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ABSTRACT

The need to identify student cognitive engagement in online-
learning settings has increased with our use of online learn-
ing approaches because engagement plays an important role
in ensuring student success in these environments. Engaged
students are more likely to complete online courses success-
fully, but this setting makes it more difficult for instructors
to identify engagement. In this study, we developed pre-
dictive models for automating the identification o f cogni-
tive engagement in online discussion posts. We adapted the
Interactive, Constructive, Active, and Passive (ICAP) En-
gagement theory [15] by merging ICAP with Bloom’s tax-
onomy. We then applied this adaptation of ICAP to label
student posts (N = 4,217), thus capturing their level of cog-
nitive engagement. To investigate the feasibility of automat-
ically identifying cognitive engagement, the labelled data
were used to train three machine learning classifiers (i.e.,
decision tree, random forest, and support vector machine).
Model inputs included features extracted by applying Coh-
Metrix to student posts and non-linguistic contextual fea-
tures (e.g., number of replies). The support vector machine
model outperformed the other classifiers. O ur findings sug-
gest it is feasible to automatically identify cognitive engage-
ment in online learning environments. Subsequent analyses
suggest that new language features (e.g., AWL use) should
be included because they support the identification of cog-
nitive engagement. Such detectors could be used to help
identify students who are in need of support or help adapt
teaching practices and learning materials.
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Educational theories and empirical studies have emphasized
the importance of learner engagement [34]. Engaged learn-
ers are active; they invest time and effort during the learn-
ing process [|44] 56| 66]. Empirical studies have corrobo-
rated the importance of engagement for student learning
and well-being (39} |57} [74]. Studies have consistently found
a significant association between student engagement and
the cognitive and non-cognitive skills of students. For ex-
ample, engaged students are more likely to be academically
successful [89], retain knowledge [9], and show higher levels
of critical-thinking [13] and problem-solving (61, (97]. Fur-
thermore, engaged learners are more likely to show higher
levels of school belongingness and socio-emotional well-being
|22} 136l [73]. They are also are less likely to drop-out [2, |3}, [41]
or demonstrate negative behaviors in school [62, |93]. Con-
sistent with these general educational outcomes, a positive
association between active participation in online discussion
forums and academic achievement has been found [23] |51}
85]. Learner engagement, therefore, is a vital and predictive
aspect of student learning and well-being [30].

Given that student engagement is a strong correlate of stu-
dent achievement, researchers have long been interested in
identifying student engagement levels to improve student
success and learning processes. Identifying student engage-
ment levels could be used to generate actionable feedback for
students [52]. This feedback can be provided by instructors
or through automated feedback that is delivered via learn-
ing dashboards or system features that nudge students to
engage with the task.

However, identifying student (dis)engagement is difficult for
instructors in online settings. In recent years, researchers
have been interested in automating engagement identifica-
tion. Automatically identifying students’ engagement levels
may also help instructors identify potentially at-risk stu-
dents. Instructors may intervene to minimize the negative
impact of disengagement on student learning. Furthermore,
engagement detection could generate real-time feedback that
instructors could use themselves. This critical feedback may
be used to inform and evaluate the effectiveness of instruc-
tional practices employed in the class. Additionally, engage-
ment detection could be embedded in instructor-facing ana-
lytics dashboards to help them understand student engage-
ment in their classes [67]. Detecting that many learners are
disengaged with the task could help instructors change their
instructional strategy and practice, adjusting to meet the
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needs of learners in their class [1, |68]. Providing instruc-
tors with information about learner engagement could also
enable them to intervene in a timely manner [31].

Instructors can harness information that is easily obtained
in face-to-face learning environments to observe student be-
havior and make inferences about how they are engaging.
However, certain types of engagement (e.g., cognitive, affec-
tive) are not directly observable. Students may also feign
engagement. Even if the form of engagement the instructor
is interested in monitoring is easy to observe in person, that
may not be the case in online settings. With the recent chal-
lenges that the COVID-19 pandemic has brought and the
associated widespread use of online learning environments
[69], the automated detection of learner engagement has be-
come more vital yet more complicated. With the use of log
data and dashboards, instructors could evaluate learner time
within the system or time on task as an indication of behav-
ioral engagement [67]. Unfortunately, proxies, such as time
spent within a system, will not help an instructor extract
the type of cognitive engagement that students demonstrate
in online learning environments.

Many have tried to define student engagement, which is la-
tent and inherently multi-faceted. Along with this, they
have tried to model different types of learner engagement
(e.g., academic, behavioral, affective, cognitive) in various
learning contexts (e.g., online education, in-person classes).
Typically, engagement is defined as students’ motivation,
willingness, effort, and involvement in school or learning-
related tasks |19} [87]. It is operationalized as students’ in-
vestment of resources such as effort, time, and energy into
learning 53| |60} |61}, 62].

Behavioral, emotional, and cognitive engagement are fre-
quently studied types of engagement. Behavioral engage-
ment is generally defined as time on task [18| 42| 501 64}
94], and focuses on overt student behaviors |7]. Emotional
engagement typically refers to learners’ feelings, affect, and
emotional reactions |77} |81} [83]. Cognitive engagement is
conceptualized as employing learning strategies and invest-
ing effort and persistence into the task at hand |18} 42 |86,
94]. Different types of engagement are not mutually exclu-
sive. For example, some researchers have argued that cog-
nitively engaged learners are also behaviorally engaged, but
the reverse is not necessarily true [50].

Cognitive engagement is one of the most challenging types
of engagement to detect. Although there are certain theories
developed for characterizing and capturing cognitive engage-
ment in physical classroom settings (e.g., ICAP; [15]), they
can be difficult to directly apply in online discussion envi-
ronments, particularly in discussion forum posts (see [90]).

In this study, we focused on developing predictive models
for automating cognitive engagement detection in discus-
sion posts using natural language processing (NLP) and ma-
chine learning (ML) methods. This will help us evaluate
the feasibility of automating cognitive engagement identifi-
cation in online discussion posts. We will also analyze the
classification errors and feature importance when predicting
cognitive engagement through these relatively transparent
models. Understanding feature importance and classifica-

tion errors may help us develop better models for detecting
cognitive engagement.

2. ENGAGEMENT IDENTIFICATION AP-
PROACHES

Dewan and colleagues [30] proposed an engagement detec-
tion taxonomy and grouped engagement detection methods
under three main categories: manual (e.g., self-report mea-
sures), semi-automatic (e.g., engagement tracing), and au-
tomatic (e.g., log file analysis).

Manual engagement detection methods include self-report
measures, checklists, and rating scales. Using self-report
measures, students are asked to indicate their own engage-
ment levels (e.g., |5 [12, [43]). Although it is easier to admin-
ister and use self-report measures [82], one major limitation
of these instruments is their susceptibility to reporter bi-
ases. When learners rate their own engagement level, they
may not accurately reflect their engagement during learn-
ing processes |35] because they lack the capacity to do so,
or students may not reflect their true engagement status to
avoid getting in trouble in a class (e.g., [45]). Therefore, self-
report measures may not provide an objective evaluation of
engagement.

The checklists and rating scales that instructors use are less
prone to self-report biases (e.g., self-serving bias) during the
coding process. Yet, checklists and rating scales also have
certain limitations. Using these methods requires a great
deal of time and effort [30]. For example, instructors, espe-
cially in large-scale classrooms or online environments, may
not track each learner accurately. Learners may also pre-
tend to be on task when in fact they are not engaged with
the task. Hence, teacher evaluations made through such
means may not accurately present the engagement levels of
learners in class. Additionally, both self-report measures
and checklists may not accurately capture fluctuations in
learner engagement [90].

Semi-automatic engagement detection methods include en-
gagement tracing. Using log or trace data, the timing and
accuracy of learner responses have been employed to iden-
tify engaged and disengaged learners (8] [54]. For example,
an unrealistically short response time is considered an indi-
cation of student disengagement during a quiz attempt.

Finally, automatic engagement detection methods include
sensor data, log data, and computer vision-based approaches
that analyze eye movement, body posture, or facial expres-
sions [30]. These detection methods may automatically ex-
tract features from learners’ body movement or facial expres-
sions using sensor data as input [91]. Additionally, learner
activities have been traced in learning management systems
to automatically extract features related to engagement de-
tection |16}, |17]. These approaches may provide useful real-
time information about student engagement, but they intro-
duce privacy concerns such as being recorded.

2.1 Cognitive Engagement Frameworks

Two frequently employed cognitive engagement frameworks
include Community of Inquiry (Col; [46]) and Interactive,
Cognitive, Active, and Passive engagement (ICAP; [15]).



The Col framework identifies three elements (i.e., social pres-
ence, teaching presence, and cognitive presence) that sup-
port successful learning. The cognitive presence element of
the Col framework has been widely used by researchers (e.g.,
[58L|70]) for analyzing student learning and developing pre-
dictive models in online courses. In those studies, cognitive
presence encompasses five phases: triggering event, explo-
ration, integration, resolution, and other.

The ICAP framework [15] conceptualizes hierarchical cogni-
tive engagement levels. Higher levels are related to higher
cognitive engagement and learning growth. From top to bot-
tom, the order of cognitive engagement levels is interactive,
constructive, active, and passive.

Although both frameworks have been used to model engage-
ment, they approach the categorization of engagement dif-
ferently and have distinct aims [38]. The Col framework
specifically targets online learning environments and tries
to model how students develop ideas in online discussions.
The ICAP framework has been used to characterize learn-
ing in both in-person and online learning environments. It
focuses on students’ active learning behaviors [15]. Both
frameworks appear to be promising theoretical approaches
for cognitive engagement modeling and prediction. Col fo-
cuses on different phases whereas ICAP focuses on different
levels of cognitive engagement.

In a recent study, Farrow and colleagues [38] compared these
engagement frameworks to decipher their commonalities and
differences. They found similarities between the predictors
used for engagement detection (e.g., message length was cor-
related with higher levels of engagement in both frameworks)
whereas there were differences in the interpretation of classes
(e.g., ICAP rewarded interactivity more than Col).

2.2 Identifying Engagement in Online Envi-

ronments

Some studies of online learning have used qualitative con-
tent analysis methods [90, 98] to detect engaged and disen-
gaged learners. These studies start with developing a coding
scheme reflecting different levels of engagement (e.g., active
or passive engagement). This coding scheme is then used by
the trained coders to manually label learner activities. This
labelling process requires that considerable time and man-
ual labor be invested, which is why it is not surprising that
automating engagement identification via machine learning
methods has emerged as a viable approach.

There are several potential benefits of automating cogni-
tive engagement detection that go beyond the reduction in
human fallibility and manual labor. These potential bene-
fits include reducing coding time, rapidly identifying at-risk
students in terms of engagement, and the possibility of in-
tegrating learner engagement information into dashboards
and learning management systems. Moreover, automation
can build on the prior work that manually labelled student
engagement and helped us to understand it at a smaller
scale.

Automated engagement detection methods in online envi-
ronments can be divided into two groups [56]. The first
group of studies focuses on automatically extracting features

pertaining to learners’ physical cues such as body movement,
heart rate, head posture, or where learners are looking (e.g.,
[55L165]). In a recent study, Li and colleagues [65] extracted
students’ facial features and trained a supervised model to
classify student cognitive engagement type. Although facial
features were found to be powerful predictors of cognitive
engagement, these types of studies may require webcams to
extract learners’ facial features, body posture, or head pos-
tures. Additionally, the learners could be aware of the fact
that they are being recorded, which can lead them to ex-
perience discomfort [29]. Furthermore, the implementation
of such systems may be costly (e.g., integrating webcams)
compared with extracting learner trace data from learning
management systems.

The second group of studies focuses on using a less sensor-
heavy approach. They extract linguistic features (e.g., co-
herence, number of words) and trace data (e.g., time on
task, number of clicks) from online learning environments
to detect engagement (e.g., |6, 58, [59 [70]). For exam-
ple, Kovanovi¢ and colleagues [58] employed n-grams and
part-of-speech features to train a predictive model of cog-
nitive presence using the Col framework [46]. Their model
achieved 58.38% accuracy (K = .41). In a similar study,
Kovanovi¢ and colleagues [59] extracted features using Coh-
Metrix, Linguistic Inquiry and Word Count (LIWC), and
latent semantic analysis (LSA) similarity to represent av-
erage sentence similarity. Their best model achieved 72%
accuracy (K = .65). Moving from the COI lens to that
of ICAP, Atapattu and colleagues [6] used word embeddings
from Doc2Vec to detect only the active and constructive lev-
els of cognitive engagement in a MOOC, where they ignored
posts that were of a social nature. They argued that learn-
ers with active engagement posts paraphrased, repeated, or
mapped resources whereas learners with constructive posts
proposed new ideas or introduced external material going
beyond what was covered in class [6]. Therefore, discussion
posts similar to course content remained in close proximity
to the vector space generated by Doc2Vec. These posts were
classified as active engagement whereas discussion posts that
were far away from the vector space were classified as con-
structive engagement.

Some linguistic and course-based contextual features might
limit the generalizability of predictive models (e.g., n-gram
based models are sensitive to vocabulary choices) of cogni-
tive engagement across different courses and contexts. For
example, in a recent study, Neto and colleagues [70] ana-
lyzed model generalizability across educational contexts by
employing Coh-Metrix features and the Col framework. In
their study, the baseline model was trained with a biology
course dataset and achieved 76% accuracy (K = .55). When
applied to a dataset from a technology course, the model had
an accuracy of 67% (K = .20), which indicates some limita-
tions to the generalizability of the model to new courses.

3. PRESENT STUDY

The purpose of this study is to evaluate the feasibility of au-
tomating cognitive engagement identification in fully online
graduate courses through the lens of the ICAP framework.
Given that engagement is a latent trait, researchers typi-
cally start with creating labeled data so that they can train
supervised ML models. Most studies have employed Col for



labeling cognitive presence (e.g., [37, (58} |70]).

ICAP and Col have different aims and operationalizations of
cognitive engagement (see section. In this study, we de-
fined cognitive engagement as investing effort and cognitive
resources. ICAP is more congruent with our cognitive en-
gagement definition since we want to identify different levels
of engagement in posts. Therefore, we employed the ICAP
framework as our theoretical background that informed la-
beling decisions.

There is a lack of consensus concerning the coding scheme
of ICAP for online environments even though the available
coding schemes partly overlap with one another. For ex-
ample, while Atapattu et al. [6] employed a binary coding
scheme (i.e., active vs constructive), Yogev et al. [95] em-
ployed a coding scheme with six categories.

We first adapted the available coding schemes for online dis-
cussion posts by aligning the engagement levels with Bloom’s
taxonomy [4]. This was done to emphasize the increased
nature of cognitive complexity in both the taxonomy and
cognitive engagement. Then, we developed three supervised
ML models to analyze the feasibility of cognitive engagement
prediction in online discussion environments. We also ana-
lyzed feature importance to evaluate whether we identified
the same order of features across the classifiers employed in
this study.

Our research questions were as follows:

RQ1: To what extent can a model trained with Coh-Metrix
and contextual features be used to automatically classify
discussion posts based on cognitive engagement level?

RQ2: Which features are more important for cognitive en-
gagement prediction?

RQ3: What types of misclassifications occur?

4. METHODS

The data for this study consists of discussion forums from
fully-online, graduate-level courses. The course forums dif-
fered in terms of facilitation method (i.e., peer-facilitated vs
instructor-facilitated) and course length, i.e., regular-term
courses (long) and summer-term courses (short).

4.1 Participants and Study Context

The data used in this study were collected from an online
discussion platform that is used to deliver courses in a highly
ranked college of education in Canada. The data collection
protocol was reviewed and approved by the university’s re-
search ethics board prior to completion. Participant con-
sent was obtained for supplementary data collection. The
dataset included 4,217 posts that had been produced by 111
students. In Table 1, we present the number of students,
term length, facilitation method, and percentage of cogni-
tive engagement posts in each course.

The courses span departments within the college and cover
topics from language learning to educational psychology, ed-
ucational technology, and educational policy.

Table 1: Number of students, term length, facilitation
method, and percentage (%) of cognitive engagement levels
by course.

ID n  Length Method S A C I
1 31 Long Instructor 57 24 17 2
2 18  Short Instructor 10 30 41 19
3 17 Short Peer 44 22 12 22
4 22 Long Instructor 24 31 23 24
5 23 Long Peer 11 29 17 43

Note. Social (S), Active (A), Constructive (C), Interactive (I)

Demographic data were not collected and the previous dei-
dentification of the data means that it cannot be obtained
retroactively. It is worth noting that students could have
their data excluded at the post level by marking it as pri-
vate.

4.2 Data Coding Procedure

Our coding scheme is largely informed by the coding frame-
work developed by Wang et al. [90] and Yogev et al. [95].
We altered and simplified the coding scheme based on the
challenges we observed during the coding process.

We informed the coding scheme with Bloom’s revised tax-
onomy [4] and adapted it to reflect the higher-order cog-
nitive complexity in the ICAP framework. Specifically, we
map Bloom’s taxonomy level indicators onto cognitive en-
gagement indicators. Bloom’s taxonomy was chosen because
it is widely used by K-12 and higher education instructors
to develop measurable and observable instructional objec-
tives, tapping different levels of cognitive complexity. Cog-
nitive complexity refers to the amount of cognitive demand
required to complete a task. Higher levels of cognitive en-
gagement necessitate higher effort investment and align with
higher levels of cognitive complexity in Bloom’s taxonomy.
Hence, we emphasized the presence of higher-order skills
when identifying higher levels of cognitive engagement in
the coding scheme.

Figure 1 shows the cognitive engagement coding scheme we
used for labelling the discussion forum postsEI It highlights
how the hierarchical nature of cognitive engagement aligns
with Bloom’s taxonomy levels. For example, in the lower
levels of the taxonomy, we have remembering and under-
standing. Active engagement corresponds to these levels in
the taxonomy since posts with active engagement include
elements of paraphrasing, mapping resources, and retriev-
ing the same or similar concepts that are covered in class.
Constructive engagement aligns with the level of applying
and analyzing in Bloom’s taxonomy since these posts com-
pare, contrast, illustrate, and argue in a cause and effect
fashion. Finally, Interactive engagement relates to the lev-
els of evaluating and creating in the taxonomy because these
discussion posts make judgments and evaluations about the
topics covered.

Our coding scheme included four categories: social, active,
constructive, and interactive. The engagement categories
are hierarchical, and social engagement is the lowest cate-

We cannot share the post content due to learner privacy.



Yes Interactive

Engagement

In addition to generating new ideas or outputs, tumn taking must take place to classify a
post as belonging to this category. This includes judging, building on, challenging,
(dis)agreeing with the counterpart’s ideas and arguments, and incorporates reasoning,
cause-effect, or comparison, ete,

Does the postinclude a

clear counterpart and No N
) Constructive
the user builds upon, — En -
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Does the postinclude
reasoning, analyzing, . Active
elaborating, or Engagement
explaining a topic?
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Is the post related to Social
course content (on- R
topic)? 818

#F START

for

Evaluating

Generating new or additional ideas, arguments, or outputs characterizes this
engagement type, This ncludes new ideas, argumentations, compansons, cause &
effect, or reasoning, etc.

Applying

Using or referring to the course material that is already covered characterizes this
engagement type. Students do not introduce new information or develop new
arguments or outputs. This includes paraphrasing, mapping resources, repeating the
same/similar information, etc.

N
y— — N

Posts categorized as this engagement type reflect off-topic posts and students do not
create posts that are directly related to course topics or content. This includes
administrative issues, interests, greetings, introducing oneself, acknowledging, or
thanking others, etc.

Figure 1: Cognitive engagement coding scheme.

gory followed by active, constructive, and interactive engage-
ment. Note that we did not use passive engagement since
our goal is not to categorize students’ engagement levels but
rather to categorize the engagement observed in posts. Pas-
sive engagement entails that students read the posts but
do not produce any posts, hence it cannot be employed for
categorizing engagement in discussion posts. We also intro-
duced a social engagement level corresponding to posts that
are off-task and are meant to support relationship building
(e.g., students introducing themselves).

Based on the coding scheme, we first identified whether the
posts were on-task or off-task. Then, we asked whether the
post exhibited reasoning, argumentation, or elaboration on
a topic. Finally, we asked whether there was an evaluative
argument and a clear counterpart in each post. While coding
the posts, we assigned the highest engagement level observed
in each post.

The coding was done by two content experts (Authors 1
and 2) who had previous experience with data coding and
who were familiar with the cognitive engagement literature.
First, we had a training session where we coded a sample
of discussion posts, identified challenges, and reconciled dis-
crepancies during the coding process. After the training
session, we each coded a sample of discussion posts inde-
pendently and we checked agreement between raters using
the percent agreement method. We had an inter-rater reli-
ability of .91.

Table 2: Distribution of cognitive engagement levels

ID Label Engagement Type Number (%)
0 Social 1197 (28)
1 Active 1173 (28)
2 Constructive 930 (22)
3 Interactive 917 (22)

Table 2 shows the distribution of the four levels of cognitive
engagement across all posts. The most frequently observed
levels of cognitive engagement were social (28%) and active
(28%). Given that constructive and interactive levels of en-
gagement require higher cognitive effort and complexity, we
expected to observe fewer constructive and interactive en-
gagement level posts. Even though we expected to observe
class imbalances based on previous studies (e.g., [70]), we
had a nearly balanced distribution of cognitive engagement
levels. This might be due to the class structure where some
instructors relied on peer facilitation as a management strat-
egy for the course forums. Alternatively, having graduate-
level courses could explain this balance.

4.3 Feature Extraction

This study used Coh-Metrix and non-linguistic contextual
features to classify the cognitive engagement level seen in
discussion posts.

Coh-Metrix is a tool used for discourse analysis. It esti-
mates the cohesion, coherence, linguistic complexity, read-



Table 3: Hyperparameter search space used for model tuning

ML Classifier Parameters

Values

Decision Tree Max depth
Min samples leaf

Max features

3, 6,9, 12, None
A random integer between 1 and 10
A random integer between 1 and 10

Criterion ’Gini’, "Entropy’
Random Forest Max depth 3,6,9, 12
Min samples leaf 2, 4,6, 10
Max features 5, 10, 20, 30, 40,50, 60, 70, 80, 90, 100, 107
Number of estimators 500, 1000
Min samples split 5, 10

Criterion ’Gini’, "Entropy’
Bootstrap "True’, "False’
Support Vector Machine Kernel ’linear’, ’sigmoid’, 'poly’, 'rbf’
C 50, 10, 1, 0.1

ability, and lexical category use in a text [32]. The English
version of Coh-Metrix incorporates 108 features including
referential cohesion, deep cohesion, and narrativity [33]. In
previous studies on text classification, Coh-Metrix and con-
textual features were shown to be promising for cognitive
presence identification (i.e., Community of Inquiry; [70]),
suggesting their potential for supporting cognitive engage-
ment detection in online discussion environments.

In addition to the Coh-Metrix features, we included three
contextual features. These contextual features included in-
formation about whether a discussion post is a reply to an-
other post, the number of replies that the post had received,
and a count of the use of vocabulary from the academic word
list (AWL) [20]. Whether a post is a reply was a binary vari-
able, the number of replies a post received was an integer,
and AWL count was an integer representing the total num-
ber of academic words in a post.

4.4 Data Pre-processing

To clean and prepare the corpus for training and classifi-
cation, we ran several pre-processing steps. Our goal was
to build a cognitive engagement classifier, thus we tried to
create a corpus that was as clean and close to human read-
able form as possible [32]. We removed website links and
“see attached” notations; stripped the html tags, eliminated
new lines, white spaces, and tabs; expanded contractions;
removed numbering and bullet points; and corrected mis-
spelled words.

Because our unit of analysis was discussion posts, we created
separate files for each post after applying the above data
cleaning steps. We then ran Coh-Metrix 3.0 [47] to extract
linguistic features for each post. All discussion posts have a
single paragraph, so we removed the Coh-Metrix indicators
of paragraph count (i.e., DESPC), standard deviation of the
mean length of paragraphs (i.e., DESPLd), the mean of the
LSA cosines between adjacent paragraphs (i.e., LSAPP1),
and the standard deviation of LSA cosines between adjacent
paragraphs (i.e., LSAPP1d). Finally, we created a data file
containing all of the input features and the class labels. The
input features included the 104 Coh-Metrix indicators and
three other non-linguistic contextual features (e.g., whether
a post is a reply). This data file was then used to train our

classifiers for cognitive engagement prediction.

4.5 Model Selection

To train and test models for predicting cognitive engage-
ment, we split the dataset in two: 70% was used as a training
set and the remaining 30% was used as a test set.

To answer our research questions, we trained three types of
supervised classifiers:

e a decision tree (DT) |10] was selected because this ap-
proach is easier to interpret and the graphical represen-
tation of the tree can help us understand the relative
importance of features;

e arandom forest classifier (RF) [80] was chosen because
it is an ensemble method that often exhibits superior
performance on classification tasks in educational con-
texts (e.g.,[59, [70]); and

e the support vector machine (SVM) [21] algorithm was
chosen because it is designed to handle multidimen-
sional data which may lead to superior performance
when predicting cognitive engagement in discussion
posts [40].

In addition to the above attributes, these types of models
have previously performed well in other forum classification
tasks [88] or they have supported educational data mining
tasks with similarly sized or smaller data sets [25} |78]. More-
over, these classification algorithms are relatively transpar-
ent so they can aid us in understanding the contribution of
each feature to cognitive engagement prediction.

4.6 Model Tuning

Model training, hyperparameter tuning, and analyses were
conducted in Python (Version 3.8.8) using the sklearn [71]
and mlxtend [75] packages.

We tuned the hyperparameters of each classifier using ran-
domized search with 10-fold nested cross-validation. In Ta-
ble 3, we summarize the hyperparameters and values used
to tune the models for each classifier. For the decision tree,



Table 4: Model performance by model and cognitive engagement level (Cog. Engage.)

Decision Tree

Random Forest

Support Vector Machine

Cog. Engage. P R F1 Acc. %) P R F1 Acc. %) P R F1 Acc (%)
Social .65 .70 .68 71 N N (] 73 79 .83 81 83
Active .50 .46 .48 46 .56 .56 .56 52 .60 .54 .57 54
Constructive .71 .58 .64 62 74 .69 .71 68 a7 1375 73
Interactive .55 .65 .59 64 .60 .68 .64 70 .64 .73 .68 73
Full .59 .58 .58 60 .66 .66 .65 66 70 .71 .70 71

the best model performance was obtained with max depth
= 6, criterion = Gini, max features = 106, and min samples
leaf = 7. For RF, the best model performance was obtained
with max depth = 40, criterion = entropy, and number of
estimators = 600. The best performing SVM model was
obtained with kernel = linear and regularization (C) = 0.1.

The best model achieved 68% accuracy for the decision tree,
95% accuracy for random forest, and 85% for SVM on the
training set.

4.7 Model Comparison and Analysis

We evaluated classifier performance with the test set using
accuracy (Acc), Cohen’s Kappa (K), precision (P), recall
(R), and F1 using 10-fold cross-validation. We use Landis
and Koch’s guidelines to interpret Cohen’s Kappa, where
values below .20 indicate slight agreement, values between
.21 and .40 indicate fair agreement, values between .41 and
.60 indicate moderate agreement, values between .61 and .80
indicate substantial agreement, and values greater than .81
indicate strong agreement [63].

We also statistically compared the model performance using
Cochran’s @ test. Cochran’s @ test is a generalized ver-
sion of McNemar’s test and it can be used to compare more
than two classifiers [76]. The null hypothesis for Cochran’s
Q test states that there is no difference between model clas-
sification accuracies. We also used McNemar’s test, a non-
parametric statistical test, to perform the subsequent paired
comparisons |76]. We report continuity corrected p-values
for paired comparisons.

We analyzed feature importance across models to evaluate
feature contribution towards cognitive engagement identifi-
cation. For the decision tree, we evaluated feature impor-
tance with the Gini index. For random forest, we used the
Mean Gini Decrease value to evaluate the features with the
most explanatory power. For the support vector machine,
after hyperparameter tuning with kernel and regularization
parameter (C), we evaluated the feature importance by com-
paring the size of the support vector coefficients with one
another.

4.8 Error Analysis Procedures

To better understand the classification errors, we analyzed
the confusion matrix and the misclassified discussion posts.
The confusion matrix allowed us to analyze the number of
errors across models. We also compared the error rates (in-
stead of the absolute number of errors) by dividing each
value in the confusion matrix by the number of posts in the
corresponding class and depicted the model performance in
Figure 3. The rows represent the actual (human-assigned)

labels; the columns represent the predicted labels. This pro-
cedure allowed us to, first, identify which types of cognitive
engagement tend to be misclassified as another type. Sec-
ond, we compared the descriptive statistics of predictors of
those misclassified posts to examine the reasons for misclas-
sification.

5. RESULTS
5.1 RQI1: Model Performance

In Table 4, we provide the performance measures (i.e., pre-
cision, recall, F1 score, and accuracy) for all three models by
cognitive engagement level. We also provide these measures
for the full model (i.e., when all classes are being consid-
ered). Note that the accuracy of the zero-rule classifier for
the full model would be 28.4%. As can be seen in Table 4,
all of the models outperformed this simple baseline. More-
over, Cochran’s test revealed statistically significant differ-
ences between the classifiers we built, ) = 55.68, p < .001.
We report the results of specific paired model comparisons
below.

For the decision tree, we obtained 60% accuracy (K = .46)
for the full model. If we consider the F'1 scores for each level
of cognitive engagement within the decision tree model, we
can see that it did a relatively good job of predicting social
and constructive engagement. Whereas, active engagement
scored below .5 on all of precision, recall, and F1. While
this is better than chance, these are the lowest performance
measures observed across all three models.

The accuracy of the random forest classifier was higher than
that of the decision tree (McNemar’s x> = 21.70, p < .001).
However, this increased accuracy was not accompanied by
a change in agreement-level (K was .55). Again, we con-
sider the model’s relative performance across levels of cogni-
tive engagement, which showed that it performed best when
predicting social and constructive engagement. It also per-
formed relatively well for interactive engagement.

The support vector machine classifier outperformed both the
decision tree (McNemar’s x? = 61.31, p < .001) and the ran-
dom forest (McNemar’s x? = 19.04, p < .001) models on the
full prediction task. The SVM model’s Kappa value (.61)
suggested substantial agreement between the predicted and
human-assigned labels [63]. Similar to the models trained
with the random forest and decision tree algorithms, we ob-
tained the best model performance for social and construc-
tive engagement followed by interactive and active engage-
ment.

5.2 RQ2: Feature Importance
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Figure 2: The feature importance scores for the 20 most im-
portant features for cognitive engagement prediction using
random forest.

To evaluate feature importance for predicting cognitive en-
gagement and answer our second research question, we first
analyzed the decision tree classifier. The classification tree
suggested that the most important predictor was the aca-
demic word list count (AWL Count), followed by whether a
post is a reply, Flesch-Kincaid grade level (i.e., Coh-Metrix
indicator of RDFKGL), and number of words (i.e., DESWC
from Coh-Metrix).

To interpret the random forest classifier, we used the mean
decrease in Gini coefficient because it supports the evalua-
tion of the contribution of each feature to the model’s pre-
diction . Higher values of mean decrease in Gini score
indicate that the feature contributed more when perform-
ing the prediction. Similar to the decision tree model, we
found that the most important features were the number of
words (i.e., DESWC), number of academic word list items
(AWLCount), type-token ratio for all words (LDTTRa), and
Flesch-Kincaid grade level (RDFKGL). Figure 2 shows this
model’s most important twenty features and their relative
weights.

For the support vector machine model, we evaluated the co-
efficient importance and found that the most important fea-
ture was second language readability (RDL2). This feature
was followed by type-token ratio (LDTTRc), the standard
deviation of the number of syllables in words (DESWLsyd),
and LSA overlap between verbs (SMCAUSIsa).

We found that the decision tree and random forest models
identified the same features as most important, yet their
relative contribution to the prediction task changed across
models. The support vector machine, on the other hand,
identified a different set of features as most important.

5.3 RQ3: Error Analysis

All classifiers provided better prediction performance for so-
cial and constructive engagement (see Table 4). Table 5
presents the confusion matrix for the classifiers. The su-
perior performance of the support vector machine model is
evident in Table 5, where the misclassification of posts was
the lowest across engagement categories.

We analyzed the performance measures and evaluated preci-
sion, recall, and F1 scores for each classifier and engagement
category. This showed the jump between the precision and

Decision Tree Random Forest  Support Vector Machine
S A C I S A C | S A C |

Figure 3: Classification error rates for decision tree, random
forest, and support vector machine.

recall measures for constructive and interactive levels for the
decision tree. For decision tree, the true positive rate was
65% for the interactive posts; that is, the classifier missed
35% of the interactive posts that should have been labelled
with interactive. On the other hand, 45% of the posts were
incorrectly identified as interactive. Furthermore, the true
positive rate was 71% for the constructive posts. That is,
the decision tree missed 29% of the constructive posts that
should have been labelled with constructive, and 58% of the
posts with other engagement levels were incorrectly identi-
fied as constructive.

The length of the posts and the smaller AWL count seem
to be the primary reasons why social and active engagement
posts were confused with each other. For misclassified social
engagement posts, the mean post length (Mg = 134), AWL
count (Mg = 19.25), and Flesch-Kincaid grade level (Mg
= 12.4) were similar to the mean post length (M4 = 138),
AWL count (M4 = 12.93), and Flesch-Kincaid grade level
(M4 = 11) of active engagement posts. For the misclassi-
fied interactive posts, we observed a similar pattern. The
mean post length (M; = 129.5), AWL count (M; = 17.9),
and Flesch-Kincaid grade level (M7 = 12.65) were similar to
those extracted from the active posts.

Additionally, the confusion matrix (Table 5) suggested that
all classifiers tend to misclassify social engagement with ac-
tive engagement. Of those misclassified posts, approximately
70% of social posts were classified as active engagement
across the predictive models. That is, social engagement
was incorrectly grouped into the higher level. The active
engagement level tended to be misclassified as social engage-
ment, indicating model confusion between adjacent engage-
ment categories. Of the misclassified active posts, approx-
imately 55% of them were classified as social engagement
across all predictive models. In contrast, constructive en-
gagement tended to be misclassified as interactive engage-
ment across all classifiers. Of the misclassified constructive
posts, approximately 40% of them were classified as inter-
active engagement across all predictive models. Effectively,
this means that it was incorrectly grouped into the higher
level. Misclassifications of interactive engagement went in
the opposite direction and were not for the neighbouring
class. Rather, these errors were classified as active engage-
ment instead of their being recognized as interactive posts.
Of the misclassified interactive posts, approximately 60% of
them were classified as active engagement across all predic-
tive models. One possible explanation for this misclassifi-
cation is as follows: Active and interactive discussion posts
tended to be shorter in length compared with those at the



Table 5: Confusion Matrix for Decision Tree, Random Forest, and Support Vector Machine

Decision Tree

Random Forest Support Vector Machine

Actual
= S A C I S A C I S A C I
& Social (S) 244 72 11 22 258 66 12 13 289 44 6 10
2 Active (A) 8 158 33 62 69 190 30 53 67 185 36 54
;:) Constructive (C) 22 38 175 65 1 33 206 60 5 30 218 47
Interactive (I) 18 49 29 179 6 53 29 187 4 47 23 201

constructive engagement level. Although constructive posts,
in general, had higher word counts (Mc = 339) and AWL
counts (Mc = 40.3), some of the misclassified active posts
were shorter. This conflicted with the fact that constructive
posts expanded course content with reflections and argu-
mentation and were thus expected to be longer with greater
use of academic vocabulary. This expectation did not hold
in all cases and may explain why constructive engagement
posts were misclassified as interactive.

To further evaluate misclassification errors for each classi-
fier, we plotted model error rates. Figure 3 shows the kinds
of errors that the decision tree, random forest, and sup-
port vector machine made. Rows represent actual classes
and columns represent predicted classes. Across all models,
social, constructive, and interactive engagement were less
likely to be misclassified with each other. For the model
trained with SVM, active and constructive as well as the
active and interactive engagement levels were less likely to
be misclassified with one another.

6. DISCUSSION

The purpose of this study was to develop models that iden-
tify cognitive engagement in online discussion forums. Us-
ing the post features that were extracted with Coh-Metrix,
we trained three classifiers. Employing transparent classi-
fiers allowed us to more easily evaluate feature importance
for cognitive engagement prediction. We also conducted an
error analysis to better understand the classification errors
across models. Below, we discuss the implications of our
findings in the context of each research question.

6.1 Feasibility of Automating the Prediction

of Cognitive Engagement
Of the three types of predictive models we trained (i.e., de-
cision tree, random forest, and support vector machine), the
support vector machine performed sufficiently well for it to
be used to identify engagement levels in discussion posts.

Previous studies generally focused on cognitive engagement
prediction using the random forest algorithm and the Col
framework. We used a different cognitive engagement frame-
work (i.e., ICAP), and our best model (SVM) demonstrated
similar accuracy (70.3%) and Cohen’s kappa values (K =
.63) to those that used random forest under the Col model
of cognitive presence (e.g., [38,59].

The development of these models is the first step towards
supporting instructors who want to be able to identify stu-
dent engagement so that they can improve their teaching
practices and intervene when student engagement levels are

low. These types of analytics fall into the category of those
desired by instructors as they capture aspects of student post
quality that are not currently available in most dashboards
|1]. The models could be used to inform instructors about
the engagement status of students in online course discus-
sions. Given model performance, it would be important to
effectively communicate uncertainty in its labelling of stu-
dent posts [24]. Approaches, such as those suggested by
Brooks and Greer [11], could be used to mitigate the risk of
instructors relying on misclassified data so that they appro-
priately trust the output of the model and act in accordance
with its limitations. For example, the system could identify
the students who are disengaging to warn instructors so that
they adjust their teaching and instructional practices. Ad-
ditionally, such systems could be used to nudge students to
better engage with tasks or to recommend posts that may
enhance student engagement levels |14].

6.2 Feature Importance for the Prediction of

Cognitive Engagement
By investigating how different features contribute to model
performance, we can better understand the underlying phe-
nomena which, in turn, will support the development of
better predictive models for detecting cognitive engagement.
Our study also provided further empirical evidence of feature
importance, corroborating the findings of previous studies.

Both the decision tree and random forest feature importance
analyses identified similar features (e.g., AWL count, Flesch-
Kincaid grade level, word count). The features identified for
the models in the present study were consistent with previ-
ous studies (e.g., [38,]59]). Similar to these previous studies,
we found that higher levels of cognitive engagement were
associated with longer messages. Our work builds on this
by highlighting the importance of vocabulary use through
the AWL count feature, which was not included in the other
studies. Rather, those studies captured vocabulary through
other means (e.g., Linguistic Inquiry and Word Count [84]).
Our findings indicate that the use of academic vocabulary,
like those in the AWL, that are not specific to a discipline
(words such as hypothesis, conclude) support the identifica-
tion of cognitive engagement. Moreover, their more general
nature means that they should support generalization across
courses at similar academic levels.

6.3 Interpreting Classification Errors

Classification errors occurred between the active and social
engagement labels. Across all of the algorithms we used
in our study, the worst performance was observed for ac-
tive engagement. In a recent study, Farrow and colleagues
|38] also found similar results for their prediction of active



engagement using random forest and the Col framework.
However, they did not perform an error analysis.

Our analysis of active and social engagement classes sug-
gested that median word count, median AWL count, and
Flesch-Kincaid grade level were similar for these two en-
gagement levels. Furthermore, the dispersion of predictor
values for active engagement was wide, overlapping with the
range of predictors of other engagement levels. This helps
explain what may have contributed to the poor performance
of models for active engagement identification. Constructive
engagement, on the other hand, had more distinct disper-
sion than other engagement levels, which could explain why
the models were more successful when predicting construc-
tive engagement. These results suggest the importance of
having distinct engagement categories for successfully dif-
ferentiating the vector space, thus achieving higher model
performance and accuracy across engagement categories.

6.4 Limitations and Future Directions

Like all models, ours capture certain characteristics of stu-
dent engagement and the decisions we made influence both
their accuracy and the extent to which they are expected to
generalize to other settings. We discuss these issues below
and their potential for creating new opportunities for the
development and use of models in online-learning settings.

The overall performance of the models suggests there is room
for improvement. Nonetheless, these models can provide a
snapshot of the engagement level in each post, providing an
early signal of student engagement in online learning envi-
ronments. This signal could help instructors to derive in-
sight from this student-engagement data.

We labelled the data with the highest engagement level ob-
served in a post. However, different cognitive engagement
levels (e.g., social and constructive) may co-exist in a sin-
gle post. While this type of coding approach is commonly
employed [90], it may have limited the performance of our
classifiers. It also prevents a more nuanced understanding
of the types of cognitive engagement demonstrated by stu-
dents. To support more nuanced representations of student
engagement, future research can consider the co-existence
of different engagement levels or how engagement relates to
different areas of a course using something akin to aspect-
based sentiment analysis [96].

Another limitation of our study is that we focused on identi-
fying cognitive engagement in online discussion posts. That
is, posts are classified rather than students. Because en-
gagement may fluctuate based on course content or a weekly
basis, we employed post-level analyses, which is a common
practice in such research (e.g., [38,70]). However, this may
influence performance metrics. Future research can focus on
how to derive an appropriate measure and representation of
a student’s cognitive engagement based on the varied levels
of engagement that are exhibited across their posts. Perhaps
more importantly, students who did not post to the discus-
sion forums or those who only read posts and did not create
messages (i.e., online listeners [92]) have not been included
because there were no posts from these students. Alter-
native mechanisms need to be found to characterize their
engagement through a listening lens. Since simply opening

a post is not enough to infer cognitive engagement, proxy
measures may need to be developed. Behavioural patterns
such as the ratio between the re-reading of posts and posts
made [1,|72] or scan-rate [49] may provide reasonable signals
of online listener engagement.

7. CONCLUSION

In this study, we gauged the feasibility of automating cogni-
tive engagement prediction through NLP and ML methods.
We first manually coded over 4,000 posts using the cod-
ing scheme we adapted from ICAP and Bloom’s taxonomy.
Then, we extracted linguistic and contextual features and
trained three machine learning classifiers to predict the level
of cognitive engagement demonstrated in a forum post. We
obtained promising results with a support vector machine.

Now that we have models that can identify the highest level
of cognitive engagement seen in a single post, we can start to
consider how other factors might interact with student cog-
nitive engagement. For example, we know that the course
structure, length, and facilitation method influence student
participation [72], language use |27], and social support [26,
72]. Additionally, the system used to deliver a course can in-
fluence student engagement [28| [79]. Future research could
improve cognitive engagement identification by integrating
such information.

This work makes several contributions, with some at the
theoretical level and others at the empirical level. First,
we mapped cognitive engagement levels onto Bloom’s tax-
onomy. Bloom’s taxonomy places cognitive complexity in
hierarchical order, as does our ICAP-based cognitive en-
gagement coding scheme. Second, this study illustrated the
utility of different classifiers for cognitive engagement pre-
diction in graduate-level online courses. Our analysis of the
importance of model features and errors is consistent with
previous studies; it confirmed the importance of word count
for predicting cognitive engagement and revealed the im-
portance of AWL count and Flesch-Kincaid grade level for
predicting cognitive engagement. Future studies can include
these features and use a support vector machine to develop
a predictive model for cognitive engagement in online learn-
ing environments. Building on this work will enable the
development of better models that can then be used to in-
form teaching and learning when online discussion forums
are part of course delivery.
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