
Neural Recall Network: A Neural Network Solution to Low
Recall Problem in Regex-based Qualitative Coding

Zhiqiang Cai
University of

Wisconsin-Madison
zhiqiang.cai@wisc.edu

Cody Marquart
University of

Wisconsin-Madison
cody.marquart@wisc.edu

David W. Shaffer
University of

Wisconsin-Madison
dws@education.wisc.edu

ABSTRACT
Regular expression (regex) coding has advantages for text
analysis. Humans are often able to quickly construct intel-
ligible coding rules with high precision. That is, researchers
can identify words and word patterns that correctly clas-
sify examples of a particular concept. And, it is often easy
to identify false positives and improve the regex classifier
so that the positive items are accurately captured. How-
ever, ensuring that a regex list is complete is a bigger chal-
lenge, because the concepts to be identified in data are often
sparsely distributed, which makes it difficult to identify ex-
amples of false negatives. For this reason, regex-based clas-
sifiers suffer by having low recall. That is, it often misses
items that should be classified as positive. In this paper, we
provide a neural network solution to this problem by identi-
fying a negative reversion set, in which false negative items
occur much more frequently than in the data set as a whole.
Thus, the regex classifier can be more quickly improved by
adding missing regexes based on the false negatives found
from the negative reversion set. This study used an existing
data set collected from a simulation-based learning environ-
ment for which researchers had previously defined six codes
and developed classifiers with validated regex lists. We ran-
domly constructed incomplete (partial) regex lists and used
neural network models to identify negative reversion sets in
which the frequency of false negatives increased from a range
of 3%-8% in the full data set to a range of 12%-52% in the
negative reversion set. Based on this finding, we propose
an interactive coding mechanism in which human-developed
regex classifiers provide input for training machine learn-
ing algorithms and machine learning algorithms “smartly”
select highly suspected false negative items for human to
more quickly develop regex classifiers.

Keywords
Qualitative coding, Regex, text classification, neural net-
work, recall, false negative density, negative reversion set

1. INTRODUCTION

Data mining, as Baker (2010) described, is the “field of dis-
covering novel and potentially useful information from large
amounts of data”[2]. A critical challenge in educational data
mining (EDM) is extracting information from text data. In
education settings, text data might come from team chats
in collaborative learning environments[4], conversations be-
tween computer agents and human learners[12], team dis-
cussions, notes, essays and reports in virtual internship[8,
10], etc. Traditionally, qualitative coding is the first and
most important step in analyzing text data[11, 6]. But as
the size of data increases, manual coding becomes expensive
and in some cases impossible. Machine learning (ML) based
text classification methods thus play an important role in
EDM.

1.1 Challenges in Automated Text Classifica-
tion

Unsupervised ML, such as topic modeling, can automatically
extract collections of words that might serve as topics in text
data[3, 5]. Supervised ML, such as neural network text clas-
sification algorithms[13, 1] can be trained on a subset of
manually coded data to predict coding for the remainder of
the data. While such ML algorithms can quickly code large
data sets, they have disadvantages that may lead to biased
classification. For example, unsupervised ML algorithms of-
ten generate topics that occur with high frequency. Codes
with relatively low frequency are often missed or vaguely rep-
resented[7]. Supervised ML algorithms, on the other hand,
rely on human coded data, thus bias in training data will be
inherited by machine learning models. Moreover, in some
circumstances, the amount of human-coded data required
to produce a reliable classifier using supervised ML meth-
ods can be prohibitive.

A third approach to automated coding is to use human-
developed regular expressions (regex). Humans are often
able to quickly construct intelligible coding rules with high
precision. That is, researchers can identify words and word
patterns that correctly classify examples of a particular con-
cept. It is often easy to identify false positives and improve
the regex classifier so that the positive items are accurately
captured. However, ensuring that a regex list is complete
is a bigger challenge. Because the concepts to be identi-
fied in data are often sparsely distributed, examples of false
negatives are difficult to identify. This causes the low-recall
problem in regex based classifiers. That is, the regex based
classifiers often miss items that should be classified as posi-
tive.

Z. Cai, C. Marquart, and D. Shaffer. Neural recall network: A neu-
ral network solution to low recall problem in regex-based qualitative
coding. In A. Mitrovic and N. Bosch, editors, Proceedings of the 15th
International Conference on Educational Data Mining, pages 228–
238, Durham, United Kingdom, July 2022. International Educational
Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853047

https://doi.org/10.5281/zenodo.6853047

In this paper, we explore the possibility of constructing
an interactive coding mechanism in which human-developed
regex classifiers provide input for training machine learning
algorithms and machine learning algorithms provide cues for
human to construct better unbiased regex classifiers.

2. OVERVIEW OF CODING PROCESSES
2.1 Manual Coding
Manual coding of text data is a complex process. Done
well, it requires researchers to intensively read their data
to discover and construct appropriate theories and develop
codes that reflect those theoretical machinery [11, 16, 15].
Hand coding typically begins when text data is segmented
into meaningful units, or items of data. Codes are then in-
duced by sorting and interpreting observations item by item.
A grounded coding process iterates through three coding
phases: open coding, axial coding and selective coding. In
open coding, a researcher goes through the data to identify
preliminary concepts. The concepts are then compared and
categorized in axial coding. Once a conceptual framework
is established, the researcher focuses on a fixed set of codes
in the selective coding phase and identifies which items each
code occurs.

Key to the process of manual coding is identifying a precise
definition for each code (usually accompanied by examples
from the data). However, coding depends on how individual
researchers understand each code: there are no rules speci-
fied that convert text into code in a deterministic way.

To address this concern, manual codes are validated, either
through a process of social moderation (sometimes call dual
coding) in which two or more coders come to agreement
about each code for each observation in the data, or using
some form of interrater reliability (IRR) that quantifies the
rate of agreement between two coders.

Because manual coding requires that at least one human
rater codes each item of the data and includes triangula-
tion with at least one more human rater, the results from
manual coding are considered the most accurate (compared
with machine coding methods) and often serves as the gold
standard orground truth to which other coding methods are
compared.

Despite this advantage in terms of coding validity, manual
coding can only be applied to data sets with relatively small
size. Thus researchers turn to a variety of machine-based or
machine-augmented coding techniques.

2.2 Keyword/Regex-based Coding
In the selective coding phase, when the size of a data set is
too large for manual coding, researchers may turn to rule-
based automatic coding [9]. Rules can be expressed in terms
of text patterns described by regexes [14]. The simplest form
of regex is a word, such as “teach”. If this word is used to
represent a code “Education”, then the code “Education” oc-
curs if and only if the text contains the string“teach”. Thus,
if a text contains the words “teacher”,“teachers”,“teaches” or
“teaching”, the code occurs, because “teach” is a sub-string
of all these words. Regexes use a set of operators to spec-
ify complex patterns. The most frequently used operators

Figure 1: nCoder flowchart.

include the pipe symbol “|”, period “.”, brackets “[]”, and
star “*”. The pipe symbol “|” is used to compose alterna-
tive strings. For example, the regex “teach|student|school”
matches a text containing any of the strings “teach”, “stu-
dent” or “school”. A period “.” indicates an arbitrary text
character and brackets “[]” indicate a range of characters
(e.g., [aeiouy] indicates any vowel in English), and the star
“*” indicates an arbitrary repetition of the previous char-
acter. So the regex “my favorite vowel.*[aeiouy]” would
code for the text “my favorite vowel” followed anywhere
in the text string by a vowel. In this way, very compli-
cated patterns can be represented by a single regex(see, e.g.,
https://www.regular-expressions.info/tutorial.html).

One powerful publicly available tool for regex-based coding
is nCoder (https://app.n-coder.org/). nCoder uses an active
machine learning approach to generating a regex-based clas-
sifier. Figure 1 shows the typical work flow of nCoder. A
researcher starts from an initial regex list. nCoder uses that
regex list to select a set of items to present to the researcher
for rating. The set may proportionally include items that
the regex list classified as positive or negative. nCoder then
allows the researcher to rate the items and compares the re-
searcher’s rating with the regex classification. When conflict
occurs, the researcher may revise the regex list, change his
or her rating, or leave the conflict unresolved. Inter-rater
reliability (IRR) between the researcher and the regex clas-
sifier is then computed based on hypothesis testing. nCoder
may present another set of items and repeat the rating-
testing process. The process continues until the researcher
and regex classifier reach a satisfactory level of agreement.
The developed regexes are saved before the process termi-
nates.[16].

The convergence of the above procedure depends on what
data items are presented to the researcher. If a presented
item is one that the human and regex classifier have agree-
ment, no information is provided to the human to improve
the regex list. Rather, it is the items where the two ratings
conflict that help improve the regex list. This conflict may
occur in two ways: one is false positive, in which the regex
coded positive but the human coded negative; the other is
false negative, in which the regex coded as negative but the
human coded as positive.

Conceptually, we can partition a data set D into two sets:
a positive set P̃ ⊂ D of the items that would be coded as
positive by current regex, and a negative set Ñ = D−P̃ that
would be coded as negative by the regex list. False positive
items are a subset of the positive set P̃ (because a false
positive requires that the regex codes an item as positive);

and false negative items are only in the negative set Ñ (by
similar reasoning).

Notice, however, when the frequency of a code is low (that is,
there are few items that should be coded positive), the prob-
ability of sampling a false positive item from the positive set
P̃ may be much higher than sampling a false negative item
from the negative set Ñ . Thus, it is more difficult for the
active machine learning system to present users with false
negatives, potentially allowing the regex development pro-
cedure to converge on a regex list with high precision but
potentially lower recall (see the definition of precision and
recall in section 3.4).

2.3 Machine learning-based Coding
Machine learning algorithms can be applied to both code
discovery and selective coding. In the domain of code dis-
covery, unsupervised machine learning algorithms, such as
topic modeling, can automatically extract from a data set
lists of related words that might potentially serve as codes.
However, research shows that in most cases these word lists
do not produce codes of interest to qualitative researchers
without further refinement. But topic modeling can help
identify missing codes by providing potential keywords for
coding[5].

One popular approach to using ML for selective coding is
LSTM (Long Short Term Memory) neural network models.
These models take as input a set of coded data items, and
return an algorithm that can predict coding for the rest of
the data. Figure 2 shows the model used in this study.
A text data item enters from the input layer as an ordered
word list. The embedding layer represents each unique word
by a vector. The ordered vectors are input to a bidirectional
LSTM layer that creates two vector representations of the
input data line. The two vectors are merged into a single
vector representation and 50% of the nodes are removed in
the dropout layer to control over-fitting. The sigmoid layer
converts the vector into a class probability output, which
indicates for each item how likely the model thinks it should
be coded positive. The probability values are then converted
to a binary coding value using a cutoff threshold, say, 0.5.
That is, when the probability is greater than 0.5, the item is
coded as 1, otherwise 0. (Readers interested in more details
about LSTM models can find more information in neural
network publications such as [13].)

Table 1: Manual, Regex and ML Coding

Manual Regex ML

Evidence Explicit Explicit Implicit

Precision High High Medium

Recall High Low Medium

Coding size Limited Unlimited Unlimited

Cost High Low Medium

This kind of neural network model can represent very com-
plicated patterns of words that serve as indicators for a code.
However, it usually requires a large number of coded data
items to train a neural network model to reach an accept-
able accuracy; thus preparing the training data for the neu-
ral network model could be expensive. Moreover, like many
other machine learning models, neural network models are
a black box : the output is hard to interpret. When a neu-
ral network model flags the occurrence of a code in a data
item, it can be hard (and often impossible) for a researcher
to determine what specific evidence the algorithm used to
make its decision. This makes it difficult for qualitative re-
searchers to establish a theory with clear interpretation. In
addition, it makes it difficult for researchers to understand
potential biases in the codes and to warrant to end users
that the result of the coding is fair.

2.4 Combining manual, regex and ML coding
Table 1 summarizes the advantages and disadvantages of
the three coding methods we have discussed so far. In what
follows, we construct and test an approach to coding that in-
tegrates these three methods together into a single process,
in which we iterate between manual coding and regex cod-
ing to train a regex list. Then we use the data coded by the
regex list to train the neural network model. The disagree-
ments between regex coding and neural network coding are
presented back to the researcher to further refine the regex
coding. We will show that this combination helps solve the
low recall problem in regex coding.

2.5 Approach
For a given data set D and and a code c, let a human rater’s
classification be D = P +N , where P is the set of positive
items (i.e., items in which code c occurs) and N is the set of
negative items. The plus sign “+” denotes the union of two
sets. In practice, the number of items in P is usually much
smaller than in N (i.e., |P | ≪ |N |), because researchers
are often interested in codes that do not occur with high
frequency.

Of course, for a given item x ∈ D, the coding algorithm
cannot determine whether x ∈ P or x ∈ N without asking
the human rater. Therefore, it is impossible for an algorithm
to sample a new item from P (orN) unless they have already
been classified by the human rater. In this sense, the sets
P and N are unsamplable, while the set D is samplable.
That is, a machine algorithm can choose an item x ∈ D but
it cannot choose with certainty whether sample x ∈ P or
x ∈ N .

Consider a regex classifier that classifies the data set D =
P̃ + Ñ . Since the machine knows the classification of all

Figure 2: LSTM neural network model for text classification

items in D, the sets P̃ and Ñ are samplable. The regex
classifier is perfect if P = P̃ . In reality, however, this is
rarely the case.

The data set D thus can be decomposed as the union of
four sets (from now on we use the notion XY to denote the
intersection of the sets X and Y):

D = PP̃ + PÑ +NP̃ +NÑ

where

• PP̃ : true positive set of the regex classifier relative to
human;

• PÑ : false negative set of the regex classifier relative
to human;

• NP̃ : false positive set of the regex classifier relative to
human; and

• NÑ : true negative set of the regex classifier relative
to human.

Notice that, since P and N are unsamplable, none of the
above sets (PP̃ , PÑ , NP̃ , or NÑ) is samplable.

As described above, the performance of the regex classifier
development process depends on its ability to present users
with false positives NP̃ and false negatives PÑ . When P̃ ≪
Ñ , the false negative items are less recoverable, in the sense
that the probability of sampling a false negative item is much
smaller than false positive.

Let us use an example to show this. Suppose the data size is
|D| = 10, 000 and a regex classifier identified 1000 positive

items
∣∣∣P̃ ∣∣∣ = 1000 with 500 false positive and 500 false nega-

tive:
∣∣∣NP̃

∣∣∣ = 500 and
∣∣∣PÑ

∣∣∣ = 500. Since the false positive

items are in the samplable set P̃ , we can sample from P̃
to find false positive items. The probability of sampling a
false positive item from P̃ is 500/1000 = 0.5. On the other

hand, false negative items are in the samplable set Ñ , which
contains 10000 − 1000 = 9000 items. The probability of
sampling a false negative item from Ñ is 500/9000 ≈ 0.056.

The above example shows that, when developing a regex
classifier, it is hard for the machine to find false negatives
— that is, to find examples of items that the human would
classify as positive but the regex classifier does not. This
means that positive cases outside of the scope of the current
regular expression list are difficult for the regex classifier to
identify, which causes the low recall problem.

Here we ask whether it is possible to use a neural network
model trained from the regex coded data to identify false
negative items. For example, if a regex list for the code “ed-
ucation” contains “teach”, “student” and “school”, a neural
network model may be able to tell that the items containing
“class”, “book” should be included in the positives. Thus,
if we sample items that the regex classified as negative but
neural network model classified as positive, we may be able
to increase the probability of finding examples that the hu-
man rater would code as positive but the regex classifier
would not.

Consider a neural network model that classifies D = ˜̃P + ˜̃N .
The regex false negative set PÑ is decomposed by the neural
network classifier as

PÑ = PÑ ˜̃P + PÑ ˜̃N.

We are mostly interested in the items that regex classifies
as negative but neural network model classifies as positive.
We call the set of such items Negative Reversion Set, which

can be written as

Ñ ˜̃P = PÑ ˜̃P +NÑ ˜̃P.

Notice that the negative reversion set Ñ ˜̃P is the intersec-
tion of the regex negative set (items coded negative by the

regex) Ñ and the neural network positive set (items coded

positive by the neural network) ˜̃P . Since both Ñ and ˜̃P are

samplable, the negative reversion set Ñ ˜̃P is samplable.

2.6 Research question
In what follows, we ask two research questions:

2.6.1 RQ1
Is the probability of finding a regex false negative item higher

from the negative reversion set Ñ ˜̃P than from the regex neg-
ative set Ñ? In other words, are the false negatives denser

in the negative reversion set Ñ ˜̃P than in the regex negative
set Ñ?

We define the false negative density dA of a set A as the
proportion of the number of false negative items in the set
A. That is,

dA =

∣∣∣PÑA
∣∣∣

|A| .

Thus, the false negative density of a negative reversion set

Ñ ˜̃P is

d
Ñ ˜̃P

=

∣∣∣PÑ ˜̃P
∣∣∣∣∣∣Ñ ˜̃P
∣∣∣ ,

and the false negative density of a regex negative set Ñ is

dÑ =

∣∣∣PÑ
∣∣∣∣∣∣Ñ ∣∣∣ .

Using the notation of false negative density, the mathemat-
ical form of this research question is whether or not the
following equation holds:

d
Ñ ˜̃P

≫ dÑ (1)

2.6.2 RQ2
If a set A is found dense with false negatives, does it also
has an acceptable false negative recovery rate?

Sampling false negatives in a denser set certainly helps.
However, it is also important that the denser set should be
large enough to include a certain proportion of false nega-
tives. We define the false negative recovery rate rA of a set
A as the proportion of false negatives included in the set A,
that is

rA =

∣∣∣PÑA
∣∣∣∣∣∣PÑ
∣∣∣ . (2)

So, we ask whether or not the false negative recovery rate
of the negative reversion set r

Ñ ˜̃P
is large enough.

Table 2: Code definition.

Code Description

CONSTRAINTS Referring to inputs: material,
processing method, surfactant,
and CNT.

PERFORMANCE Referring to attributes: flus,
blood cell reactivity,
marketability, cost, or reliability.

COLLABORATION Facilitating a joint meeting or
the production of team design
products.

DESIGN Referring to design and
development prioritization,
tradeoffs, and design decisions.

DATA Referring to or justifying
decisions based on numerical
values, results tables, graphs,
research papers, or relative
quantities.

REQUESTS Referring to or justifying
decisions based on internal
consultant’s requests or patient’s
health or comfort.

2.6.3 General method
To answer these questions, we investigate a text data set
with full regex lists developed and validated for multiple
codes. The full regex lists coded data is used as “true hu-
man ratings”. We then randomly sample a partial regex list
from the full regex list of each code. Partial regex lists are
treated as the regex classifiers under development. Neural
network models are built from the data coded by these par-
tial regex lists. So, given this data set, we are able to obtain
“human ratings” (actually full regex list coding), regex clas-
sifier (actually partial regex classifier) and neural network
classifier (trained on partial regex classifier). The negative
reversion sets are then determined from these three classi-
fications. We are then able to compute the false negative
density and the false negative recovery rate of the obtained
negative reversion sets to get the answers to our research
questions.

3. METHODS
3.1 Data
The data used in this study consists of 50,818 participant
utterances collected from novice engineering design teams
participating in an engineering virtual internship Nephrotex,
in which students worked as interns at a fictitious company
that designs and manufactures ultrafiltration membranes for
hemodialysis machinery used to treat end-stage renal fail-
ure[8]. Table 2 shows the definition of six codes defined
by previous researchers, including Tech Constraints, Perfor-
mance, Collaboration, Design, Data and Requests.

Using nCoder tool (https://app.n-coder.org/), researchers
developed and validated the regex lists. Table 3 shows the
regex list for each code, together with “base rate” (BR) and
kappa values. The base rate of a code was the proportion of
items in the data set the code occurred. The kappa values

Table 3: Regex lists for each code, the base rates (BR), and the kappas between human rater 1 (H1) and human rater 2 (H2),
human rater 1 and computer (C) and human rater 2 and computer.

Code Regex BR(%) H1-H2 H1-C H2-C

CONSTRAINTS \bPESPVP, \bdry-jet, \bnegative charge, \bsurfactant,
\bchemical, \bvapor deposition polymerization, \bjet
\bPMMA, \bPRNLT, \bmanufacturing process, \bmaterials,
\bphase inversion, \bvapor, \bsteric, \bPolyamide, \bnano,
\bbiological, \bprocesses, \bpolysulfone, \bhydro, \bcarbon
nanotube, \bCNT

16.086 0.96 1.00 0.96

PERFORMANCE \bafforda, \bBCR, \bflux, \bexpensive, \bmarketa,
\bcharacteristic, \bcatagories, \bsafe, \bprice, relia, \bblood
cell, bility, \bcost

14.508 0.88 0.93 0.84

COLLABORATION \bmeeting, \bwe all, \bdiscussion, \bwhat should,
\beverybody, \bwe could, \bdo we, \bteammates, \bshar,
(.*?\bpeople.*?\bteam.*?), (.*?\bteam.*?\bpeople.*?), \bwe
should, \bsuggesting, \bshould we

8.861 0.76 0.87 0.76

DESIGN \bfinal decision, \bdecision, \bwent with, \bbased each design,
\bbalance, \bsacrifice, \bsay the first, \bpick, \bI think we
should, \bwe had to find, \bbalance, \bmaybe use, \bwe could,
\bare we doing, \bcompromise, \bwe changed, \bstick with,
\bchoosing, \bdecide, \bliked best, \bbalancing, \bshould we
raise, \bimprove the design, \bIm trying that one, \bhow did
you design, \bchoose, \bwe want to design,
(.*?\bincrease.*?\bdesign.*?), (.*?\bdesign.*?\bincrease.*?),
\btargeted, (.*?\bcould be.*?\bdesign.*?),
(.*?\bdesign.*?\bcould be.*?), \bI would say, \bwe raised,
\bdecrease, \bcomparing, \bsuperior, (.*?\bwe
could.*?\bdesign.*?), (.*?\bdesign.*?\bwe could.*?),
(.*?\bbest.*?\boption.*?), (.*?\boption.*?\bbest.*?), \bchose
\beither way, \blet’s go with, \bwe do it like, \bchoice, (.*?\bI
think.*?\bbest.*?), (.*?\bbest.*?\bI think.*?), \bwe can do,
(.*?\bI think.*?\bsubmit.*?), (.*?\bsubmit.*?\bI think.*?),
\bdo we want, \btradeoff, \bbest way, \bmanipulated,
\bminimize, \btrade off \bchose

10.291 0.89 0.86 0.84

DATA (.*?\blowest.*?\bcheapest.*?), (.*?\bcheapest.*?\blowest.*?),
\bperformed well, \bmaximizes, \bhad great reliability,
\bresult, \brates, \bscore, \b(?<!player)(?<!player
)(?<![])(?<!:)[1-9][0-9](?!%)(?! %)(?!min)(?!
min)(?!:)(?!pm)(?!am), \bhad the lowest reliability \bscore,
(.*?\bseems to be.*?\bcostly.*?), (.*?\bcostly.*?\bseems to
be.*?), \bworst, \bpoor, \bchart, \bequal value, \bresults,
\bwas found to be, \breading, \btoo high,
(.*?\bperformed.*?\buniformly.*?),
(.*?\buniformly.*?\bperformed.*?), \bperform well, \baverage,
\btests, \bcost more, \bwas good in, \bgraph, \bgraph,
\brates, \bdata, \bperforms.*?\breliability,
(.*?\boverall.*?\bperformed.*?),
(.*?\bperformed.*?\boverall.*?)

10.405 0.94 0.9 0.89

REQUESTS \buser, \bDuChamp, \bPadma, \bsafety, \bhospital,
\bstandard, \bcomfort, \brecommendations, \bRudy,

(̂?:(?!\bexternal).)*\bconsultant(?!.*\bexternal), \bMichelle,
\bminimum, \bWayne, \brequest, \bsatisfy, \bpatient,
\bProctor, \binternal consultant, \bHernandez, \brequirement
\bAnderson, \bunacceptables, \bclient, \bAlan, \bRao

7.059 0.88 0.94 0.94

were computed on the ratings from two human raters (H-1,
H-2) and the regex classifier (C). Because of the high kappa
values, we considered these regex lists as “complete” and
represent the “true classification” by human raters. In the
discussions below, we use“full regex classification”to replace
“human classification”.

We decomposed the items in the regex lists if they were
connected by a pipe symbol “|”. For example, if an item
was “r1|r2”, then it was decomposed as two items “r1” and
“r2”. Of course, all items in the list for a given code could be
composed back as a single regex by re-connecting them with
a pipe symbol “|”. We decomposed the regex in this way so
that we could more meaningfully sample partial regex lists.

3.2 Data splitting
The data set D was randomly split into a training set S and
a test set T , each of which consisted of 25,409 items. The
training set S was used for sampling items to train neural
network models, while test set T was used for computing
final results.

3.3 Coding by three classifiers
3.3.1 Full regex coding
Full regex lists for the six codes were used to code the whole
data set D, which formed the “true classification” of the
whole data D = PD +ND. Consequently, the training set S
and the test set T are also “truly” classified as S = PS +NS

and T = PT + NT . Under this classification, the positive
rates (base rates) for the six codes range from 7% to 16%
(see Table 3).

3.3.2 Partial regex coding
For a given code, a partial regex list was constructed using
the following procedure:

1. Start with an empty regex list L = {∅} and full regex
list Rc for a code c;

2. Randomly select a regex r ∈ Rc and add it to the
partial regex list L;

3. Code the whole data set D by the partial list L to
produce P̃D/L;

4. Compute the number of positive items
∣∣∣P̃D/L

∣∣∣ coded

by L;

5. If
∣∣∣P̃D/L

∣∣∣ > |PD|
2

, end the procedure; otherwise go back

to step 2.

Through this procedure, the number of positive items clas-
sified by a partial regex list L is equal to or greater than half
of the true positive items. Each partial list L decomposed
the training set and test set into the following samplable sets
(for parsimony, we define P̃A ≡ P̃A/L):

• P̃S : regex positives in training set;

• P̃T : regex positives in test set;

• ÑS : regex negatives in training set; and

• ÑT : regex negatives in test set.

3.3.3 Neural network coding
In this paper, the neural network models were trained based
on the classification of partial regex classifiers. For a given
partial regex classifier and a given sample size n, a random
sample sn ∈ S with size n was taken from the training set.
Each item in the sample contained two fields: the text field
X and the classification value Y (1 when the regex list was
matched and 0 otherwise). The text field X is used as the
input and the partial regex classification value Y is used
as the output to train a predictive LSTM neural network
model. The testing set was then coded by the predict func-
tion of the LSTM model, with the cutoff probability 0.5.
Thus, the neural network model classified the test set into
the samplable sets:

• ˜̃PT : neural network positive in test set; and

• ˜̃NT : neural network negative in test set.

3.3.4 Sample size and repetition of partial regex lists
In training the neural network models, we used five different
sample sizes: n = 100, 200, 400, 800, 1600. In order to reduce
the random effect in partial regex construction, 12 random
partial regex lists were drawn for each code using the partial
regex construction procedure. So, for each of the six codes,
the test set had the following classifications:

• 1 “true classification” T = P +N ;

• 12 partial regex list classification T = P̃i + Ñi, (i =
1, 2, · · · , 12);

• 60 neural network classification (12 partial regex list, 5

sample sizes each) T = ˜̃Pin+
˜̃Nin, (i = 1, 2, · · · , 12;n =

100, 200, 400, 800, 1600).

In the notions above, P̃i and Ñi were the positive and neg-
ative set, respectively, classified by the ith partial regex for

the given code; and ˜̃Pin and ˜̃Nin were the positive and nega-
tive set, respectively, classified by the neural network model
trained on the ith partial regex list with sample size n.

3.4 Performance metrics
Before moving on, we define three measures for the perfor-
mance of classifiers: precision, recall and Cohen’s κ. For a
given classifier, denote the proportion of true positives, false
positives, false negatives and true negatives by tp, fp,fn and
tn, respectively.

• The precision of a classifier is the ratio of true positive
to the sum of true positive and false positive, namely

precision =
tp

tp+ fp
.

• The recall of a classifier is the ratio of true positive to
the sum of true positive and false negative, namely

recall =
tp

tp+ fn
.

• The Cohen’s kappa κ of a classifier is the ratio of the
difference between observed probability and chance prob-
ability to one minors chance probability, namely,

κ =
po − pc
1− pc

.

where

po = tp ∗ fp,

and

pc = fp ∗ fn+ (1− fp) ∗ (1− fn).

4. RESULTS
4.1 Single model comparison
Table 4 shows an example classification on code “Tech Con-
straints” with its full regex list, one randomly constructed
partial regex list and one neural network model trained from
the partial regex list with sample size 400.

In this example, the classification of the test set by the full
regex classifier, which was considered the “true classifica-
tion”, yielded 3976 positive items (set P) and 21,431 nega-
tive items (set N). Notice that there were far more negative
items than positive items. The partial regex classifier cor-
rectly identified 2,133 positive items (set PP̃). However, it

falsely classified 1845 positive items as negative (set PÑ).
Since the partial regex was a subset of the full regex list,
any item matched by the partial regex was in turn matched
by the full regex. In other words, any item not matched by
the full regex was not matched by the partial regex. Thus,
no negative item was falsely classified as positive (set NP̃);
and the partial regex classifier agreed with the full regex
classifier on all 21,431 negative items (set NÑ). As a result,

the partial regex got a larger negative set Ñ = PÑ + NÑ
with a total of 23,276 items. The false negative density in
the negative set Ñ was thus dÑ = 1845/23276 ≈ 7.92%.

The third column of the table shows the classification results
of the neural network model trained on the data classified
by the given partial regex list with sample size 400. There
were 1170 items that were correctly classified by both partial

regex list and the trained neural network model (set PP̃ ˜̃P).
963 positive items were correctly classified by the partial
regex list but falsely classified as negative by the neural net-

work model (set PP̃ ˜̃N). Most interestingly, there were 288
positive items that were falsely classified as negative by the
partial regex list but correctly reversed as positive by the

neural network model (set PÑ ˜̃P). 1557 positive items were
falsely classified as negative by both the partial regex list
and neural network model. For the 21,431 negative items,
the neural network falsely classified 302 items as positive

(set NÑ ˜̃P) and correctly classified 21,129 items as negative

(set NÑ ˜̃N).

The negative reversion set Ñ ˜̃P was the union of the sets

PÑ ˜̃P and NÑ ˜̃P , which contained 288 correctly reversed
items and 302 falsely reversed items. Therefore, the false

negative density in the negative reversion set Ñ ˜̃P was d
Ñ ˜̃P

=

288/(288 + 302) ≈ 48.81%, which was much larger than the
density in the regex negative set dÑ = 7.92%.

Table 4: An example of false negative recovery for Tech Con-
straints with training size 400.

Full Regex Partial Regex Neural Network

P (3976)

PP̃ (2133)

PÑ (1845)

PP̃ ˜̃P (1170)

PP̃ ˜̃N (963)

PÑ ˜̃P (288)

PÑ ˜̃N (1557)

N(21,431)

NP̃ (0)

NÑ (21,431)

NP̃ ˜̃P (0)

NP̃ ˜̃N (0)

NÑ ˜̃P (302)

NÑ ˜̃N (21,129)

Figure 3: False negatives density in partial regex negatives
versus in negative reversion set.

This example gives us a positive answer to our first research
question. That is, the false negative density in the negative
reversion set is much higher than in the regex negative set.

To answer the second question, we computed the false nega-
tive recovery rate in the negative reversion set. From Equa-
tion 2, we had r

Ñ ˜̃P
= 288/1845 ≈ 16%.

If our goal is to find all false negatives, this number is not
very high, because 84% false negatives are still sparsely dis-
tributed in the regex negative set Ñ . However, we argue
that this number is large enough for constructing iterative
methods, which we will talk more about in the discussion
section.

4.2 Average false negative density
The above example showed false negative density and the
false negative recovery rate in the negative conversion set
for one code, one random partial regex list and one neural
network model with sample size 400. To answer our research
questions more reliably, we computed the average false neg-
ative density for each code with 12 randomly drawn partial

Table 5: False negative recovery rate, training size=400

Code PÑ ˜̃P PÑ ˜̃N r (%)

Tech Constrains 195.83 1579.67 11.03

Performance 270.17 1338.00 16.80

Collaboration 23.75 900.58 2.57

Design 76.67 1908.17 6.53

Data 19.67 1027.67 1.88

Requests 38.25 615.25 5.85

Figure 4: False negative density in negative reversion set for
all sample sizes.

regex lists. The results show that the false negative den-
sity for all codes were several times higher in the negative

reversion set Ñ ˜̃P than in the regex negative set Ñ . Figure
3 shows the results for sample size=400. While the density
dÑ in the regex negative set ranged from 3% to 8%, the den-
sity d

Ñ ˜̃P
in the negative reversion set ranged from 12% to

52%. For example, the density for the code “Performance”
increased from dÑ = 7% to d

Ñ ˜̃P
= 52%.

4.3 Average false negative recovery rate
For each code, we computed the average false negative recov-
ery rate over 12 randomly drawn partial regex lists. Table
5 shows, with neural network training size=400, the num-

ber of items in sets PÑ ˜̃P and PÑ ˜̃N and false recovery rate
as percentages. The average false negative recovery rates
ranged from 1.88% to 16.88% and the average number of
false negative items included in the negative reversion set
ranged from 19.67 to 270.17.

4.4 Sample size effect
In the above, we only showed the results for the neural net-
work models trained from sample size n = 400. Figure 4
and Figure 5 show the average false negative density and
false negative recovery rate in the negative reversion set for
each code as a function of neural network training size. For
the codes “Tech Constraints”, “Collaboration” and “Design”,

Figure 5: False negative recovery rate for all sample sizes.

the density change was very small after size 400. For code
“Performance” and “Requests”, the density for larger train-
ing size was larger. However, they suffered from reduced
false negative recovery rate.

We also computed Cohen’s kappa between different models.
Figure 6 shows the mean Cohen’s kappas for each code as
functions of sampling size for neural network model. The
kappa means were computed over the 12 partial regex lists
for each code. The blue lines are the kappas between full
regex and partial regex lists. They are horizontal lines be-
cause they have nothing to do with the sample size. The
green lines are kappas between partial regex lists and neural
network models. As sample size increases, the green lines
increases. That indicates that neural network models could
be close to the partial regex list model as the sample size
increases. For codes “Tech Constraints” and “Performance”,
the green lines even go beyond the blue lines when the sam-
ple size is large. This is normal because the neural network
models were trained from partial regex list. The red lines are
kappas between the full regex and neural network models.
Although the red lines also increase, they never go beyond
the blue lines. That indicates that, although neural net-
work models may help identify items missed in partial regex
list, they don’t perform better than the regex classifier from
which they are trained.

5. CONCLUSIONS
In this study, we used neural network models trained from
partial regex classifier to help identify the false negatives
from partial regex classifiers. The so called negative rever-

sion set Ñ ˜̃P was of our most interest in this study. This set
consisted of conflict items that the partial regex classifier
coded as negative but the neural network classifier coded
as positive. Since the neural network classifiers was trained
from the data coded by the partial regex classifiers, the nega-
tive reversion sets were actually error sets - the false positive
sets relative to the partial regex coded data. That is, the
neural network models didn’t correctly predict how the par-

Figure 6: Kappa as functions of training size between three
pairs of coding: partial regex and full regex coding, neural
network and full regex coding, and and neural network and
partial regex coding.

tial regex classifiers code such items. However, our study
showed that this “error set” had a much higher density of
regex false negatives. This indicates that the neural network
models had some ability in detecting the error contained in
the training data. It is unclear how this happened. Our cur-
rent theory is that, since the neural network model was built
on semantic representations (word embedding layer captures
the word meaning and the LSTM layer captures the word or-
der information), it could be able to detect certain violations
of semantic consistency. For example, if “table” and “chair”
are included in a partial regex list, the neural network model
may suggest that “furniture” shouldn’t be excluded.

The results show the differences of the density increases
among codes. The increased density in the false negative
reversion set doesn’t correlate to the original density in the
regex false negative set. The source of the difference is un-
known. However, the fact that the density in the false nega-
tive reversion set is from 3 to 12 times higher suggests that
this technique could improve classifier performance.

The results showed that false negative recovery rate ranged
from 2% to 17%, depending on the specific code and neural
network training size. This indicates that, while it is easier
to find false negative items from the negative reversion set,
many false negative items remain in other sets. We suggest
that, when searching for false negative items, the negative
reversion set and the whole regex negative set should both
be considered.

The training size issue in this study is more complex. In
general, more training data results in better neural network
models. However, in our case, we are expecting a larger

“error set” Ñ ˜̃P . When the training size is too large, the
“error set” shrinks and thus reduces the false negative recov-
ery rate. From our study, it appears that a training size of
approximately 400 is adequate.

Figure 7: Neural network assisted regex development.

More generally, our study is limited by the use of one specific
data set, six specific codes, and a specific ratio (1:2) between
the partial regex and the full regex. In practice, the partial
regex corresponds to the regex list under development and
the full regex corresponds to the human understanding of
the code. When the partial regex is close to the “full regex”,
the density in the negative reversion set may become small.

While, of course, training the neural network models from
manually coded data would produce a better predictor, it
would require a human rater to code a large number of
items. But, as we argued above, even if enough manual
coding could be provided, training a neural network model
directly from the manually coded data will result in a classi-
fier that is hard to interpret and defend. Instead, we suggest
using an imperfect neural network model to augment regex-
based classification, so that when a regex classifier codes a
positive item, it will be clear to researchers and end users
why each item has been coded.

The last but not least, we didn’t use real human coding in
this study, which limited our investigation on false negative
items only, because a partial regex classifier will never have
false positive prediction in relation to a full regex classifier.
However, in the case of real human coding, false positives are
likely to occur. Similar to the negative reversion set, we may
define a positive reversion set as the set of items for which
the regex classifier coded as positive but the human rater
coded as negative. It could be the case that the positive
reversion set also contains denser false positives. However,
this is less important when the positive rate is small.

To conclude this paper, we propose the following iterative
procedure for better development of regex classifiers (see
Figure 7):

1. The user enters initial regex list for development;

2. A machine learning model is trained based on the ini-
tial regex list classification and prepares reversion sets;

3. The computer selects highly likely conflict items sug-
gested by machine learning model;

4. The user rates the item ;

5. If a conflict occurs, the user resolves the conflict and
updates the regex list;

6. The computer computes agreement statistics (IRR)
based on the ratings from the user, regex list and neu-
ral network model;

7. If the statistics show that the IRR is not high enough,
go back to the reversion set preparation step and reit-
erate the process;

8. If the statistics show high agreement, end the process.

6. ACKNOWLEDGMENTS
This work was funded in part by the National Science Foun-
dation (DRL-1713110, DRL-2100320,LDI-1934745), theWis-
consin Alumni Research Foundation, and the Office of the
Vice Chancellor for Research and Graduate Education at
the University of Wisconsin-Madison. The opinions, find-
ings, and conclusions do not reflect the views of the funding
agencies, cooperating institutions, or other individuals.

7. REFERENCES
[1] X. Bai. Text classification based on lstm and

attention. In Thirteenth International Conference on
Digital Information Management (ICDIM), pages
29–32, 2018.

[2] R. Baker. Data mining for education. International
encyclopedia of education, 7(3):112–118, 2010.

[3] D. M. Blei and A. Y. Ng. Latent dirichlet allocation.
Journal of Machine Learning Research,
3(4-5):993–1022, 2003.

[4] Z. Cai, B. Eagan, N. M. Dowell, J. W. Pennebaker,
D. W. Shaffer, and G. A. C. Epistemic network
analysis and topic modeling for chat data from
collaborative learning environment. In Proceedings of
the 10th International Conference on Educational
Data Mining, pages 104–111, 2017.

[5] Z. Cai, A. Siebert-Evenstone, B. Eagan, and D. W.
Shaffer. Using topic modeling for code discovery in
large scale text data. In Advances in Quantitative
Ethnography: ICQE Conference Proceedings, pages
18–31, February 2021.

[6] K. Charmaz. Constructing grounded theory. Sage,
London, 2006.

[7] N.-C. Chen, M. Drouhard, R. Kocielnik, J. Suh, and
C. R. Aragon. Using machine learning to support
qualitative coding in social science: Shifting the focus
to ambiguity. ACM Trans. Interact. Intell. Syst.,
8(2):9:1–9:20, June 2018.

[8] N. Chesler, A. Ruis, W. Collier, Z. Swiecki,
G. Arastoopour, and D. Shaffer. A novel paradigm for
engineering education: virtual internships with
individualized mentoring and assessment of
engineering thinking. Journal of Biomechanical
Engineering, 137(2):1–8, 2015.

[9] K. Crowston, X. Liu, E. Allen, and R. Heckman.
Machine learning and rule-based automated coding of
qualitative data. In Proceedings of ASIST 2010, pages
1–2, October 2010.

[10] D. Gautam, Z. Swiecki, D. W. Shaffer, A. C. Graesser,
and V. Rus. Modeling classifiers for virtual internships
without participant data. In Proceedings of the 10th
International Conference on Educational Data Mining,
pages 278–283, 2017.

[11] B. Glaser and A. Strauss. The discovery of grounded
theory: Stretegies for qualitative research. Aldine,
Chicago, 1967.

[12] A. C. Graeser, X. Hu, V. Rus, and Z. Cai.
Conversation-based learning and assessment
environments. In D. Yan, A. A. Rupp, and P. W.
Foltz, editors, Handbook of Automated Scoring, pages
383–402, New York, February 2020. Chapman and
Hall/CRC.

[13] G. Li and G. Jiabao. Liu, gang, and jiabao guo.
”bidirectional lstm with attention mechanism and
convolutional layer for text classification.
Neurocomputing, 337:325–338, 2019.

[14] Y. Li, R. Krishnamurthy, S. Raghavan, and
S. Vaithyanathan. Regular expression learning for
information extraction. In Proceedings of the 2008
Conference on Empirical Methods in Natural Language
Processing, pages 21–30, October 2008.

[15] D. Shaffer. Quantitative Ethnography. Cathcart Press,
Madison, WI, 2017.

[16] D. W. Shaffer and A. R. Ruis. How we code. In
Advances in Quantitative Ethnography: ICQE
Conference Proceedings, pages 62–77, February 2021.

