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ABSTRACT 
Gaming the system, a behavior in which learners exploit a system’s 

properties to make progress while avoiding learning, has frequently 

been shown to be associated with lower learning. However, when 

we applied a previously validated gaming detector across 

conditions in experiments with an algebra tutor, the detected 

gaming was not associated with learning, challenging its construct 

validity. Our iterative exploratory data analysis suggested that 

some contextual factors that varied across and within conditions 

might contribute to this lack of association. We present a latent 

variable model, item response theory-based gaming detection 

(IRT-GD), that accounts for contextual factors and estimates latent 

gaming tendencies as the degree of deviation from normative 

behaviors across contexts. Item response theory models, widely 

used in knowledge assessment, account for item difficulty in 

estimating latent student abilities: students are estimated as having 

higher ability when they can get harder items correct than when 

they only get easier items correct. Similarly, IRT-GD accounts for 

contextual factors in estimating latent gaming tendencies: students 

are estimated as having a higher gaming tendency when they game 

in less commonly gamed contexts than when they only game in 

more commonly gamed contexts. IRT-GD outperformed the 

original detector on three datasets in terms of the association with 

learning. IRT-GD also more accurately revealed intervention 

effects on gaming and revealed a correlation between gaming and 

perceived competence in math. Our approach is not only useful for 

others wanting to apply a gaming assessment in their context but is 

also generally applicable in creating robust behavioral measures. 
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1. INTRODUCTION 
Assessing students’ engagement levels or motivation from their 

interaction behaviors in digital learning environments is a 

compelling challenge both practically and theoretically. Practically, 

valid behavioral assessment of student engagement can drive 

adaptations that adjust to students’ needs, leading to greater 

learning and motivation; theoretically, valid behavioral assessment 

of student engagement can be used to better understand when and 

why interventions or system designs work for enhancing student 

learning or motivation. One frequently explored behavioral 

indicator of student engagement is “gaming the system”, which is 

defined as “attempting to succeed in an educational environment 

by exploiting properties of the system rather than by learning the 

material and trying to use that knowledge to answer correctly” [6]. 

Many studies have demonstrated that gaming the system 

(abbreviated as gaming in this paper) is associated with poor 

learning outcomes in the short term or the long term [2, 5, 12, 30]. 

Prior research suggests that interventions directly targeting gaming 

can reduce gaming behaviors [4, 33] and improve learning [4], 

demonstrating the practical value of gaming detection. Recent work 

[28] has also shown that the positive effect of learning with an 

educational game was fully mediated by lower levels of gaming the 

system, showcasing the theoretical value of gaming detection for 

understanding how a specific intervention influences learning. 

Past research has leveraged two classes of approaches to model 

gaming behaviors: knowledge engineering where experts develop 

rational rules that identify gaming behaviors [21, 25, 26] and 

machine learning where the model designer creates a set of features 

first and then a supervised learning algorithm is used to select 

features for predicting human coded gaming labels [6, 32]. Mainly 

the emphasis has been put on student features [21, 25, 26], such as 

how students utilize help (e.g., help abuse [1]) and make errors 

(e.g., systematic guessing [32]). Task or system features have been 

investigated to a limited extent although they have been found to 

be important contextual factors for gaming. For example, [8] found 

that system features explained more variance in gaming behaviors 

than student characteristics on a year-long log dataset with 22 

different lessons of Cognitive Tutor Algebra. In particular, the 

results showed that gaming was more frequent in lessons that were 

abstract, ambiguous, and had unclear presentation of the content or 

task. Another study [22] also found that differences in gaming 

behaviors were more strongly associated with the learning 

 

 

Do not delete, move, or resize this block. If the paper is accepted, this block will 

need to be filled in with reference information. 

Y. Huang, S. Dang, J. E. Richey, M. Asher, N. G. Lobczowski,
D. Chine, E. A. McLaughlin, J. M. Harackiewicz, V. Aleven, and
K. Koedinger. Item response theory-based gaming detection. In
A. Mitrovic and N. Bosch, editors, Proceedings of the 15th Inter-
national Conference on Educational Data Mining, pages 251–262,
Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853093

https://doi.org/10.5281/zenodo.6853093


 

environments than with student populations. Some machine-

learned models have incorporated one or two task features in the 

initial set of features [6, 32]. For example, [32] included features 

related to question types (top-level or follow-through helping 

questions) and interfaces (multiple-choice or textbox) in the initial 

feature set, yet they did not mention whether these features 

remained in the final model. Meanwhile, in knowledge-engineered 

gaming detectors, task features typically are not (explicitly) 

considered [21, 25], i.e., rules to identify gaming behaviors are 

described in a task type-independent way. Such limited 

consideration of task features may limit the generalizability of 

gaming detectors to new contexts with task or system design 

substantially different from that of the original context. In addition, 

some research has identified cases where detected gaming 

behaviors were not harmful [6, 12] or were even good learning 

behaviors [31], further suggesting the necessity to look carefully 

into the contexts for identifying or interpreting gaming behaviors. 

However, such unconventional findings (unconventional in the 

sense that gaming has frequently been shown to be associated with 

lower learning) still have not received enough attention in the 

development of gaming detectors.  

Obtaining a student-level gaming estimate has been valuable for 

studying the relation between student attributes and gaming or 

intervention effects on gaming. Prior work has predominantly used 

direct aggregation of detected (or observed) gaming by computing 

the proportion of gamed transactions or the average of predicted 

probabilities of gaming for each student [6, 22, 27]. However, [13] 

showed that the observation-level simple average failed to reveal 

correlations between motivation and gaming (except for one 

motivational measure), while a simple latent variable model that 

estimated a latent gaming tendency for each student controlling for 

the effect of curricular sections on detected gaming yielded strong 

associations between a range of motivational measures and gaming 

tendencies. Inspired by this prior work, we identified an overlooked 

connection between existing behavior modeling paradigms and 

knowledge modeling paradigms: latent variable models widely 

used for estimating student abilities or knowledge levels can also 

be used to obtain more valid student-level behavioral constructs, 

thanks to their capacity to account for both task and student features 

in a single framework. One widely used latent variable modeling 

paradigm for knowledge assessment in psychometrics is item 

response theory (IRT) [14]. IRT models the observed correctness 

on each item (e.g., problem steps) of each student as a function of 

item difficulty and student ability. Instead of using the proportion 

of correctly answered items as the measure of student ability, IRT 

accounts for item difficulty in estimating latent student abilities. In 

essence, students are estimated as having higher ability when they 

can get harder items correct than when they only get easier items 

correct. IRT models have been further extended to model dynamic 

student knowledge by considering the temporal aspect [17], and 

also by decomposing items into knowledge components (e.g., 

skills, concepts) shared across items [11].  

With the increasing demand of learning engineering efforts towards 

building effective, engaging learning systems, the generalizability, 

interpretability, and development cost of gaming detectors are 

becoming increasingly important. Recent studies [23, 24] 

compared three previously separately validated gaming detectors 

across multiple systems: a knowledge-engineered model [25], a 

machine-learned model [7], and a hybrid model [24] that combines 

both knowledge engineering and machine learning. In particular, 

the knowledge-engineered model was developed by using 

cognitive task analysis to elicit knowledge about how experts code 

students as gaming or not in Cognitive Tutor Algebra [19]. It 

consists of 13 patterns of students’ systematic guessing and help 

abuse behaviors. The comparisons [23, 24] focused on predictive 

performance of expert labels of gaming in held-out test sets in the 

original data and two new datasets collected from two other 

learning environments [3, 27]; the comparison also considered the 

interpretability of models. Results showed that the knowledge-

engineered model achieved greater generalizability to new datasets 

and interpretability than the machine-learned model, and achieved 

comparable to slightly better generalizability and interpretability 

than the hybrid model. Although there was initial cost (higher than 

that of the machine-learned model) in developing the knowledge-

engineered model, it could be directly used in new datasets without 

further cost (since actions that match any of the 13 patterns can be 

directly labeled as gaming). However, one may need to retrain the 

machine-learned or hybrid model (that needs a machine-learned 

model as input), given the much lower (and even unacceptable) 

predictive performance of the machine-learned model than the 

knowledge-engineered model on new datasets [23]. Thus, this 

knowledge-engineered gaming detector [25], which is referred to 

as KE-GD in this paper, appears to be the best choice (to build on) 

among the three detectors, considering generalizability, 

interpretability, and development cost in a new context altogether; 

it also represents a broad class of behavioral detectors that are built 

based on rational rules specified by experts. However, predictive 

performance of expert labels is only one aspect of construct 

validity; the establishment of construct validity of a gaming 

detector also requires examining the association between detected 

gaming and learning. Past studies [23, 24, 25] have not examined 

the association between detected gaming by KE-GD with learning, 

while other studies on other detectors have frequently shown that a 

higher detected gaming level is associated with lower learning [5, 

15, 20, 21, 28].    

In this work, we propose a latent variable model, item response 

theory-based gaming detection (IRT-GD), that estimates a latent 

gaming tendency for each student accounting for contextual factors 

(i.e., task and student features): students are estimated as having a 

higher gaming tendency when they game in less commonly (or 

frequently) gamed contexts than when they only game in more 

commonly (or frequently) gamed contexts. IRT-GD builds on a 

previously validated knowledge-engineered gaming detector (KE-

GD) that focuses on students’ action features and the predictiveness 

of human labels. We started with applying KE-GD on a dataset 

collected from experimentation with an algebra tutor, and 

examined the association between detected gaming and learning,  

an important aspect for the construct validity of gaming measures. 

Observing the lack of association with learning, we conducted an 

iterative exploratory data analysis, and found that this lack of 

association might result from some contextual factors not 

considered in KE-GD that varied across and within conditions. 

Without complex human feature engineering, we integrated 

contextual factors as predictors in a mixed effect model predicting 

whether a transaction was detected as gaming by KE-GD, and 

extracted the student random intercepts as the latent gaming 

tendencies. We compared KE-GD and IRT-GD by the association 

with learning in nine contexts, obtained from three datasets and 

three condition configurations per dataset. Finally, we 

demonstrated two applications of IRT-GD: to study whether there 

was a difference in the level of gaming between the two conditions 

from our experimentation with the tutor, and to explore the relation 

between gaming and motivation. The development and evaluation 

process of IRT-GD is explained as follows.  



 

2. DEVELOPMENT OF IRT-GD 

2.1 The Tutor 
We used datasets collected from an algebra intelligent tutoring 

system for middle and high school students [18]. Students learn 

about writing algebraic expressions in story problems in various 

task (problem) formats: writing an expression in a textbox with 

dynamic scaffolding steps that appear if a student fails in the 

original question (text format); writing expressions in a table where 

the main question step and scaffolding steps are accessible at any 

time and are all required (table format); explaining a set of 

expressions extracted from a given equation by choosing the 

matching textual description from a dropdown menu for each 

expression (menu format); and given an equation, writing a set of 

expressions that match a given set of textual descriptions (flipped-

menu format). These tasks also vary in the complexity of the 

expressions involved (e.g., one or two operators).  

The algebra tutor was continuously redesigned and tested in three 

experiments with different student populations across three years. 

In each experiment (eight sessions over four weeks), we compared 

two versions of the tutor corresponding to two conditions differing 

in task design and sequencing. The control (CT) condition, 

corresponding to the original tutor, provided a normal deliberate 

practice schedule. Students received full tasks representing the full 

version of the problem requiring filling in all steps (including 

scaffolding steps) given a cover story. There were three consecutive 

units: the first unit contained all the table tasks, the second unit 

contained less complex menu and flipped-menu tasks, and the third 

unit contained more complex menu and flipped-menu tasks. Steps 

were labeled with coarser-grained knowledge components (KCs; 

skills). Students received individualized practice until reaching 

mastery of all KCs in a unit before moving on to the next unit. 

Across the three experiments, the design of the control condition 

remained the same. The experimental (EXP) condition, the data-

tuned adaptive condition,  corresponds to a redesigned tutor with 

redesign decisions drawn from data mining outcomes of student log 

data. It provided an intense deliberate practice schedule with task 

design and sequencing based on a refined, larger KC model 

revealing hidden difficulties (i.e., original KCs were split to 

differentiate easier and harder use cases). Focused tasks were 

introduced to reduce over-practicing easier KCs and target 

particularly difficult KCs. Examples of focused tasks include: text 

format tasks asking for the final expression without the mandatory 

intermediate steps required in table task; text format tasks that 

further remove the story and focus on learning algebraic grammar 

rules; and simpler menu and flipped-menu tasks with equations less 

complex than the original equations. There were three or more 

learning units where different task formats or task types (full or 

focused) were interleaved in each unit. Students received 

individualized practice until reaching mastery of all KCs in a unit 

before moving on to the next unit. Across the three experiments, 

the design of the experimental condition was continuously refined 

aiming at promoting greater learning. Our prior work has shown 

that the experimental condition led to better learning outcomes 

compared to the control condition [18]. Here, we are interested to 

see whether intense deliberate practice (i.e., the experimental 

condition) also led to higher behavioral engagement, particularly 

lower levels of gaming the system, and also whether gaming was 

linked with motivation.  We started our investigation with the first 

dataset collected from the first experiment explained below.  

2.2 A Previously Validated Knowledge-

Engineered Gaming Detector Did Not 

Generalize 
We chose a previously validated knowledge-engineered gaming 

detector, KE-GD, as the starting point for studying students’ 

behavioral engagement when using the algebra tutor. KE-GD 

contains 13 interpretable patterns modeling systematic guessing 

and help abuse. For example, one pattern is “the student enters an 

incorrect answer, enters a similar and incorrect answer in the same 

part of the problem and then enters another similar answer in the 

same part of the problem”. It is coded as “incorrect → [similar 

answer] [same context] & incorrect → [similar answer] & [same 

context] & attempt”, consisting of constituents such as “[similar 

answer]” (judged by Levenshtein distance), and action types such 

as “attempt” (correct or incorrect) or “help”. If a sequence of 

transactions (i.e., student-step interactions considering multiple 

attempts per step) matches any one of the 13 patterns, then all 

transactions involved are labeled as gaming. Details of the patterns 

and the validation of KE-GD could be found in [23, 25]. 

We used KE-GD to label transactions as gaming or not and then 

examined the construct validity of detected gaming in our dataset. 

We defined two metrics of construct validity in the current study, 

both of which evaluate the association between gaming and 

learning. The primary metric was the correlation between gaming 

levels and normalized learning gains over students. For each 

student, we computed a gaming level using the proportion of gamed 

transactions (referred to as proportion of detected gaming or 

detected gaming (proportion)) for KE-GD, or the estimated gaming 

tendency for IRT-GD (explained in Section 2.3.2); we computed 

the normalized learning gain using the widely adopted formula, 

(posttest - pretest) / (1- pretest). We used Spearman correlation 

(rho) because it is less sensitive to outliers than Pearson correlation. 

As a supplementary metric, we conducted a regression analysis 

predicting posttest scores controlling for pretest scores and gaming 

levels over students and examined the coefficient of the variable of 

gaming levels. We considered negative correlations and coefficient 

values at a significance level of 0.10 as acceptable construct 

validity. Prior studies have used significance levels of 0.05 and 0.10 

for correlation analyses involving behavior measures [5, 13, 31]. 

Two observations emerged. First, the detected gaming proportion 

18% (last column in Table 1) was much higher than the previously 

reported proportions (3.5% in [13] and 6.8% in [25]) of the same 

detector in other math intelligent tutoring systems. Second, there 

was a lack of association between detected gaming and learning 

(correlation: rho=-.02, p=.86; regression coefficient: b=0.07, 

p=.69), challenging KE-GD’s construct validity in our context.  

Table 1. Statistics of the Fall 2019 dataset including the 

proportion of gamed transactions (considering all attempts of 

all steps) detected by KE-GD. 

#stu #transaction 

(tx) 

#tx of 1st attempts 

of steps w/ KCs 

Avg proportion of 

gamed tx over stu 

129 98,176 32,419 .18 (SD=.08) 
 

2.3 Identifying and Integrating Contextual 

Factors to Improve Construct Validity 
Next, we conducted iterative exploratory data analysis on the first 

dataset to identify contextual factors that might explain the lack of 

association between detected gaming by KE-GD and learning, and 



 

integrated the contextual factors through latent variable modeling 

analogous to item response theory modeling, explained as follows.  

2.3.1 Identifying the effect of task formats 
One notable feature of our dataset compared to other datasets for 

developing gaming detectors is that it was collected from 

experimentation with two conditions with substantial differences in 

task design and sequencing. So, we first conducted a moderation 

analysis to test whether the condition moderated the relation 

between detected gaming and learning. We constructed a 

regression model predicting posttest scores for each student given 

the pretest scores, the condition indicator, detected gaming 

proportion and an interaction term between the condition and 

detected gaming proportion. The interaction was significant (b=-

0.98, p=.007) and the control condition showed a relation opposite 

to theoretical prediction: higher proportion of detected gaming was 

associated with higher posttest scores (Figure 1).  

 
Figure 1. The interaction plot between the condition and 

detected gaming proportion of the regression model predicting 

posttest scores with pretest scores controlled for.  

To understand this interaction, we started an exploratory data 

analysis on the overall dataset to examine when and how students 

gamed according to KE-GD. We used the unit of analysis normally 

used for modeling student learning, knowledge components (KCs), 

for better drawing insights into the relation between gaming and 

learning. We used the KC model previously validated for this 

dataset [18] based on model fitness. It includes 26 KCs shared by 

both conditions. We first examined whether students gamed much 

more on some KCs than on others, and if so whether there was a 

pattern in this variation. A pattern emerged (see Figure 2) showing 

that students gamed substantially more on KCs required in menu 

and flipped-menu formats than those required in table and text 

formats. Meanwhile, we knew that the control condition positioned 

menu and flipped-menu tasks in later units, whilst the experimental 

condition interleaved menu and flipped-menu tasks with text and 

table tasks in earlier units. Having in mind that higher detected 

gaming was associated with higher posttest scores in the control 

condition (Figure 1), we wondered whether this association was 

because students with higher abilities (who usually also have higher 

posttest scores) progressed faster to later units and thus accessed a 

higher proportion of menu and flipped-menu steps, which were 

highly-gamed contexts, than students with lower abilities. We 

approximated students’ abilities by pretest scores and investigated 

this relation. Indeed, as shown in Figure 3, students with higher 

pretest scores in the control condition accessed a higher proportion 

of menu and flipped-menu steps than students with lower pretest 

scores (which was not the case for the experimental condition), and 

as a result, they might appear to game more than students with 

lower pretest score. Thus, the positive association between detected 

gaming and posttest scores in the control condition was spurious 

due to a confounder, the proportion of highly-gamed format steps a 

student accessed. The association between detected gaming 

revealed by KE-GD and posttest scores was biased. If we introduce 

task formats to account for (part of) the detected gaming, then this 

bias may be reduced.  

 
Figure 2. Detected gaming proportion by KCs averaged over 

students. 95% confidence intervals are plotted. (Only first 

attempts of steps with KCs are considered.)  

 
Figure 3. Correlations between pretest scores and proportion 

of highly-gamed formats (menu, flipped-menu) per condition.  

2.3.2 The basic latent variable model accounting 
for task formats 
Based on the first set of exploratory data analyses, we formulated a 

basic latent variable model, the simplest form of our proposed  IRT-

GD, that explains detected gaming by both task formats and 

students’ latent gaming tendencies, analogous to explaining item 

performance by both item difficulties and students’ latent abilities 

in Rasch model [14], the simplest form of item response theory 

(IRT) models. To illustrate our model, a student with a high 

proportion of detected gaming due to having a high proportion of 

menu steps will not be estimated as having a high gaming tendency 

if he or she does not game more than the average level of the student 

population on format steps. The model predicts the binary detected 

gaming label per transaction (i.e., an attempt on a student-step) G 

asserted by KE-GD, given the student identity and the current 

format (using a generalized linear mixed model):   

Detected gaming: G ~ (1|Student) + Format         (1) 

Gaming tendency: 𝛼 = exp(𝜃)                            (2) 

where the student identity is modeled as a random factor and the 

format of the current step is modeled as a fixed factor. Formula (1) 



 

is written using the syntax of R’s lme4 package for better 

replicability; a formal mathematical description is that the log odds 

of a transaction being labeled as gaming by KE-GD is a linear 

function of the student’s identity (of which the coefficient is the 

student’s random intercept 𝜃) and the current format. In formula 

(2), a student’s gaming tendency 𝛼 is obtained by exponentiating 

the student’s random intercept 𝜃 from formula (1), converting log 

odds scale to odds scale. This basic model improved over KE-GD 

in terms of the sign and strength of the association with learning 

(Table 2 row #1), but the statistical significance was insufficient, 

demanding further investigation. 

2.3.3 Identifying other contextual factors 
Based on prior literature, we hypothesized that students’ prior and 

dynamic knowledge levels (i.e., learning) might also account for 

detected gaming. The theoretical foundation can be found in several 

studies: [29] showed that avoiding help and failing repeatedly 

(which may be considered as systematic guessing, a form of 

gaming) is associated with better learning than seeking help on 

steps for which students have low prior knowledge; [31] suggested 

that the behavior of bypassing abstract hints in search of a concrete 

solution (traditionally considered as help abuse, a form of gaming) 

may be an engaged learning behavior where students use bottom-

out hints as worked examples; [13] also suggested that detected 

gaming can be a desirable adaptive learning behavior when students 

encounter challenges far beyond their abilities. Students’ dynamic 

knowledge levels were often included as features in machine-

learned gaming detectors [6, 32] but absent in KE-GD. Thus, we 

conducted further exploratory data analysis to examine the effect 

of prior knowledge (approximated by pretest scores) and dynamic 

knowledge (approximated by practice opportunities) on detected 

gaming. More specifically, since we had already identified task 

formats as an important contextual factor, we hypothesized that 

there might be interactions between prior knowledge and formats, 

as well as between practice opportunities and formats, on detected 

gaming. 

 
Figure 4. Correlations between pretest scores and detected 

gaming proportion per task format over students (considering 

all attempts of all steps).  

Figure 4 shows that on flipped-menu and menu formats, students 

with lower pretest scores gamed much more than students with 

higher pretest scores, while this was not the case for other formats. 

Figure 5 shows that on table formats, students were more likely to 

game on earlier than later opportunities and reduced gaming 

quickly over opportunities. Discussion of these findings can be 

found later in Section 5. Based on this second set of exploratory 

data analysis, we integrated the discovered contextual factors into 

a latent variable model explained below.  

 
Figure 5. Correlations between practice opportunities and 

detected gaming per task format. Each point corresponds to the 

average proportion of detected gaming at an opportunity over 

students (considering all attempts of all steps). The blips at the 

end of the curves are due to small sample sizes. 

2.3.4 The full latent variable model accounting for 
critical contextual factors 
Based on the second set of exploratory data analyses, we identified 

two groups of contextual factors that might be important to explain 

general gaming behaviors: the first group captures the effect of 

pretest scores adjusted by formats; the second group captures the 

effect of learning adjusted by formats. We then estimated students’ 

latent gaming tendencies accounting for these contextual factors. 

The underlying rationale of our model can also be explained as 

follows. Since the proportion of detected gaming is usually a low 

proportion of a full dataset under a study (typically less than 7% in 

past studies and less than 20% in our datasets), it is sound to assume 

that a model describing well the detected gaming behaviors of a full 

dataset captures the normative behaviors of a population, and the 

deviation from the normative behaviors represents the intended 

gaming construct. Essentially, students are estimated as having a 

higher gaming tendency when they game in less frequently gamed 

contexts than when they only game in more frequently gamed 

contexts according to the general behaviors. This is analogous to 

IRT models where students are estimated as having higher ability 

when they can get harder items correct than when they only get 

easier items correct. The full formulation of our latent variable 

model IRT-GD is as follows (using a generalized linear mixed 

model):  

   Detected gaming: G ~ (1|Student) + Format   

                                    + Pretest + Pretest:Format     

                 + Opportunity  + Opportunity:Format      (3) 

   Gaming tendency: 𝛼 = exp(𝜃)                                                (4) 

Formula (3) is written using the syntax of R’s lme4 package for 

better replicability; a formal mathematical description is that the 

log odds of a transaction being labeled as gaming by KE-GD is a 

linear function of the student’s identity (of which the coefficient is 

the student’s random intercept 𝜃), the format of the current step, the 

student’s pretest score, the interaction between the pretest score and 

the format, the practice opportunity count of a format of the student 

(note that all steps of a task are considered as having the same 

opportunity count of the corresponding format), and the interaction 

between the opportunity count and the format. Except for the 

student identity modeled as a random factor, all other predictors are 



 

modeled as fixed factors. In formula (4), a student’s gaming 

tendency 𝛼 in odds scale is obtained by exponentiating the student’s 

random intercept 𝜃 from formula (3). 

Table 2. Associations between gaming tendencies estimated by 

different variants of IRT-GD and learning. Correlations with 

normalized learning gains and coefficients of gaming tendency 

variables in regression predicting posttest scores are reported 

(p<.10: boldfaced and italicized; p<.05: boldfaced). 

I

D 
Level Predictors 

Cor with 

NLG 

Post~ 

Pre+G 

1 Format (1|Stu)+F 
rho=-.07 

p=.44 

b=-.02 

p=.31 

2 Format (1|Stu)+F+Pre 
rho=-.14 

p=.11 

b=-0.03 

p=.16 

3 Format (1|Stu)+F+Pre+Pre:F1 rho=-.16 

p=.07 

b=-0.03 

p=.14 

4 Format (1|Stu)+F+Pre+Pre:F+Opp 
rho=-.16 

p=.07 

b=-0.03 

p=.14 

5 Format 
(1|Stu)+F+Pre+Pre:F+Opp+F:Opp 

(The final chosen model)  

rho=-.18 

p=.04 

b=-0.04 

p=.09 

6 Format 
(1|Stu)+F+Pre+Pre:F+Opp+F:Opp 

(1st attempts of steps w/ KCs) 

rho=-.26 

p=.00 

b=-0.08 

p=.01 

7 KC 
(1|Stu)+K+Pre+Pre:K+Opp+K:Opp2  

(1st attempts of steps w/ KCs) 

rho=-.25 

p=.00 

b=-0.07 

p=.01 

 

Table 2 shows the construct validity metrics of full models (row 

#5-#7) as well as reduced models (row #1-#4) of IRT-GD. All the 

seven variants reached higher validity than KE-GD in terms of 

having stronger associations with learning, and the three full 

models reached desirable statistical significance (row #5-#7). The 

five predictors increasingly strengthened the association (except 

when adding the single opportunity term in row #4 before adding 

the interaction term) and were necessary for reaching acceptable 

validity in this dataset. In formulating the full models, we explored 

two other configurations: one that used KCs as the unit (row #7) 

and fit the model using first attempts of steps with KC labels 

(without modifying the detected gaming labels associated with 

these transactions); another that used the same data subset as the 

KC-level model to fit the model but maintaining the unit of format. 

We found that a format-level modeling worked as well as the KC-

level modeling, when using the same subset (row #6 vs. #7). We 

also found that using the subset with only first attempts of steps 

labeled with KCs could improve validity compared to using all 

attempts of all steps (row #6 vs. #5) in this dataset. However, using 

all attempts of all steps does not require additional KC labels, so 

we chose to fit IRT-GD with all attempts of all steps for potentially 

greater generalizability. The final chosen model for the rest of the 

paper was the one in row #5 in Table 2. We further examined the 

fitted parameters of the chosen model (Table 3) and found that they 

had high consistency with the patterns observed in our exploratory 

data analyses (note that some differences may be due to the 

differences in statistical methods and data processing used in the 

two kinds of analyses). We thus concluded the formulation of IRT-

GD for valid gaming detection in our tutor. 

 

 
1 In R’s lme4 package, a colon : is used to denote an interaction term. 
2 We treated the KC variable as a random factor. R formula:     

   G~(1|Stu)+(1+Pre+Opp|K)+Pre+Opp. 

Table 3. Parameters of the chosen full model of IRT-GD (row 

#5 in Table 2). Categorical variables were dummy coded and 

continuous variables were standardized for reducing 

multicollinearity. The coefficients are in log odds scale.  

Modeling purpose Regression term Coefficient 

Effect of format 

Intercept (Text) 𝛽=-2.09, p<.001 *** 

Table 𝛽=-1.50, p<.001 *** 

FlipMenu 𝛽=0.09, p=.03 * 

Menu 𝛽=1.12, p<.001 *** 

Effect of prior 

knowledge adjusted 

by formats 

Pretest (Pretest:Text) 𝛽=-0.09, p=.13 

Pretest:Table 𝛽=0.04, p=.37 

Pretest:FlipMenu 𝛽=-0.19, p<.001 *** 

Pretest:Menu 𝛽=-0.10, p=.01 * 

Effect of learning 

adjusted by formats 

Opp (Opp:Text) 𝛽=0.01, p=.71 

Opp:Table 𝛽=-1.13, p<.001 *** 

Opp:FlipMenu 𝛽=-0.00, p=.99 

Opp:Menu 𝛽=-0.01, p=.84 

3. GENERALIZABILITY OF IRT-GD 
In the previous section, we conducted exploratory data analysis and 

validity evaluation on the same dataset and on a single dataset, 

which might risk overfitting to the dataset. In this section, we tested 

the generalizability of IRT-GD to two new datasets. We looked into 

conditions separately and together for all three datasets, resulting in 

nine contexts across different populations and designs of the 

system. The two new datasets were collected in 2020 Spring (20S) 

and 2021 Fall (21F) from the second and third experiments with the 

tutor with some design changes derived from data mining in the 

experimental (EXP) condition: new units were introduced for 

providing focused practice on prerequisite KCs; a lower proportion 

of menu and flipped-menu tasks was positioned in earlier units 

compared to the first dataset;  a new task format was introduced in 

the 21F dataset involving interactions with animations. The four 

task formats identified in the first dataset were still present in the 

two new datasets. On the other hand, the control condition 

remained the same.  

Table 4 shows statistics of all datasets including detected gaming 

by KE-GD. Again, the detected gaming proportions were high 

(16%) in the new datasets. When applying both KE-GD and IRT-

GD to the nine contexts (see Table 5), IRT-GD consistently 

outperformed KE-GD in reaching higher associations with learning 

in all nine contexts, except one (21F dataset the EXP condition) 

where the correlation of IRT-GD was slightly weaker but of the 

same level of significance as KE-GD. In particular, when 

examining both conditions together and the EXP condition, IRT-

GD reached high construct validity (i.e., rho<0 and p<.05) in all six 

contexts, while KE-GD only reached construct validity in half of 

the contexts. When examining the control condition, IRT-GD also 

improved on KE-GD by reversing positive correlations to the 

theoretically consistent negative correlations for all datasets and 

reached acceptable significance on the 20S dataset, although the 

correlations did not reach acceptable significance in other datasets. 

We conducted further investigation next.  

 



 

Table 4. Statistics of datasets including detected gaming by KE-

GD (CT/EXP: control/experimental condition). 

Data 
#stu 

#transactions  
Avg proportion of 

gamed tx over stu All CT EXP 

19F 129 69 60 98,176 .18 (SD=.08) 

20S 222 106 116 109,193 .16 (SD=.11) 

21F 99 46 53 59,703 .16 (SD=.11) 
 

Table 5. Associations between gaming from KE-GD or IRT-GD 

with learning across nine contexts. The Gaming variables in 

regression models predicting posttest scores for KE-GD and 

IRT-GD are of different scales. (p<.10: boldfaced and italicized; 

p<.05: boldfaced; NLG: normalized learning gain; CT: control 

condition; EXP: experimental condition.) 

Da

-ta 

Detect-

or 

All CT EXP 

Cor w/ 

NLG 

Post~ 

Pre+G 

Cor w/ 

NLG 

Post~ 

Pre+G 

Cor w/ 

NLG 

Post~ 

Pre+G 

19

F 

KE-GD 
rho=-.02 

p=.86 

b=0.07 

p=.69 

rho=.14, 

p=.25 

 b=0.34 

p=.11 

rho=-.29 

p=.02 

b=-0.71 

p=.02 

IRT-GD 
rho=-.18 

p=.04 

b=-0.04 

p=.09 

rho=-.02. 

p=.86 

b=-0.01 

p=.62 

rho=-.41 

p=.00 

b=-0.10 

p=.02 

20

S 

KE-GD 
rho=-.04 

p=.55 

b=0.01 

p=.92 

rho=.16, 

p=.10 

b=0.25 

p=.10 

rho=-.13 

p=.17 

b=-0.32 

p=.12 

IRT-GD 
rho=-.20 

p=.00 

b=-0.04 

p=.00 

rho=-.19 

p=.05 

b=-0.05 

p=.03 

rho=-.21 

p=.02 

b=-0.03 

p=.06 

21

F 

KE-GD 
rho=-.29 

p=.00 

b=-0.45 

p=.00 

rho=.00 

p=.98 

b=-0.04 

p=.85 

rho=-.52 

p=.00 

b=-0.83 

p=.00 

IRT-GD 
rho=-.36 

p=.00 

b=-0.05 

p=.00 

rho=-.20 

p=.18 

b=-.02 

p=.19 

rho=-.48 

p=.00 

b=-0.09 

p=.00 
 

3.1 Identifying deeper task format effects 

for refining the input detector 
To understand and address the lack of validity of IRT-GD in the 

control condition in two datasets (Table 5), we conducted further 

investigation on the 19F dataset where IRT-GD showed the 

weakest association with learning. We wondered whether the 

bottleneck lay in the input detector KE-GD. If the gaming labels 

(i.e., values of the dependent variable for fitting IRT-GD) were too 

noisy, it would be hard to get accurate tendency estimates by any 

means. If we decompose a gaming label, it is the union of 13 

gaming labels corresponding to 13 gaming patterns defined in KE-

GD. Could some of the patterns under some formats be better 

considered as not gaming in our control condition context? In other 

words, we hypothesized that there might be deeper task format 

effects in students’ interaction patterns. We conducted a third set of 

exploratory data analysis where we examined the associations 

between detected gaming proportions of each of the 13 patterns 

from KE-GD with learning under each format. We used a local 

normalized learning gain computed using tasks related to a specific 

format rather than all tasks in the pretest and posttest. The results 

in Table 6 suggest that on different formats, the same gaming 

pattern could be helpful or harmful for learning, supporting our 

hypothesized deeper format effect. To account for this contextual 

factor, we updated the detected gaming labels from KE-GD in the 

control condition by using the union of only the patterns that were 

negatively associated with learning (regardless of statistical 

significance) for each format while maintaining the labels of the 

experimental condition. This was a change in the dependent 

variable rather than the predictors in IRT-GD. We used the updated 

dataset to fit new IRT-GD variants, referred to as IRT-GD-PR, and 

estimated gaming tendencies for the control condition and the 

overall dataset. Table 7 shows that IRT-GD-PR achieved 

acceptable validity for the control condition and also boosted the 

validity for the overall dataset compared to IRT-GD and KE-GD. 

We leave for future work to further improve and test this local 

refinement method. 

Table 6. Correlations between local normalized learning gains 

and proportion of each gaming pattern detected by KE-GD in 

the control condition in the 19F dataset. Pattern #8 was omitted 

due to its absence. (+: rho>0, -: rho<0, ∙: p<.10) 

Format 1 2 3 4 5 6 7 9 10 11 12 13 

Avg prop .01 .08 .01 .00 .13 .00 .01 .01 .01 .00 .01 .02 

Table - + - - + -∙ - - - + - + 

Menu + - +∙ - - - + - - - -∙ - 

Flip-M + - + na - - + + - + - + 
 

Table 7. Associations between gaming (from KE-GD, IRT-GD, 

or IRT-GD-PR) with learning. Rho and p values are reported 

for correlation with normalized learning gains; coefficients and 

p values of Gaming variables are reported for regression.   

Detector 
All CT (control condition) 

Cor w/ NLG Post~Pre+G Cor w/ NLG Post~Pre+G 

KE-GD -.02(.86) 0.07(.69)  .14(.25)  0.34(.11) 

IRT-GD -.18(.04) -0.04(.09) -.02(.86) -0.01(.62) 

IRT-GD-PR -.27(.00) -0.07(.01) -.23(.06) -0.06(.04) 
 

4. APPLICATIONS OF IRT-GD 
In this section, we demonstrated two applications of IRT-GD. We 

used the estimated gaming tendencies from IRT-GD to study 

whether there was a difference in the level of gaming between the 

two conditions from our experimentation with the tutor, and to 

explore the relation between gaming and motivation. 

4.1 Intervention effects on gaming 
Our prior work [18] has shown that the data-tuned adaptive 

condition (that provided intense deliberate practice) led to greater 

learning outcomes compared to the control condition (that provided 

normal deliberate practice) in the first experiment (19F dataset); we 

are interested to see whether the intervention also led to higher 

behavioral engagement, particularly lower levels of gaming the 

system. We conducted a regression analysis predicting levels of 

gaming over students given the condition indicator on the three 

datasets. The two detectors had contradicting results on the 19F and 

20S datasets. On the 19F dataset, KE-GD showed that the 

intervention led to significantly higher levels of gaming while IRT-

GD showed that there was no statistical difference (Table 8 the 2nd 

column). The suggested intervention effect of increased gaming 

levels by KE-GD contradicted the previously validated intervention 

effect of improved learning, since higher levels of gaming are 

usually associated with lower learning. Thus, IRT-GD more 

accurately revealed the intervention effect on this dataset. We 

hypothesized that this could be due to KE-GD not being able to 

account for the task format effect. We computed the proportion of 

highly-gamed formats over transactions and the normalized 

learning gain per student per condition. We found that the EXP 

condition had a higher average proportion of highly-gamed formats 

(Table 9 the 2nd column), consistent with our hypothesis. On the 



 

20S dataset, KE-GD showed that the intervention led to 

significantly lower levels of gaming while IRT-GD showed that 

there was no statistical difference (Table 8 the 3rd column). 

However, both conditions have similar normalized learning gains, 

and the control condition had a much higher average proportion of 

highly-gamed formats (Table 9 the 20S columns). This again 

suggests that KE-GD provided biased gaming assessment by using 

direct proportion of gaming without accounting for formats. This 

set of analyses shows that IRT-GD more accurately revealed 

intervention effects on gaming than KE-GD in our experiments.   

Table 8. Intervention effects on gaming examined by regression 

predicting gaming proportions or tendencies given the 

condition variable (Control: 0, Experimental: 1). Coefficients 

of the condition variable are reported.  

Detector 19F 20S 21F 

KE-GD b=0.02, p=.03 b=-0.09, p<.001 b=0.03, p=.15 

IRT-GD b=-0.05, p=.68 b=0.03, p=.79 b=0.16, p=.48 
 

Table 9. The proportion of highly-gamed formats (PHGF) in 

transactions and normalized learning gain per condition. Mean 

and SD are reported. Higher values are in boldface.  

Cond 
19F 20S 21F 

PHGF NLG PHGF NLG PHGF NLG 

CT .38(.22) .16(.29) .31(.22) .12(.34) .16(.17) .14(.20) 

EXP .44(.09) .24(.28) .06(.13) .14(.39) .40(.16) .15(.25) 
 

4.2 Motivation and gaming 
The investigation of the relation between motivation and gaming 

contributes to understanding why students game and developing 

behavioral measures of motivation. Prior work [9] indicated that 

students’ attitudes and interest towards the domain was related to 

detected (observed) gaming frequency. More recent work [13] 

applying a simple latent variable model identified strong 

associations between several motivational measures and estimated 

gaming tendencies. Our investigation of the relation between 

motivation and gaming adds to the limited empirical evidence in 

this space. On our datasets, motivational surveys with four scales 

(Table 10) were collected at the first and the last sessions of each 

month-long experiment. Each question used a 7-point Likert rating; 

responses for each scale were averaged to present students' 

motivation along the scale. Table 11 shows correlations between 

motivational measures from surveys and estimated gaming 

tendencies over students. Among the four scales, only perceived 

competence in math (PC) showed consistent significant 

correlations with gaming and only in the experimental condition 

across three datasets; the sign of the correlations was negative as 

theoretically predicted. The correlations between PC and gaming 

did not appear to be due to students’ abilities approximated by 

pretest scores, because we did not find correlations between pretest 

scores and gaming tendencies. To understand why PC was only 

associated with gaming in the experimental condition that provided 

intense deliberate practice but not in the control condition that 

provided normal deliberate practice, we compared objective 

difficulties measured by the proportion correct of first attempts and 

subjective difficulties measured by the difference between the final 

and the initial values of PC between the conditions (Table 12). We 

found that the experimental condition had lower objective 

difficulties but higher subjective difficulties. We discussed the 

results in the next section.  

 

Table 10. Motivational survey inventory. 

Scale Question 

Perceived competence 

in math (PC) 

How good at math are you? 

Compared to most of your other school 

subjects, how good are you at math? 

Math utility value 

(UV) 

How important is it to you to learn math? 

How important do you think math will be 

to you in the future? 

Interest in math (IM) How interesting is math to you? 

Interest in tutor (IT) 
How excited are you to do math on a 

computer? 
 

Table 11. Correlations between motivational measures from 

surveys and estimated gaming tendencies. Correlations with 

pretest scores were added for contrast.  

Scale Cond 19F 20S 21F 

PC 

CT -.00(.97) -.10(.31) -.03(.84) 

EXP -.26(.046) -.18(.05) -.32(.02) 

All -.11(.20) -.15(.03) -.12(.25) 

UV 

CT -.11(.38) .00(.98) -.31(.04) 

EXP .09(.50) -.03(.78) -.17(.22) 

All .01(.94) -.02(.78) -.21(.04) 

IM 

CT .04(.73) -.03(.75) -.05(.73) 

EXP -.07(.60) -.13(.18) -.11(.41) 

All .02(.87) -.08(.21) -.04(.66) 

IT 

CT .11(.37) -.03(.75) -.01(.97) 

EXP .06(.64) -.06(.55) -.01(.93) 

All .12(.19) -.04(.54) -.01(.93) 

Pretest 

CT -.04(.74) -.01(.91) -.06(.68) 

EXP -.01(.92) -.03(.74) -.06(.66) 

All -.01(.90) -.04(.61) -.07(.52) 
 

Table 12. Objective difficulties measured by the proportion 

correct of first attempts (prop cor) and subjective difficulties 

measured by the difference of PC between the final value and 

the initial value (𝜟PC) per condition. Mean and SD are 

reported. Higher values are in boldface.  

Cond 
19F 20S 21F 

prop cor 𝜟PC prop cor 𝜟PC prop cor 𝜟PC 

CT .60(.17)  .02(.86) .60(.14) -.03(.83) .61(.16)  .02(1.11) 

EXP .62(.10) -.22(.91) .69(.11) -.09(.86) .70(.10) -.22(.98) 

5. DISCUSSION AND CONCLUSION 
In this paper, we demonstrate a latent variable model for more valid 

and robust gaming assessment, item response theory-based gaming 

detection (IRT-GD), that estimates latent student gaming 

tendencies accounting for contextual factors. We started with 

applying a previously validated knowledge-engineered gaming 

detector (KE-GD) to a dataset collected from an algebra tutor with 

varying task design and sequencing across conditions. However, 

the detected gaming level by KE-GD was not associated with 

learning, challenging its construct validity in our context. We 

conducted exploratory data analyses and identified contextual 



 

factors that could capture the normative interaction behaviors of the 

population that might explain this lack of association. We then built 

an IRT-GD model that explains detected gaming from KE-GD by 

both contextual factors and students’ intrinsic gaming tendencies; 

it estimates a student-level latent gaming tendency as the degree of 

deviation from normative behaviors of a population across 

contexts. We tested the generalizability of IRT-GD and found that 

it outperformed KE-GD on three datasets across different contexts 

in construct validity measured by associations with learning. Our 

approach is not only useful for others wanting to apply a gaming 

assessment in their context, but is also generally applicable in 

creating more robust behavioral measures. 

There are two notable features of our approach that may be 

particularly relevant for anyone building or using behavioral 

detectors. One is that our modeling approach adapts an existing 

behavioral detector to new contexts without complex feature 

engineering, which may be attractive for the learning engineering 

community to maximally build on past methods and adapt them to 

new contexts. For example, the learning effect on detected gaming 

is incorporated through practice opportunity counts without an 

additional process to estimate dynamic knowledge as in [6, 32]. 

Another feature is that our modeling and evaluation approaches do 

not require extra human labeling and focus on the association 

between the behavior measure and learning. Many past works 

constructed and validated detectors solely by predictions of human 

labels; although human labels have undeniable merits, they may 

contain bias. For example, in the development of KE-GD [25], 

experts examined each clip, which consists of five consecutive 

actions, from a set of clips randomly selected from log data and 

decided whether the clip would be coded as gaming or not. A clip 

was shown in a textual format giving individual-level information 

about the actions within the clip (e.g., each action's time, the 

problem context, the input entered, the relevant skill, whether the 

input was right, wrong, a help request or a “bug”), and experts made 

judgements about gaming without population-level information 

(e.g., the median time of the step of the population), or information 

outside the clip from previous or future clips. This may increase the 

speed and ease of labeling, yet it may risk introducing bias. For 

example, if the student did not deviate much from the general 

behavior of the population or if the student could get a similar step 

correct in a future clip on their first attempt, then it may be better 

to label this clip as not gaming. Thus, behavioral detectors validated 

solely by predictions of human labels looking at isolated clips may 

not always reliably capture unproductive or harmful behaviors for 

learning. Our approach reduces bias and enhances the support for 

learning when applying a behavioral detector by considering 

contextual factors that were not considered in the original human 

labeling process, but are important for identifying behaviors 

harmful for learning. Although further examination of generality, 

stability, and reliability (as elaborated later) of IRT-GD may be 

needed to strengthen the validity claim of our approach, we think 

current evidence suffices to suggest that IRT-GD and our latent 

variable modeling approach can enhance (rather than replace) 

existing behavior measures for more valid and most robust 

behavioral assessment. One may consider using IRT-GD and our 

latent variable modeling approach when an existing behavior 

measure lacks validity in a specific context.  

We identified strong contextual factors, i.e., the task format and its 

interaction with students' practice opportunities, aligning with 

previous research. The menu format led to the highest detected 

gaming, which coheres with prior work hinting at the high 

propensity of the multiple-choice format (which also involves 

selecting an option given a set of options) for triggering detected 

gaming. One explanation may be that the cognitive cost [16] in 

making attempts in menus is low since it does not require typing, 

and different descriptions may only have subtle differences, so 

students might have developed a trial-and-error strategy with 

genuine engagement. This explanation could also be applied to the 

second highest gamed format, flipped-menu, where students might 

enter several expressions extracted from a given equation 

corresponding to a description rather than writing expressions from 

scratch as in other formats. Cognitive cost of a format is implicitly 

considered in IRT-GD and may be worth more attention for others 

developing gaming detectors. Meanwhile, students more likely 

decreased detected gaming as their prior knowledge levels 

increased on menu and flipped-menu formats compared to other 

formats, suggesting that certain game-like learning strategy (e.g., a 

trial-and-error strategy) may only be likely when the cognitive cost 

is low and students are of low prior knowledge. Moreover, we 

found that students decreased detected gaming faster on the table 

format over successive practice opportunities than on other 

formats, suggesting the reasons for students to game on this format 

might be different from the reasons they gamed on menus or 

flipped-menus. Examining the interface, one explanation may be 

that there are no clear instructions on how to fill in the various cells 

of the table, e.g., under the column labeled as “Show your work”, 

it is not clear whether a student could enter 15+10 (graded as 

wrong) instead of 3*5+10 (the correct answer). This coheres with 

prior work suggesting that students gamed more when the 

presentation is unclear [8], and that students may game as a way to 

obtain worked examples [31]. Further analysis on student answers 

may support our hypothesized explanations. A final remark 

regarding task formats is that in the tutor we studied, the 

interpretation of task formats requires caution since a task format is 

not only coupled with a specific interface design (as the name 

format suggests), but also a specific scaffolding design (e.g., fixed 

or dynamic scaffolding) as well as specific KCs. A future direction 

is to study them separately through experimentation.   

In a context where IRT-GD did not reach statistically significant 

associations with learning, we conducted local refinement of the 

input detector, KE-GD, by considering deeper format effects, i.e., 

the interaction between formats and specific interaction patterns. 

Our refinement led to acceptable validity and further confirms the 

importance of task features and demonstrates the flexibility of our 

latent variable approach. A next step is to test whether this local 

refinement approach is robust in other contexts. In some contexts, 

KE-GD already reached acceptable validity, although IRT-GD 

further improved on it by reaching stronger associations with 

learning. A next step is to apply IRT-GD to other learning 

environments and to study more automatic ways to identify 

contextual factors important in a specific context.  

One aspect that needs further examination is whether and how well 

a fitted IRT-GD model extrapolates to unseen students or formats. 

This aspect is especially relevant to online intervention where the 

tutor has to react to gaming as designed for new students or formats. 

In Section 4, we conducted one kind of generalizability checking 

where we used the same independent variables in the IRT-GD 

model for the first dataset to construct IRT-GD models for new 

datasets fitted to the complete set of the new datasets. The new 

format (animation) was handled through adding a new dummy 

coded variable. We showed that the structure (i.e., predictors) of 

IRT-GD generalizes to new students and new versions of the 

system. This checking is most relevant if one uses IRT-GD to 

conduct offline student-level analysis as was done in Section 4. 

However, we have not examined how well a fitted IRT-GD model 

extrapolates to unseen students or formats, i.e., predicts detected 



 

gaming or estimates gaming tendencies for unseen students or 

formats, which is important when using IRT-GD for online 

intervention. In theory a fitted IRT-GD model can extrapolate to an 

unseen or newly seen student: we first plug in the values of the fixed 

factors which equates to using the population mean to obtain a 

prediction; after observing at least one data point of the new 

student, we can (repeatedly) reestimate the parameters with the 

accumulated data with a random intercept added for the new 

student. Meanwhile, the extrapolation to unseen formats is also 

feasible: we can first treat a new format as a seen, similar format, 

and after observing at least one data point of the new format, we 

can (repeatedly) reestimate the parameters with a parameter fitted 

for the new format3. A promising modification of IRT-GD that 

enables greater generalizability is to replace the dummy coded 

format variables with a variable that describes key properties of 

formats, e.g., whether a response set is given or can be easily 

inferred. As for the question of how well, we plan to test the 

“online” predictiveness of IRT-GD used in the aforementioned 

ways for extrapolation as a next step. 

A related examination that could further support the validity of 

IRT-GD is to examine the stability and reliability of estimated 

gaming tendencies. To examine stability, we may check whether 

gaming tendencies estimated from the first half of students’ 

temporally ordered interactions correlate with those estimated from 

the second half of the student interactions, i.e., whether students 

who tend to game more earlier also tend to game more later. To 

examine reliability, we may check whether gaming tendencies 

estimated from interactions of a set of formats correlate with those 

estimated from interactions of other formats, i.e., whether students 

who tend to game more in some formats also tend to game more in 

other formats. The higher the validity and reliability, the higher the 

truthfulness of the underlying assumption of IRT-GD about a 

latent, stable gaming tendency construct and the soundness of the 

identified contextual factors.  

Although we have focused on a student-level gaming estimate by 

IRT-GD, it can also give a transaction-level gaming estimate for 

online intervention. For example, we can first fit an IRT-GD model 

to past data using the full formulation. Then, we can apply the fitted 

model without using the random student intercepts to predict 

whether an average student may game (as defined by KE-GD) on a 

step according to current contextual factors. Then we compare this 

population-level prediction (considering an interval of uncertainty) 

to the gaming label by KE-GD to identify cases where gaming is 

not acceptable, i.e., deviating too much from the norm, and finally 

activate the pre-designed intervention.   

One seemingly conflicting result with prior studies is that we did 

not find an association between gaming tendencies with pretest 

scores (Table 11), where prior studies have shown that lower prior 

knowledge levels were associated with higher gaming frequencies 

[5, 20]. This is because IRT-GD already includes pretest scores and 

relevant interactions as predictors for detected gaming. IRT-GD is 

intentionally designed to extract latent gaming tendencies that are 

not (primarily) triggered by prior knowledge, but by other factors 

such as students’ motivation or metacognitive skills. This may lead 

to tutor design that focuses on promoting students’ motivation or 

metacognition. However, our latent variable modeling approach is 

flexible in that one could consider dropping the pretest scores 

 
3 Treating a categorical variable with few levels as a random factor may 

lead to imprecise estimates [10]. Thus, we do not consider this as a next step 

when the number of formats is small (e.g., <10). 

related predictors if they are interested in gaming tendencies 

triggered by prior knowledge. 

One finding seemingly less consistent with prior work and harder 

to interpret is the link between motivation and gaming. We found a 

negative correlation between perceived competence in math and 

gaming in the experimental condition (i.e., the intense deliberate 

practice condition), consistent with the reported negative 

correlation between self-efficacy in math and gaming in [13], but 

we did not find any correlations between other motivational 

measures and gaming, such as students’ interest towards the 

domain and gaming reported in [9, 13], or any correlations in the 

control condition (i.e., the normal deliberate practice condition)4. 

Rather than prematurely attributing the general lack of correlation 

between motivation and gaming to the lack of validity of estimated 

gaming tendencies, we hypothesize several reasons. There may be 

interactions between different student attributes (measured or 

unmeasured in the current study) or between student attributes and 

system attributes not considered in a simple zero-order correlation 

we did here. Additionally, the motivational survey was deployed at 

the first session but was used to correlate with month-long 

accumulated behaviors. After all, there is still limited empirical 

evidence of the relation between motivation and gaming, so further 

investigation is needed. To explain why there was a negative 

correlation between perceived competence in math and gaming in 

the intense deliberate practice condition but not in the normal 

deliberate practice condition, we conducted a preliminary 

exploration and found that the objective difficulty (measured by the 

proportion correct of first attempts) of the intense deliberate 

practice condition was lower than the normal deliberate practice 

condition but the subjective difficulty (measured by perceived 

competence in math) of it was higher. One hypothesis is that the 

patterns of successes or failures may matter more than the 

proportion of success for students’ perceived competence. The 

intense deliberate practice driven by a more fine-grained and larger 

KC model may have more constantly pushed students to work on 

their weak spots in new tasks (i.e., put them on the edge of 

competence), challenging their perceived competence. It may be 

worth considering letting students to occasionally work on already 

mastered skills to boost their perceived competence, or preparing 

students better for desirable difficulties or failures. Combining this 

finding with the finding that intense deliberate practice alone did 

not reduce gaming tendencies, one promising direction is to 

introduce motivational interventions or designs that could maintain 

or promote perceived competence or self-efficacy in the task 

domain under intense deliberate practice, to reach a potential 

multiplier effect of both cognitive and motivational interventions.   
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