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ABSTRACT

This paper studies the use of Reinforcement Learning (RL)
policies for optimizing the sequencing of online learning ma-
terials to students. Our approach provides an end to end
pipeline for automatically deriving and evaluating robust
representations of students’ interactions and policies for con-
tent sequencing in online educational settings. We conduct
the training and evaluation offline based on a publicly avail-
able dataset of diverse student online activities used by tens
of thousands of students. We study the influence of the
state representations on the performance of the obtained
policy and its robustness towards perturbations on the envi-
ronment dynamics induced by stronger and weaker learners.
We show that ‘bigger may not be better’, in that increas-
ing the complexity of the state space does not necessarily
lead to better performance, as measured by expected future
reward. We describe two methods for offline evaluation of
the policy based on importance sampling and Monte Carlo
policy evaluation. This work is a first step towards optimiz-
ing representations when designing policies for sequencing
educational content that can be used in the real world.

1. INTRODUCTION

E-learning platforms have seen a surge in popularity over
the last decade [10], spurred on by the increased Internet
penetration into developing communities [4]. The target de-
mographic has expanded beyond casual users/students as
more organizations adopt e-learning to train their workforce
and actively engage them in life-long learning [34].

As online educational settings become ubiquitous, there is a

growing need for a personalized sequencing of content /support

that can adapt to the individual differences of the student
as well as their evolving pedagogical requirement throughout
the course progression [28]. Research in cognitive science has
long demonstrated the strong correlation between adapted
material sequencing and learning outcomes [26]. Static e-
learning platforms lack the capacity to respond to a stu-
dent’s ‘cognitive state’ and therefore perform poorly relative
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to a human tutor [34].

Reinforcement learning (RL) offer a potential approach for
adapting a learning sequence to students [9]. A learning
sequence can be optimized based on a numerical reward (for
example test marks) by a pedagogical agent that prescribes
actions (adaptive feedback or sequencing of content) based
on different states (approximated users’ cognitive states).

There are two main challenges to using RL ‘out of the box’
in educational settings. First, how to choose the best repre-
sentation to model student behavior? On the one hand, in-
creasing the granularity dimension of the state-space allows
to capture intricate dynamics in the model such as students’
cognitive states and skills. On the other hand, models with
complex state spaces are inherently more difficult to learn
and the resulting policy may lack support in the data for
parts of the state space. Second, how to evaluate the re-
sulting sequencing policy? Ideally, sequencing policies will
be deployed online and evaluated with real learners. This
is costly or not technically feasible to carry out in many
cases and an imperfect policy may adversely affect students’
learning.

This paper addresses both of these challenges in the context
of a new publicly available dataset containing the online in-
teractions of thousands of students [7]. Our approach pro-
vides an end to end pipeline for automatically deriving and
evaluating robust representations of students’ interactions
and policies for content sequencing in online educational set-
tings.

To address the first challenge, we present a new greedy pro-
cedure to augment the representation space, by incremen-
tally adding new features and choosing the best performing
representations on held out data. Each policy is evaluated
using expected cumulative reward. We provide several key
insights about the use of RL in Educational contexts. First,
that ‘bigger is not always better’, in that more complex state
spaces may not always lead to better policy performance.
Second, that including a ‘forgetting’ element in the state
space, which is known to affect students’ learning, signifi-
cantly improved performance. Third, that strongly penaliz-
ing rewards from unseen state-action pairs in the data, can
increase the support of the resulting policy without reducing
performance.

To address the second challenge, we use two existing offline
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policy evaluation methods to reliably estimate the perfor-
mance of the resulting policy using only the collected data.
The first method uses importance sampling to correct for
the difference in distributions between the learned policy
and the policy that was used to gather the data. The sec-
ond method simulates the learned policy using Monte Carlo
methods. We also introduce a new approach that evaluates
the policy with respect to perturbations induced by stronger
and weaker learners. We find that perturbing the system dy-
namics have an adverse affect on performance of the learned
policy, specifically in respect to weaker learners; and that in-
creasing the granularity of the state-space makes the policy
more robust to perturbations.

This work is a first step towards optimizing representations
when designing policies for sequencing educational content
that can be used in the real world. Our long term goal is to
develop an adaptive RL based pedagogical agent that is able
to optimize the sequence of learning materials (questions and
lectures) to maximize student performance as measured by
the expected ability to answer questions correctly at varying
levels of difficulties. This agent will have the capacity to
respond in real-time to a student’s current state as they
progress through the learning material.

2. RELATED WORK

This paper relates to prior work in student modeling as well
as automatically sequencing educational content to students
[9]. A common approach in prior work is to integrate learn-
ing/cognitive theory into the construction of the student
model. This imparts domain knowledge into the workflow
and was shown to yield positive results by Doroudi et al. [9].
An example of such approach is the work by Bassen et al. [2].
Their objective was to optimize the sequencing of learn-
ing material from different knowledge components (KCs),
to ‘maximize learning’. Their reward function is based on
the difference between a post-test score (taken by users after
completing the course) and a pre-test score (taken before the
course). This metric is denoted as the Normalized Learning
Gain (NLG). Training the agent with human participants
is far too resource intensive. Instead their training is per-
formed on a ‘simulated learner’ based on Bayesian Knowl-
edge Tracing (BKT), a cognitive model that aims to estimate
a learner’s mastery of different skills. The learner’s response
to a particular question can be simulated based on the mas-
tery of the related skill. The parameters of the BKT were set
based on domain knowledge. Segal et al. [28] also utilised a
similar cognitive based model, Item Response Theory (IRT)
[14] to simulate student responses to questions of different
level of difficulty. This is especially relevant since their ob-
jective was to sequentially deliver questions of differing levels
of difficulty (rather than KCs) to maximize learning gains.

Other approaches forgo the framework of established learn-
ing models and instead manually design their simulators fur-
ther integrating domain expertise. Dorcca et al. [8] employed
a probabilistic model to simulate the learning process. In-
stead of sequencing activities by KCs or difficulties, they
sequenced activities based on their associated learning style
i.e. visual, verbal etc. Therefore, their simulator was manu-
ally designed based on research surrounding these principles.
Iglesias et al. [15] utilised an expert derived artificial Markov
Decision Process to act as the student model. This entails

manually describing the state space, transition probabilities
and rewards. Similar to previous student models, this MDP
can be used to simulate student responses to train the RL
agent.

The works described so far do not utilise historical data (i.e.,
past interactions in the system and their results) to derive
their student model. While integrating expert knowledge
can be beneficial, a completely data-free proposition could
impart strong biases. In our implementation, we take an
alternative approach in using a purely data-driven model.
There are existing literature which also do the same. For
example, the authors of [30, 32, 5, 27] employed data-driven
MDPs as their student model. Different than the hand-
crafted MDP in Iglesias et al. [15], the transition proba-
bilities and reward functions in these MDPs were obtained
from the aggregated statistics observed in the dataset. Data-
driven student models in literature were not only limited to
data-driven MDPs. For instance, Beck et al. [3] utilised a lin-
ear regression model denoted as Population Student Model
(PSM). PSM was trained on student trace data from a learn-
ing software and could simulate time taken and probability
of a correct response.

Data-driven simulators require a quality training corpus that
is sufficiently large and varied [30, 16]. In contrast to EdNet
(a massive dataset collected over several years which we use
in this work), the authors of previous papers were limited
to much smaller scale datasets that were collected from a
single cohort and could not evaluate their policy at scale.
Our work is the first to provide an end to end pipeline from
a large scale data source to a robust RL sequencing policy.

3. BACKGROUND

In this section we provide some necessary background in
Reinforcement Learning & MDPs and briefly describe our
dataset.

3.1 RL and MDPs

A Reinforcement Learning (RL) framework is governed by
a Markov Decision Process [31, 17, 6] that is defined by the
tuple of (S, A, P,R), where § = s1, .., s, is the state space,
A = ai,..,am represents all available actions, P : § x A X
S — [0,1] designates the transition probabilities between
states conditioned on an action and R : S x A xS — R
denotes the reward function that is conditioned on the state,
action and observed next state.

The goal of the agent is to maximize the cumulative reward it
accumulates from each state. This cumulative reward is usu-
ally discounted by a factor «y raised to the power of ¢, to rep-
resent a lower perceived value for rewards received further
in the future. The policy is a mapping of optimal actions
to each state in S. The discounted cumulative reward is de-
noted as the ‘return’, and the return from a particular state
is associated with a policy 7 and the transition dynamics P.
The reward function ties the agent’s optimization goal with
the modeller’s actual objective. Therefore its design must
ensure those two criteria are aligned. The expected reward
of a state (or the state value) under a deterministic policy



7 can be defined as
inf

V(s) =Enp[)_7'r(se,m(t)) | 50 = 5] (1)

where m(t) is the action prescribed by the policy 7 at state
t, r(s¢, at) is the reward obtained in state s; given action a,
so is the initial state and + is a discount factor.

Model-based RL requires a model that holds information re-
garding the environment dynamics i.e. the transition prob-
abilities P and reward function R. It is a common approach
in domains where environment interactions are cost pro-
hibitive [16][18]. The model mimics the behaviour of an en-
vironment and allows inferences about how the environment
will respond to actions [31]. The real-world performance of
the extracted policies are heavily influenced by the quality
of the constructed model [16].

3.2 Data Description

EdNet [7] is a massive dataset of student logs from a MOOC
learning platform in South Korea, Santa, collected by Riiid!
AI Research'. Santa covers a preparation course for the
TOEIC (Test of English for International Communication)
English proficiency exam. There are a total of 131,441,538
interactions collected from 784,309 students on the e-learning
platform. These consist of user records of questions at-
tempted, lectures watched and explanations reviewed, along
with other meta information. EdNet logs are presented at 4
levels of hierarchy with higher levels providing higher fidelity
logs, such as logs of lectures watched and the explanations
reviewed. These are recorded in real time to provide an ac-
curate chronological record of the students’ interaction with
the platform. EdNet records detailed actions such as play-
ing/pausing lectures and payment related information.

4. METHODOLOGY

Our approach, called GIFA (Greedy Iterative Feature Aug-
mentation) maps a representation space of students’ activi-
ties to an optimal sequencing policy using RL. At each step,
a representation-space for the education domain is defined
using a set of features. An MDP model is defined over the
representation space, and model-based RL is used to extract
the optimal policy given the representation space. The pol-
icy is subsequently evaluated using the Expected Cumula-
tive Reward metric. This process is iterated, greedily adding
new features to the representation and computing the opti-
mal policy given the representation (See top of Figure 1).
The resulting representation and policy are verified using
two offline policy evaluation processes (importance sampling
and Monte Carlo) and the robustness of the policies is an-
alyzed against perturbations corresponding to varying stu-
dent types (See bottom of Figure 1). We proceed to describ-
ing our methodology in more detail.

4.1 State Space Representation

Several studies have shown the significant impact of the rep-
resentation choice on RL performance, with some arguing it
is just as influential as optimization algorithm itself [32, 29].
We design the representation candidates for our model to
include features that are derived from the dataset. EdNet
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Figure 1: Pipeline of the GIFA approach

provides a total 13,169 questions and 1,021 lectures tagged
with 293 types of skills [7]. Each question and lecture is seg-
regated into one unique “part”, with 7 parts in total. Each
part was grouped based on some meaningful domain crite-
ria, such as a math topic [2]. EdNet offers a finer grouping
of question/lectures according to the ‘skills’ (293 in total)
they entail. Both ‘part’ and ‘skills’ grouping represent good
candidates for the action space since they group the nu-
merous questions/lectures in a domain meaningful manner.
However the question bank is unevenly distributed with re-
spect to the ‘skills’ grouping, which can lead to difficulties in
getting equal support (or supporting observations) for each
action type from the dataset. Therefore, ‘part’ was chosen
on the basis that its 7 unique action space is both compu-
tationally feasible and better supported in the data.

A key aspect of modeling student learning is to represent
the question difficulty in the state-space [28]. This enables
to adapt the level of difficulty of a question to the stu-
dent’s inferred skill level. Unfortunately EdNet does not di-
rectly classify questions/lectures into difficulty levels, mean-
ing that they would need to be inferred from the student
logs. A natural way to infer difficulty is to measure the per-
centage of correct answers submitted for a question and com-
pare it with other questions in the question bank. A distri-
bution over question difficulties can be created and quantiles
can be derived to evenly split the questions into discrete lev-
els of difficulty. Utilizing this process we created a difficulty
level for each question, with the difficulty levels quantized
into 4 levels ranging from 1 (easiest) to 4 (hardest).

To investigate the impact of the representation on perfor-
mance, we create a feature pool, from which different rep-
resentations are formed using the greedy iterative augmen-
tation algorithm. The initial feature pool contains features
that are widely seen in similar Reinforcement Learning driven
Intelligent Tutoring implementations [2, 15, 32, 5]. The
state features are longitudinal/temporal in nature so as to
represent the users’ behaviour and performance over time.
This sets a reasonable minimum requirement for the data
gathering process, should this implementation be repeated
with other datasets. The initial feature pool, their descrip-
tions, and the associated granularity of their representations
(bins), are shown in Table 1. Quantization of features to bins
was performed so that a finite model can be formed.



Feature Pool

Bins

Description

Yav time”

”correct so far”

”prev correct”

”expl received”

”steps-since-last”

"lects consumed”

”slow answer”

”steps in part”

Yavg fam”

"topic fam”

The cumulative average of the
elapsed time measured at each ac-
tivity.

The ratio of correct responses to the
number of activities attempted.

A flag to indicate whether the user
answered correctly in the previous
question + fixed value for lecture.
Cumulative count of explanations
reviewed by the user.

A count of the number of steps since
the current part was last encoun-
tered.

A cumulative count of the lectures
consumed by a user.

A flag to indicate whether the user’s
elapsed time for the preceding ques-
tion was above the average elapsed
time for that question.

The cumulative count of how many
steps a user has spent in the current
part.

The average part familiarity across
all the 7 parts.

Captures part familiarity of the pre-
viously chosen action (by amount of

activities per topic).

Table 1: Initial Feature pool for state space

Relative to prior work that limited the feature size to be
binary [2, 23, 32] our feature space is considerably larger.
With each user covering on average 440 activities during
their learning period within this dataset[7], a binary split
would lose a lot of information on the evolution of a fea-
ture value throughout the course. Our features in contrast
have up to 8 bins. This ultimately imposes a necessity for
a quality training corpus that can provide sufficient support
for each of the many unique combinations within the feature
space. This is where the scale of the EdNet dataset provides
a distinct advantage relative to previous implementations.

4.2 Deriving the student model

In this section we describe the derivation of an MDP-based
student model using a selected set of features. We model the
transition probabilities as multinomial distributions derived
from state transition counts observed in the dataset as shown
in Equation 2. This means that a particular outcome s;, of
enacting action ay, in state s; has a probability given by the
number of times that outcome was observed in the dataset,
normalized by the sum of all possible outcomes observed
under the same conditions.

N C(si7sj7ak)
Pl 000 t0) = S et s, a) .

Where c(s;, $5, ar) is the count of observed transitions where
enacting action ay in state s; leads to next state s;. This
provides the transition probabilities component of the MDP

student model for each (s,a,s’) or the three argument dy-
namic [31].

In many standard MDP definitions [32, 30, 5], the reward
function is also defined in terms of the three argument dy-
namic i.e. R : S x AxS — R. This assumes a deterministic
environment reward with respect to a given (s,a,s’). The
reward for a student’s response depends on the question dif-
ficulty such that correct responses on harder levels indicate
stronger performance and attain higher rewards. Inversely,
incorrect responses on easier levels attain a larger punish-
ment (negative reward). A symmetrical reward function was
designed with rewards for questions ranging from 1 to 4 if
answered correctly or -1 to -4 if answered incorrectly. We
doubled the penalty of incorrect answers to achieve a nor-
mal distribution usually exhibited in student grades [13].
Thus rewards take values r € {—8,—6,—4,—-2,0,1,2,3,4}.
While the level of difficulty is captured by the action in
the (s,a,s’) tuple, the correctness is only captured in the
states when ‘prev_correct’ (refer table 1) is included in the
representation. Lectures do not have a correct/incorrect re-
sponses and so a default reward of ‘0’ is assigned for lecture
viewing actions.

The specific dynamic values are of course dependent on the
actual state representations. As we continuously augment
the representations (see next section), the support for each
unique state will inevitably fall due to further division of
the observations. Another factor in providing a balanced
distribution of support within the transitions, is the variety
of actions chosen in each state. This ultimately depends on
the action space described earlier and the behaviour policy
used to obtain the dataset. A higher fidelity action space
will lead to an increase in the size transition space i.e. the
unique combinations of (s, a, s’). Although unknown in most
cases, it is important that the behaviour policy is sufficiently
varied in terms of its action choices to ensure a balanced
distribution of support. Because of this, a random behaviour
policy fits the objective well [30]. Since users in EdNet are
allowed to select the ‘part’ and the type of activity they work
on [7], we make an assumption that this random criteria is
partially fulfilled. The caveat here is that not all users have
access to all parts i.e. free users are limited to parts 2 and
5 only.

4.3 Representation Selection

Key to designing a successful model of student behavior de-
pends on deriving information on the student’s cognitive
state, which is a latent variable in the model. With more
features in the representation, one should expect a better ap-
proximation of the students cognitive state and consequently
a better equipped pedagogical agent to provide effective se-
quencing.

We utilise the GIFA approach in obtaining an optimal rep-
resentation. This involves a search of the feature space and
generation of several candidate feature subsets. Each of
these subsets is evaluated based on its corresponding policy
derived from a standard policy-iteration RL solution. The
psuedocode for this process is shown in Algorithm 1. Note
the limit on the number of features A/ which can be based
on a computational limit or a threshold of minimum support
for every unique combination in the feature space.



Algorithm 1 Greedy Iterative Feature Augmentation algo-

Representation Features

rithm MDP_B topic_fam, correct_so_far, av_time
Input: Feature pool €2, Dataset D, Max. number of fea- MDP_1 topic_fam, correct_so_far, av_time,
tures A (optional) expl received
Set: Optimal feature representation S*. MDP_2 topic_fam, correct_so_far, av_time,
while size(S*) < N do expl_received, ssl
for w; € Q do MDP_3 topic_fam, correct_so_far, av_time,
Set: S; =S* +w; expl_received, ssl, prev_correct
MDP = Construct_MDP(S;,D) MDP_4 topic_fam, correct_so_far, av_time,
w* = Policy_Iteration(M DP) expl_received,ssl, prev_correct, av_fam
ECR; = Calculate_ECR(7™) MDP_5 topic_fam, correct_so_far, av_time,

end for
Set S* = S; with highest ECR;.
Remove feature from pool Q = Q — w;

end while

Round Rep. ECR ECR Diff. (%) IS{fZI;'
Base MDP_ B 238.44 - 64
1 MDP_1  283.63 18.95 256
2 MDP_2  387.42 36.6 2048
3 MDP_3  392.05 1.19 4096
4 MDP_4  396.00 1.01 16384
5 MDP_5  396.00 0 65536

Table 2: ECR results showing best performing representation
at each iteration

While our search procedure involves exhaustively looping
through every remaining feature in the feature pool 2 to
form the subsets, one can alternatively employ a different
search algorithm such Monte Carlo Tree Search [12] or cor-
relation based feature selection [29] to create more informed
subsets that are likely to be better candidates. These tech-
niques would be useful in limiting the number of iterations
needed in larger feature pools and are left for future work.

As part of the greedy feature augmentation algorithm above,
an evaluation metric for 7%, the computed policy, is required
for each representation at every iteration. A common prac-
tice used to evaluate a given policy in RL is to use the Ex-
pected Cumulative Reward (ECR) metric which is the aver-
age of the expected cumulative reward under the policy 7",
across all initial states in the dataset (Vz=(s0)).

Note that in each state representation, the initial state of
every user in the EdNet is the same. This is because we
lack any prior information of the user before they begin to
solve questions. When such information is available, the
initial state can capture information from the students pre-
test scores and so would vary across the students in the
dataset.

S. RESULTS

A summary of the results from the greedy iterative augmen-
tations is provided in Table 2. The feature description for
the corresponding MDP representations are given in table 3.
The base MDP is denoted as MDP_B. The ‘ECR Diff.” col-
umn shows the percent improvement in ECR relative to the
smaller representation preceding it. The ‘Rep. Size’ column
illustrates the size of the state feature space. This is depen-

explreceived, ssl, prev_correct, av_fam,
time_in part

Table 3: Representation outputted by algorithm for each
round (added features highlighted)

dent on each constituent feature’s bin size, i.e. the number
of discrete bins allocated. Note that results presented here
are only showing the best performing representation at each
round of the feature augmentation.

5.1 ECR Analysis

The largest spike in ECR followed at the second round of
augmentations with the addition of the ‘steps-since-last’ (ssl)
feature with an increase of 36.6% over the preceding repre-
sentation. This features measures the number of steps or ac-
tivities (questions/lectures) consumed since the current part
was last encountered. This feature is inferring the ‘forget-
ting’ element during the learning process and was inspired
by the ‘spacing effect’ described in [11].

Early research in instructional sequencing in language learn-
ing used models of forgetting to great success [1]. Our find-
ings concur with this, in that by including ‘ssl’ into the
feature space, we dramatically increased the policy perfor-
mance. One could argue that this ECR increase was more
influenced by the larger bin allocation to ‘ssl’ (8 relative to 4
for most other features) rather than the actual utility of the
domain information it is measuring. However, if that were
the case, then we would expect ‘ssl’ to be the first feature
added to the base representation. This was not the case since
the best performing feature in the first round of augmenta-
tions was ‘expl_received’, a 4-size bin feature. Nonetheless,
further exploration is needed to further learn the influence
of bin sizes on the results.

At the final round of iteration, the performance of repre-
sentation MDP_5 only equals the performance of preceding
representation MDP_4. Though we did not have a speci-
fied limit imposed on the number of features, A, the per-
formance plateau exhibited at this final round indicated a
suitable termination point for the augmentation algorithm.
And since MDP_4 produced equal performance to MDP_5
with a smaller representation size, it was chosen to be the
optimum representation within this feature pool.

5.2 Correcting for OOD actions

This section describes our technique for handling the un-
certainty induced by unseen or out of distribution (OOD)
actions in the RL policy. Some of the extracted policies
in the GIFA algorithm included state-actions pairs with 0
support from the training data. Such behaviour is deemed



unsafe for a computed policy [18, 20] as the resulting reward
from such combinations of unsupported state-action pairs is
unexpected. Specifically, this situation should not occur un-
der policies derived from tabular methods as explained in
section 3. Nonetheless we discovered that some of the larger
representations yielded policies with unseen actions. The
policy derived from MDP_4 prescribed unseen actions in 10
states. While this was a small fraction of the total state
space (around 65,000), unseen actions are an important is-
sue to address because, in the tabular case, any state-action
value estimates must be derived only from related experi-
ences [31].

By default, our algorithm prescribes state-action pairs a
value of zero if it was never observed. We discovered that
the problematic states themselves had very little support in
the dataset and were only observed transitioning to them-
selves, before the episode ends. In the few times the state
was visited, a negative or zero reward was produced. Since
these states would only transition to themselves, the values
of these valid actions were either negative or zero. Hence,
from the algorithms perspective, an invalid (unseen) action
with a default value of zero, was preferable (or equal) to the
observed actions.

To combat this issue, we modified the MDP representations
to strongly penalise the rewards from unseen state-action
pairs, in the form of a -9999 reward. This discouraged the
policy from choosing such actions even if the only valid ac-
tions yielded zero or negative returns (The worse case is
bounded from below at >, .. ~* x (—=8) and is clearly
higher than 3, . ~" x (—=9999)). With these changes in
place, we observe no unseen actions in any of the policies.
The performance rank of representations remained constant
with the ECR changes almost negligible. This is because
the states involved were observed very infrequently and oc-
cupied a small probability mass in the transition probabili-
ties. We note that the fix did not have a statistcally signif-
icant effect on our results. In the analysis that follows we
will utilise the penalised representations. We also note that
research by Liu et al. [20] implemented a ‘pessimistic pol-
icy iteration’ approach that similarly penalises insufficiently
supported state-action tuples (filtered by a threshold).

6. OFFLINE POLICY EVALUATION

Ideally, the outputted policy from the GIFA approach would
be evaluated in real time with students who directly inter-
act in the EdNet environment. However, mistakes in the
policy can have adverse affects on students’ engagements
and learning [21]. The offline policy evaluation (OPE) field
has been developed specifically to address this issue, by pro-
viding reliable estimates of policy performance using only
past collected data [21]. We undertake two different OPE
approaches to evaluate the computed optimal policies from
the previous sections. Furthermore, we add a 3rd offline
evaluation approach which evaluates the robustness of the
computed policies to different model perturbations repre-
senting several student types.

6.1 Rollouts: Monte Carlo Policy Evaluation

The first OPE approach relies on the family of ‘Direct Meth-
ods’ for policy evaluation. These methods focus on regres-
sion based techniques to directly estimate the value function

of a policy under a given target policy [33]. Most of these
methods do not need an estimation of the behaviour policy
which was used to collect the dataset. In this method we
implement a model-based direct method, Monte Carlo (MC)
Policy Evaluation. This involves performing ‘rollouts’ from
the initial states using the target policy until episode termi-
nation. The observed returns from each state in the rollout
are averaged across many rollouts to yield the value function
of the state. To ‘rollout’ our policy we would need to interact
with the environment. However, as the name ‘model-based’
suggests, a model (in our case, the data-derived MDPs) act-
ing as simulator allows us to perform these rollouts offline.

A key requirement for MC policy evaluation is an episodic
environment, one where the episode terminates at a finite
step at a ‘terminating state’ [31]. Although the user episodes
in EdNet are finite, our data-derived MDPs are continuing
i.e. without a terminating state. While a default terminat-
ing state could have easily been created for this purpose,
it is unclear as to which ‘action’ would transition the final
observed state to this terminating state and what ‘reward’
it would receive in the process. The choice of reward, could
inadvertently impact the decisions made by the policy at
the earlier states. Hence our MDPs were designed to be
continuing to avoid this ambiguity.

This poses a problem with MC policy evaluation since the
returns are only calculated when the episode ends. A po-
tential workaround was to manually terminate the episode
at a fixed length of rollout and calculate the returns from
there. We chose a rollout length of 1000 steps and show that
because of the discounting, any reward, r € R, received past
this step, will have a negligible influence on the return of the
initial state i.e. maz,(v'°°||r € R||) = 3.5 x 10~*. Hence
this rollout length provides a good approximation of the long
term return, since any future actions will have minimal in-
fluence on the value of the initial state, i.e. the only state
value of concern in our analysis. However, this assumption
will only work with the ‘first-visit’ variant of MC policy eval-
uation (equation 3), where only the returns of a state when
it was first encountered in the episode are considered and
averaged across the rollouts [31]. This is opposed to the
‘every-visit’ variant which considers all the returns from a
state every time it is visited in the episode. A fixed rollout
length will not be suitable in the latter variant, since the
initial state could be encountered more than once during
the rollout. For example, if sp was encountered again at the
500th time step, then its return estimate for the second visit
is based only on the remaining 500 future steps. Implement-
ing the first-visit variant ensures that all V' (so) estimates are
derived from observations spanning 1000 time steps ahead.

Nyotiouts 1000

> Atk (3)

1 t=1

1
VWMC so) = ——
¢ ( 0) Nrollouts

We now evaluate the policies under the MC Policy Evalua-
tion method. A curve is plotted for the returns (cumulative
rewards) from the initial state as the rollout progresses until
the 1000th step for a total of 100 rollouts. The 95% con-
fidence intervals are plotted around the mean value of the
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Figure 2: Monte Carlo Evaluation: Returns from sy across
steps under the policies from the associated representations

rollouts. This analysis is shown in figure 2. As with the
ECR, we can see that the improvements start to diminish
significantly after the second round of augmentations. The
performance of the estimated stochastic behaviour policy un-
der this simulation (the policy that is directly induced from
the data) is illustrated as a baseline. From this compari-
son, we see much better student performance under the RL
policies than the baseline, signalling that the adaptive be-
haviour of the policy under RL framework is superior than
the strategies used in the behaviour policy. We can also
conclude that the larger representations exhibit better per-
formance, potentially owing to a better approximation of the
cognitive state as hypothesized.

6.2 Importance Sampling Policy Evaluation
The second OPE approach used relies on Importance Sam-
pling. Importance sampling (IS) is a range of methods that
in general estimate the expected values under one distribu-
tions given samples from another [31]. A wide range of RL
literature have adopted this method as a way of evaluating a
target policy (the policies derived from the RL algorithms)
given samples derived from the behaviour policy (the pol-
icy used to gather the data) [16]. In this work we use the
Weighted IS (WIS) metric presented in equation 4.

N T, mwe(allst T i
Zi:1[(Ht:0 WEI‘S;;)(Zzzl ’Yth)]

ZN HTi We(ai‘sé)
i=1 1li=0 T, @il

WIS =

(4)

In this equation, N represents the number of users in the
dataset and T; is the trajectory length observed for user i.

A key feature in the formula is the importance sampling

. T ks ai si’ . . . .
ratio [[, %, %, which considers the differences in ac-
- bld¢lS

Rep. WIS
MDP_B -4.146
MDP_1 -0.940
MDP_2 -4.382
MDP_3 4.319
MDP_4 4.910

Table 4: Importance sampling results - different representa-
tions

tion probabilities between the target policy m. and the be-
haviour policy m. The product of the individual ratios
across t; = 0 — T quantifies whether a given sequence is
more (or less) likely under 7. than 7, and therefore weights
the returns accordingly. Averaging this across the entire
dataset has the effect of adjusting the expected return sam-
pled from the distribution generated by 7, to estimate the
expected return sampled from .

A well documented problem with IS estimators is the high
variance induced by the importance sampling ratio due to:
1) a large difference between the two policies or 2) a long
horizon length for the trajectories [33]. WIS reduces this
variance by utilizing a weighted average instead of the sim-
ple average in standard Importance Sampling metric [31].
This method relies on the available knowledge of the be-
haviour policy. Since we do not have explicit information on
this, 7, must be estimated from the dataset, D as shown in
equation 5.

Es,aED 1[s = s,a = d

ZSG'D 1[5 = 8]

()

(als) =

The results of the WIS metric for the different representa-
tions are shown in table 4. We see that the 3 smaller repre-
sentations yield negative values, indicting expected average
failure in solving questions when utilizing these represen-
tations. For larger MDP representations, we can observe
better performance, with MDP_4 demonstrating the best
estimated performance.

6.3 Evaluating Model Robustness for Differ-
ent Student Types

The optimal policy computed in the previous section re-
lies on the average rewards and transition probabilities esti-
mated from available data. In practice, these parameters are
noisy and may change in different situations and during the
execution of a policy [19]. As such, the performance of the
computed policy may deteriorate significantly with changes
in the environment dynamics [22]. In our case, with the
MDP representing students acting in an educational system,
this uncertainty represents the challenge of how to model
parameters change for different student types and how do
these changes influence the outcome of the computed poli-
cies. To model this uncertainty, we use a simplified robust
MDP framework [25] where the uncertainly in model param-
eters is tied to specific student types. Specifically, we test
the robustness of the computed policies under perturbations
of the environment dynamics which are tied to two different
student types. These perturbations are domain informed
and are designed to correspond to ‘stronger’ and ‘weaker’
students types.



Algorithm 2 Domain informed perturbations

1: Input: Set of features to perturb Q, MDP transition
probabilities Pasrp p, set of domain filters for each feature
1, positive perturbation constant ¢ = 0.05

2: for Ps,a,s’ € Pryupp do

3: As,a,s’ = Eweﬁ Aw
Where A, — {C, if ws,w,s satisfies Y,
0, else
4: end for
5: Adjust A, 4,5 relative to others within the s, a pair:

— 1
As,a,s’ = As,a,s/ Tl Zs/ As,a,s vAs,a,s’

6: Set perturbed transition probabilities Pryrpp = Pupp

7: for Ps,a,s’ € 75MDP do

8: Ps,a,s’ = maX(Ps,a,s/ + As,a,37 O)

9: end for

10: Ps,a,s’ = % vps,a,s’

11: Return: Pypp

Feature to Perturb  Strong Weak
Topic_fam Wy > Ws Wy = Ws
Correct_so_far Wyt 2> Ws Wy < Ws

Avg_time Wy <ws Wy > Ws

Table 5: Domain perturbation filters,;) for each feature in Q
for the ‘Strong’ and ‘Weak’ perturbed MDPs, P respectively

We now describe the perturbation process and analysis. We
define a set of domain informed filters v for each perturbed
feature. In our implementation we perturb three base fea-
tures that were common in all representations i.e. ‘Topic_fam’,
‘Correct_so_far’ and ‘Avg time’. The domain rules for the
two separate perturbations ‘Strong’ and ‘Weak’ are defined
in table 5. Specifically, in these perturbations we boost the
topic familiarity and correctness and reduce the cumulative
elapsed time for the ‘Strong’ student type and we reduce
correctness and increase the cumulative elapsed time for the
‘Weak’ student type. For example, for the feature ‘Cor-
rect_so_far’ and the ‘Strong’ user case, we set the filter to
capture transitions where the next state s’ registers a greater
or equal value relative to the current state s. When this filter
is inputted in algorithm 2, the transitions that satisfy this
filter will be boosted by the constant c. This ultimately has
the effect of increasing the probability mass of this transi-
tion, perturbing the original MDP to make such transitions
more likely.

Algorithm 2 introduces the perturbation process. In lines 2
to 4 we compute the transition probability deltas that are
required for every transition which satisfies one or more per-
turbation filter. This is done for all state transitions in the
MDP. In line 5 we create transition deltas for all transitions,
accounting for the deltas introduced by the perturbed tran-
sitions. In lines 6 to 9 we apply the transition deltas to the
transition probabilities, and finally in line 10 we normalize
the transition probabilities following the changes made.

The results of two separate perturbations are measured by
performing a policy evaluation algorithm with the original
policy but under the perturbed MDPs (Strong & Weak) as
the simulators.

Figure 3 shows the results of this analysis for the different
representations. Notice that in all the representations, the
original non-perturbed MDP always yielded the best perfor-
mance (non-visible for MDP_4 as the student type lines over-
lap). This is expected, since the original policy was derived
to perform optimally on the original MDP. However, as the
representation size increases, the effects of the perturbations
becomes less pronounced, almost becoming negligible past
MDP_1. To determine if the larger representation would
be affected with more features perturbed, we conducted an-
other round of perturbations, this time only on MDP_4 and
with all of its features (barring ‘ssl’) perturbed. The results
show that the performance of the policy was not affected by
the extended perturbations. This means that the MDP_4 is
more robust towards deviations from the expected dynamics
derived from the data. Hence, we have increased confidence
that such policies would be robust in the real-world setting,
maintaining their performance for students that exhibit dif-
ferent learning characteristics than those averaged over the
observations in the EdNet dataset.

Taking the three offline evaluation results in combination we
conclude that MDP_4 demonstrated the best performance
across representations and perturbations.

7. DOMAIN RELATED INSIGHTS

By analyzing the state values and the policies derived from
the RL algorithms, we can discover interesting insights in the
way the policy behaves with respect to different learners. We
demonstrate this approach on the simpler MDP_B which is
based on the 3 features: topic familiarity, correct so far and
average time. In figure 4, we plot the derived state values
against the av_time and correct_so_far features in MDP_B.
Based on our reward design, the state values indicates the
future user performance. The expected future performance
of the policy is much higher when the student has a high
correct_so_far answer ratio. However, the relationship be-
tween the average time and state values is more complex. At
higher values of ‘correct_so_far’, a higher ‘av_time’ entails a
larger state value, but when ‘correct_so_far’ is low, the op-
posite is true and in such a case lower values of ‘av_time’
entails a larger state value. This means that for students
with lower success so far, faster average time is indicative
of higher future success. We hypothesize that this is due to
the policy’s inability to significantly assist students which
are consistently unsuccessful in solving questions and which
are also taking relatively long time to dwell on each and ev-
ery question. We note that even if the policies themselves
are not used, findings like this can inform us of useful fea-
tures and their relationships in predicting future user perfor-
mance following informed interventions. Such findings can
also inform us on the limits of automated approaches, and
on the need for additional tailored support for struggling
students, e.g. by supplying personalized human assistance
where automated approaches are expected to demonstrate
low effectiveness.

Analyzing the action choices in the policies, we discover that
the RL algorithms tend to put preference on level 4 actions
(harder questions). Indeed these do yield the highest re-
ward and the lowest punishment in our reward design. One
possible extension is to investigate how a change in the re-
ward function design would impact the policy preferences.
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Figure 3: MC Policy Evaluation of the original policy under the perturbed MDPs

Figure 4: State values vs features

Again, even if the computed policies are not deployed in the
field, such analysis can be useful as a technique in letting the
data guide pedagogical strategies, for example by connecting
pedagogically justified rewards to sequencing policies that
maximize such a reward given the available data.

8. CONCLUSIONS AND FUTURE WORK

In this paper we approached the challenge of designing an
adaptive RL based policy for optimizing the sequencing of
learning materials to maximize learning. Human tutors usu-
ally outperform their computer counterparts, in that they
are able to adapt to certain cues exhibited by the student
during learning [34]. Training an RL policy with actual users
is far too resource intensive. Therefore, we simultaneously
tackle the problem of training and evaluating an RL algo-
rithm offline based only on pre-collected data. A purely
data-driven student model was created for this purpose. We
hypothesized that a complex model is required to capture
the intricacies of human learning. To investigate this theory,
a large dataset, EdNet, was necessary to provide sufficient

support for the models.

Our student model was constructed in the form of a data-
derived MDP, with the transition and reward dynamics es-
timated from the observations in the data. The raw logs
were transformed into domain inspired features. By using
the MDPs we then trained our agents with the model-based
Policy Iteration algorithm. To determine whether a more
complex model yields better tutoring, we employed a greedy
iterative augmentation procedure. The ECR metric guided
how we chose our features and demonstrated the positive
relationship between representation complexity and policy
performance. In our analyses we discovered issues with Out
of Distribution actions in the policies and presented a so-
lution in the form of penalising rewards. We further eval-
uated our policies using the Monte Carlo and Importance
Sampling Policy Evaluation algorithms and tested the poli-
cies robustness against domain informed perturbations of
the dynamics. We show that the larger representation are
less impacted by the perturbations and therefore can pro-
vide a more equal learning experience for stronger or weaker
students.

Several limitations are acknowledged which consequently open
up further investigations. The influence of the bin-size on
feature preference in the representations was discussed briefly
but lacked conclusive evidence to rule out entirely. This
work is necessary to ensure that the features are selected
based only on the utility of the domain information they cap-
ture. From our model-based policy analyses we also discov-
ered out-of-distribution actions in the policy space. Though
we managed to remedy the problems for completely unseen
actions through strong penalisation, the next course of ac-
tion is to also penalise low supported actions/states vari-
ably according to their uncertainty as was explored by [20,
35]. We would also like to compare our approach to other
feature selection and augmentation algorithms, such as ge-
netic based metaheuristics [24]. Finally, the inferred policies
should be evaluated in the real world in a controlled study.
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