.6

0.8

1

Predicted
Probability C

orrect

Case B

Case A

Case C

Pr
ed

ic
te

d
Pr

ob
le

m

Figure 5: DKT generated correctness predictions heatmap
for a student.

Table 4: Code-DKT ablation study on A1.

Model Overall AUC
1 Code-DKT (Final Model) 74.31%
2 Correctness: Attention Only 73.81%
3 Correctness: Trace Only 73.84%
4 Model: RNN 73.63%
5 Embedding: Static 68.74%

To further answer RQ3, we examined how code features may
have improved Code-DKT through 3 case studies. We use
prediction heatmaps from Code-DKT and DKT for one stu-
dent, shown in Figures 4 and 5 for Code-DKT and DKT,
respectively. The rectangular cells show which problem the
student actually attempted (y-axis) at each time-step (x-
axis), and the numbers in the cells represent the ground
truth values of whether student’s attempt was successful (1)
or unsuccessful (0). Black frames indicate correct (i.e. accu-
rate) model predictions, while grey ones indicate incorrect
predictions. The color of the heatmap in each cell specifies
the predicted probability of students making a correct sub-
mission on a given problem (y-axis) at the given time-step
(x-axis), and darker means a higher probability of success.
For example, in Figure 4, the student makes 4 unsuccessful
attempts at problem 13, followed by a successful attempt,
then succeeds at problems 232 and 233 in one attempt each.

The heatmaps for the student (Figures 4 and 5) show that
Code-DKT is able to make better predictions on the traces
than DKT, making 11 out of 16 successful predictions, while
DKT is able to make 8 of them correct. Another observation
is that Code-DKT heatmaps have much stronger predictions
with values close to 1 or 0 compared with DKT, showing that
with code features, the model is more confident.

Case A: Successful Prediction: In Case A, Code-DKT uses
code features to make better predictions than DKT on the
predictions of the student’s final submission on Problem 235.
As shown in Figures 4 and 5, while both Code-DKT and
DKT can successfully predict the incorrect submission on
the student’s second submission of Problem 235 and fail to
predict the correct submission on the third, Code-DKT gives
a higher prediction than DKT. In Figure 6, the student’s
code submissions show the reason. The student’s second
submission is almost correct, demonstrating a correct (if in-
efficient) nested if-else structure, but they have omitted the
nested condition in their else branch. Code-DKT is able to

ct

ct+1

Figure 6: Code at times t and t + 1 for Case A, where the
code c1, ...ct is used to predict correctness at t+ 1.

infer the quality of the student’s code, since its prediction
of success probability increased from 44.2% to 49.1% after
the student’s second (incorrect) attempt, while DKT’s pre-
diction decreased from 47.7% to 46.7%. Code-DKT’s higher
prediction may be because the if-else structure the student
was missing was very similar to one they had already writ-
ten, as shown in Figure 6. These code structures are eas-
ily captured by the path-based AST representation used by
code2vec. Without code features, it is difficult for DKT to
predict whether the student is going to succeed on t+1, since
it only knows the student has failed twice, not how close they
are to succeeding. Even with code features, there is still a
great deal of uncertainty. No matter how close a student is
to a correct answer, there is no guarantee they will achieve it
on their next attempt. This may help to explain why Code-
DKT does not more dramatically outperform DKT overall.

Case B: Unsuccessful Prediction: Case B shows that even
when a student’s code is nearly correct for a given problem,
it doesn’t guarantee that they will be successful on their next
attempt. Sometimes Code-DKT is overconfident in these
situations, and incorrectly predicts success, as in Case B.
Figure 7 shows the last three attempts the student made
on Problem 13: two incorrect followed by a final correct
attempt. The only differences between the final attempt
and the earlier two is shown in the red frames. The student’s
4th attempt achieved the correct logic for Problem 13, the

4th

3rd

5th

Figure 7: Case B 4th, 5th and 6th code attempts.

Problem
233

Problem
232

Problem
5

Figure 8: Case C, using code from problems 232 and 233 to
predict the same student’s performance on problem 5

5th attempt adds an empty return statement, and the 6th
and final attempt adds the appropriate return value. After
seeing the almost-correct code at their 4th attempt, Code-
DKT predicted that the student would succeed on the next
attempt since the modifications they needed were minimal
(just write “return value;”), but it took one extra attempt
to get it right. An expert might make a similar conclusion,
that the student was close enough to realize their mistake
and submit a correct answer, and would have similarly been
wrong. This highlights the uncertainty present in any KT
task and the challenges of applying KT to student code.

Case C: Successful Prediction (First Attempt): Case C il-
lustrates that Code-DKT can also use code from previous
problems to improve its predictions of first attempts of new
problems (as shown quantitatively in Table 2). For example,
when the student successfully completes problems 232 and
233 in a single attempt, Code-DKT’s prediction of the stu-
dent’s success on problem 5 increases from 42.0% to 50.0% to
72.5% respectively, leading it successfully predict success on
the student’s first attempt at problem 5. However, DKT’s
confidence only modestly increased from 41.8% to 47.3% to
47.0%, leading it to incorrectly predict failure. Both models
know that these problems are related, and share some learn-
ing concepts (based on how other students’ successes on the
problems are related), but Code-DKT’s analysis of the stu-
dent code allowed it to infer more about the knowledge that

was demonstrated in past problems.

We use these three consecutive code submissions to explain
why this may be the case in Figure 8. For example, in Prob-
lem 232, the student directly uses Boolean variable in the
if-condition (if (vacation)) rather than a superfluous com-
parison (if (vacation == true)) that many students use,
demonstrating a higher level of understanding. This same
direct usage of Boolean variables is seen in the if condition
and return statement of Problem 5. The code submission
on Problem 233 further suggests the student is able to com-
bine logical operators with Boolean variables to return a
Boolean expression. This occurs again in the return state-
ment of the students’ attempt at Problem 5, shown in the
lower rectangular. While we cannot know for certain which
code features Code-DKT used to make its success prediction
for Problem 5, these repeated code structures are one possi-
bility, given code2vec’s ability to recognize repeated patterns
in ASTs.

6. DISCUSSION
RQ1: How well do domain-general models perform? We used
domain-general KT models (DKT) as the baseline models
for our programming dataset. These models performed rel-
atively poorly, averaging 73.09% AUC across assignments.
While this is considerably better than chance, the perfor-
mance may not be high enough to use in some student mod-
eling contexts. For example, for assignment A1, the recall of
DKT was 31.4% and the precision was 46.5%, so the model
fails to identify two thirds of unsuccessful attempts, and over
half of the time when the model predicts a failed attempt,
the student actually succeeded. This suggests that KT is a
difficult challenge on this dataset. By contrast, DKT has
historically been effective on other datasets, which are both
larger and in other domains, such as EdNet [13], Assistments
[41] and KhanAcademy [34]. One possibility is that the more
complex nature of programming problems, with myriad pos-
sible correct and incorrect solutions, makes KT prediction
more challenging on this dataset, compared to those in other
domains. If this is the case, several aspects of programming
may contribute to the challenge of modeling student suc-
cess. Programming problems often require many attempts
to get correct (6.1 on average in our dataset), leading to
class imbalance. In our dataset, the problem descriptions
were complex, and their solutions involved complex condi-
tional logic, and students had to write perfect Java syntax
for the program to compile. These factors mean there are
many ways for students to make small “slips”, making the
relationship between skill and success less direct.

Another possibility is that our dataset (410 students) was
simply too small for complex deep models to find success,
compared to the 1000s or even 100,000s of learners in other
datasets where DKT has been evaluated. However, model
complexity alone does not explain the difference, since the
simpler BKT model did even worse than DKT, and our
Code-DKT model, which had far more parameters, per-
formed better. Additionally, DKT has historically performed
well on some other small datasets (e.g. the “ASSIST-Chall”
and “STATICS” datasets from [31] with 300-700 students).
Regardless, many tutoring systems only have hundreds of
students, and effective KT models must still be able to per-
form well on these small datasets. Thus, to the extent that

our datasets is representative of the domain, our results sug-
gest the need for improved KT models for programming.

RQ2: How can code features improve KT models? Our re-
sults show that a simple extension of DKT with code fea-
tures does not improve its performance. This result is some-
what surprising, given that relatively simple features (e.g.
the presence of a return statement) should be at least some-
what related to how close a student is to a correct answer. It
is possible such features may improve a model with different
structure, but in our dataset, they were not helpful to DKT.
This suggests the need for thoughtful approaches to incorpo-
rating domain-specific features into deep models. Our Code-
DKT model was able to make reasonable improvements to
DKT (+3.07% overall on A1). This is comparable to the
improvement of SAINT over DKT on the EdNet dataset
(they achieved +2.76% in AUC), or SAKT over DKT on
various datasets (+3.8%) [31]. This suggests that domain-
specific features can be just as important as model structure
for effective KT. Code-DKT’s improvement is also robust.
It has a +3% to +4% improvement overall on all five assign-
ments. Importantly, however this is still a relatively poor
performance overall, suggesting the need for more work on
leveraging domain-specific features for improved KT.

RQ3: When and how do code features work? We also ex-
plored when and how the code features improved model
performance. We found that code features are most useful
on problems that share similar learning concepts with other
problems in the dataset, and less useful on problems with
unique and difficult concepts (e.g. Math.abs()). This makes
sense – if we make an analogy to the original BKT where
each problem was labeled with KCs, if you had a unique KC,
the model would have no way of predicting on that prob-
lem. In our case, the KCs are inferred by the model, but
the same limitation exists. However, most problems in our
dataset did share primary learning concepts (e.g. loops, con-
ditionals) and benefit from code features, and this repeated
practice is a common feature of many CS1 courses. We also
found that code features are useful for predicting both first
attempts and subsequent attempts. Our case studies reveal
potential mechanisms for both of these effects. For repeated
attempts, the model seems to use the relative correctness of a
student’s code to determine how close they are to a solution
and therefore how likely they are to get it right on the next
attempt. For first attempts, the model seems to identify
code structures in prior attempts that indicate knowledge
or competence with certain programming concepts, which it
uses to make predictions on new problems. More work is
needed to verify these hypotheses, and to understand how
the model represents this knowledge.

Limitations: Our model and experiment have several limita-
tions. 1) All models evaluated, including Code-DKT, have a
relatively low performance, partially due to the difficulty of
the problem and low data size (410 students), as discussed
in Section 6. Still, they perform considerably better than
chance, and such models could still be useful, e.g. in pri-
oritizing help to struggling students. 2) Our dataset was
from a single semester of a course. While our semester-long
dataset of 50 problems is considerably more robust than
some of the prior work on KT in programming (e.g. using
1-2 problems [52]), it is unclear how our results will gener-

alize to other semesters, classes or programming languages.
3) We used only DKT as a baseline model to extend and to
compare against, and it is possible code features may have
different effects on other models. However, as explained in
Section 3.1, DKT has a comparable performance to more
modern deep models, and made sense as a starting point to
explore the effect of code features.

7. CONCLUSION
The contributions of the paper are 1) the Code-DKT model,
which extends DKT with embedded code feature extraction;
2) results showing that CodeDKT consistently improves over
DKT in a programming dataset; and 3) comparisons and
case studies highlighting when and why Code-DKT code fea-
tures help. This paper compared our new Code-DKT model
to domain-general BKT and DKT baselines, and two DKT
models extended with simple code features, demonstrating
improved performance for Code-DKT over these baselines.
However, the best baseline model performance was about
73%, and Code-DKT was 74.3%, demonstrating consider-
able room for improvement on modeling for knowledge trac-
ing in programming. The case studies in this paper illustrate
specific situations where knowledge tracing can be particu-
larly difficult in programming, and where there is potential
for improving code KT, e.g. when common code structures
are used across problems.

Acknowledgements: This material is based upon work sup-
ported by NSF under Grant No. #2013502.

8. REFERENCES
[1] F. Ai, Y. Chen, Y. Guo, Y. Zhao, Z. Wang, G. Fu,

and G. Wang. Concept-aware deep knowledge tracing
and exercise recommendation in an online learning
system. 2019.

[2] M. Allamanis, H. Peng, and C. Sutton. A
convolutional attention network for extreme
summarization of source code. In International
Conference on Machine Learning, pages 2091–2100.
PMLR, 2016.

[3] M. Allamanis and C. Sutton. Mining source code
repositories at massive scale using language modeling.
In 2013 10th Working Conference on Mining Software
Repositories (MSR), pages 207–216. IEEE, 2013.

[4] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A
general path-based representation for predicting
program properties. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 404–419, 2018.

[5] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[6] J. R. Anderson and B. J. Reiser. The lisp tutor. Byte,
10(4):159–175, 1985.

[7] A. Badrinath, F. Wang, and Z. Pardos. pybkt: An
accessible python library of bayesian knowledge
tracing models. In In: Proceedings of the 14th
International Conference on Educational Data Mining
(EDM 2021). ERIC, 2021.

[8] R. S. Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual

estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on
Intelligent Tutoring Systems, pages 406–415. Springer,
2008.

[9] T. Barnes. The q-matrix method: Mining student
response data for knowledge. In American Association
for Artificial Intelligence 2005 Educational Data
Mining Workshop, pages 1–8. AAAI Press,
Pittsburgh, PA, USA, 2005.

[10] P. Chen, Y. Lu, V. W. Zheng, and Y. Pian.
Prerequisite-driven deep knowledge tracing. In 2018
IEEE International Conference on Data Mining
(ICDM), pages 39–48. IEEE, 2018.

[11] Y. Chen, Q. Liu, Z. Huang, L. Wu, E. Chen, R. Wu,
Y. Su, and G. Hu. Tracking knowledge proficiency of
students with educational priors. In Proceedings of the
2017 ACM on Conference on Information and
Knowledge Management, pages 989–998, 2017.

[12] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,
D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge
tracing. In Proceedings of the Seventh ACM
Conference on Learning @ Scale, pages 341–344, 2020.

[13] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee,
J. Baek, C. Bae, B. Kim, and J. Heo. Ednet: A
large-scale hierarchical dataset in education. In
International Conference on Artificial Intelligence in
Education, pages 69–73. Springer, 2020.

[14] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-adapted Interaction,
4(4):253–278, 1994.

[15] A. T. Corbett and A. Bhatnagar. Student modeling in
the act programming tutor: Adjusting a procedural
learning model with declarative knowledge. In User
Modeling, pages 243–254. Springer, 1997.

[16] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng,
M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al.
Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1536–1547, 2020.

[17] T. Gervet, K. Koedinger, J. Schneider, T. Mitchell,
et al. When is deep learning the best approach to
knowledge tracing? Journal of Educational Data
Mining, 12(3):31–54, 2020.

[18] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages
2330–2339, 2020.

[19] R. Gupta, A. Kanade, and S. Shevade. Neural
attribution for semantic bug-localization in student
programs. Advances in Neural Information Processing
Systems, 32, 2019.

[20] F. Hermans and E. Aivaloglou. Do code smells
hamper novice programming? a controlled experiment
on scratch programs. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), pages
1–10. IEEE, 2016.

[21] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[22] B. P. Iii, A. Hicks, and T. Barnes. Generating hints
for programming problems using intermediate output.
In In: Proceedings of the 7th International Conference
on Educational Data Mining (EDM 2014), 2014.

[23] W. Jin, L. Lehmann, M. Johnson, M. Eagle,
B. Mostafavi, T. Barnes, and J. Stamper. Towards
automatic hint generation for a data-driven novice
programming tutor. In Workshop on Knowledge
Discovery in Educational Data, 17th ACM Conference
on Knowledge Discovery and Data Mining, 2011.

[24] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proceedings of the 3rd
International Conference on Learning
Representations, ICLR 2015, 2015.

[25] K. Leelawong and G. Biswas. Designing learning by
teaching agents: The betty’s brain system.
International Journal of Artificial Intelligence in
Education, 18(3):181–208, 2008.

[26] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions
on Knowledge and Data Engineering, 33(1):100–115,
2019.

[27] M. Maniktala, C. Cody, A. Isvik, N. Lytle, M. Chi,
and T. Barnes. Extending the hint factory for the
assistance dilemma: A novel, data-driven helpneed
predictor for proactive problem-solving help. Journal
of Educational Data Mining, 12(4):24–65, Dec 2020.

[28] Y. Mao, Y. Shi, S. Marwan, T. W. Price, T. Barnes,
and M. Chi. Knowing” when” and” where”:
Temporal-astnn for student learning progression in
novice programming tasks. In In: Proceedings of the
14th International Conference on Educational Data
Mining (EDM 2021), 2021.

[29] Y. Mao, R. Zhi, F. Khoshnevisan, T. W. Price,
T. Barnes, and M. Chi. One minute is enough: Early
prediction of student success and event-level difficulty
during a novice programming task. In In: Proceedings
of the 12th International Conference on Educational
Data Mining (EDM 2019), 2019.

[30] B. Mostafavi and T. Barnes. Evolution of an
intelligent deductive logic tutor using data-driven
elements. International Journal of Artificial
Intelligence in Education, 27(1):5–36, 2017.

[31] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. In In Proceedings of the 12th
International Conference on Educational Data Mining
(EDM) 2019, 2019.

[32] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In International
Conference on User Modeling, Adaptation, and
Personalization, pages 255–266. Springer, 2010.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019.

[34] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. Advances in Neural Information Processing
Systems, 28, 2015.

[35] T. W. Price, Y. Dong, and D. Lipovac. isnap: towards
intelligent tutoring in novice programming
environments. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education, pages 483–488, 2017.

[36] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.
Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, et al. Progsnap2: A
flexible format for programming process data. In
Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 356–362, 2020.

[37] G. Rasch. Probabilistic models for some intelligence
and attainment tests. ERIC, 1993.

[38] V. Raychev, P. Bielik, and M. Vechev. Probabilistic
model for code with decision trees. In Proceedings of
the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 731–747, 2016.

[39] K. Rivers, E. Harpstead, and K. Koedinger. Learning
curve analysis for programming: Which concepts do
students struggle with? In Proceedings of the 2016
ACM Conference on International Computing
Education Research, pages 143–151, 2016.

[40] E. Rowe, J. Asbell-Clarke, R. S. Baker, M. Eagle,
A. G. Hicks, T. M. Barnes, R. A. Brown, and
T. Edwards. Assessing implicit science learning in
digital games. Computers in Human Behavior,
76:617–630, 2017.

[41] D. Selent, T. Patikorn, and N. Heffernan. Assistments
dataset from multiple randomized controlled
experiments. In Proceedings of the Third (2016) ACM
Conference on Learning@ Scale, pages 181–184, 2016.

[42] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price.
More with less: Exploring how to use deep learning
effectively through semi-supervised learning for
automatic bug detection in student code. In In
Proceedings of the 14th International Conference on
Educational Data Mining (EDM) 2021, 2021.

[43] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In LAK21: 11th
International Learning Analytics and Knowledge
Conference, pages 606–612, 2021.

[44] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi.
Saint+: Integrating temporal features for ednet
correctness prediction. In LAK21: 11th International
Learning Analytics and Knowledge Conference, pages
490–496, 2021.

[45] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen,
C. Ding, S. Wei, and G. Hu. Exercise-enhanced
sequential modeling for student performance
prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[46] V. Swamy, A. Guo, S. Lau, W. Wu, M. Wu,
Z. Pardos, and D. Culler. Deep knowledge tracing for
free-form student code progression. In International
Conference on Artificial Intelligence in Education,

pages 348–352. Springer, 2018.

[47] M. L. Swartz and M. Yazdani. Intelligent tutoring
systems for foreign language learning: The bridge to
international communication, volume 80. Springer
Science & Business Media, 2012.

[48] N. Truong, P. Roe, and P. Bancroft. Static analysis of
students’ java programs. In Proceedings of the Sixth
Australasian Conference on Computing
Education-Volume 30, pages 317–325. Citeseer, 2004.

[49] K. VanLehn. Student modeling. Foundations of
Intelligent Tutoring Systems, 55:78, 1988.

[50] K. VanLehn. The Behavior of Tutoring Systems.
International Journal of Artificial Intelligence in
Education, 16(3):227–265, 2006.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017.

[52] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming
exercises using deep learning. In In: Proceedings of the
10th International Conference on Educational Data
Mining (EDM 2017), 2017.

[53] S. Wang, A. Ororbia, Z. Wu, K. Williams, C. Liang,
B. Pursel, and C. L. Giles. Using prerequisites to
extract concept maps from textbooks. In Proceedings
of the 25th ACM international conference on
Information and Knowledge Management, pages
317–326, 2016.

[54] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhudinov, R. Zemel, and Y. Bengio. Show,
attend and tell: Neural image caption generation with
visual attention. In International Conference on
Machine Learning, pages 2048–2057. PMLR, 2015.

[55] M. Yudelson, R. Hosseini, A. Vihavainen, and
P. Brusilovsky. Investigating automated student
modeling in a java mooc. In In Proceedings of the 7th
International Conference on Educational Data Mining
(EDM) 2014, 2014.

[56] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International Conference on Artificial Intelligence in
Education, pages 171–180. Springer, 2013.

[57] L. Zhang, X. Xiong, S. Zhao, A. Botelho, and N. T.
Heffernan. Incorporating rich features into deep
knowledge tracing. In Proceedings of the Fourth (2017)
ACM Conference on Learning @ Scale, pages 169–172,
2017.

[58] G. Zhou, H. Azizsoltani, M. S. Ausin, T. Barnes, and
M. Chi. Hierarchical reinforcement learning for
pedagogical policy induction. In International
conference on Artificial Intelligence in Education,
pages 544–556. Springer, 2019.

