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ABSTRACT
Predicting student performance in an academic institution
is important for detecting at-risk students and administer-
ing early-intervention strategies. We propose a new grade
prediction model that considers three factors: temporal dy-
namics of prior courses across previous semesters, short-term
performance consistency, and relative performance against
peers. The proposed architecture comprises modules that in-
corporate the attention mechanism, a new short-term gated
long short-term memory network, and a graph convolutional
network to address limitations of existing works that fail to
consider the above factors jointly. A weighted fusion layer is
used to fuse learned representations of the above three mod-
ules—course importance, performance consistency, and rel-
ative performance. The aggregated representations are then
used for grade prediction which, in turn, is used to classify
at-risk students. Experiment results using three datasets
obtained from over twenty thousand students across seven-
teen undergraduate courses show that the proposed model
achieves low prediction errors and high F1 scores compared
to existing models that predict grades and thereafter iden-
tifies at-risk students via a pre-defined threshold.

Keywords
Grade prediction, machine learning, attention mechanism,
long short-term memory network, graph convolutional net-
work

1. INTRODUCTION
Learning analytics involves the process of collecting, ana-
lyzing, and reporting of data generated by learners in an
education setting. It optimizes learning and the environ-
ment by gaining insights into the learning behavior and/or
learner achievements [39]. Among the several sub-disciplines
that learning analytics transcends across, prediction of aca-
demic performance has received increasing attention in re-
cent years and remains one of the most challenging tasks.
Grade prediction plays a central role in the development

of data-informed approaches for early-intervention strate-
gies and it is therefore important to achieve a low pre-
diction error—errors leading to high false alarms will re-
sult in reduced morale and inefficient allocation of resources
while missed detection often results in sustained poor per-
formance [29]. After grade prediction, at-risk students are
identified as those whose performance satisfy a pre-defined
set of conditions (e.g., those who score below the passing
mark in one or more courses).

1.1 Existing Works for Grade Prediction
Prediction of academic performance in the form of grade
point averages [15], examination grades [13], or academic
achievements [25] can be achieved via a variety of sources.
These sources include (but not limited to) online learning
activities [22, 28, 44], co-curricular activity records [8], de-
mographics [38], and course grades obtained from previous
semesters [13,23,32,34]. While online learning offers numer-
ous opportunities for the exploitation of data associated with
learning behaviors (in the form of clickstreams and/or online
assessment results) [46], many academic institutions still rely
on face-to-face instructions for some courses. Extraction of
learning behaviors for these courses via audio/visual captur-
ing devices may present challenges in terms of technological
capability and privacy concerns. In addition, co-curricular
activity records and demographic profiles may not be readily
available due to the general personal data protection poli-
cies [3]. Therefore, grade prediction using past examination
records as useful features [45] has been the main focus in
recent years since examination results are often made ac-
cessible to policy makers, administrators, instructors, and
student care support personnel involved in developing and
administering intervention strategies.

Machine learning techniques have been proposed to predict
grades of a given (pilot) course based on those achieved in
historical (prior) courses. These models exploit the temporal
dynamics of student performance across semesters from two
aspects—consistency in academic performance and course
importance [47]. These aspects have been modeled using
a sequential model and the attention mechanism [24], re-
spectively. Sequential models such as the long short-term
memory (LSTM) has been applied to model long-term de-
pendencies in online interaction [17] and to predict the grade
point average of a given semester from marks obtained across
various courses [33]. More recently, as opposed to predict-
ing the aggregated performance for a semester, the LSTM
was trained to predict the grade of each course [13]. In
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Figure 1: The proposed academic achievement-based grade prediction (A2GP) architecture.

this model, a vector representation of course grades achieved
in each of the previous semester was used as input for the
LSTM model.

Notwithstanding the above, a course-specific regression
model that predicts the grade of a pilot course as a sparse
linear combination of prior grades has been proposed [35].
Results presented highlight the detrimental effects of miss-
ing regressors for students who have yet attempted an “im-
portant” prior course. While modeling of the temporal dy-
namics of student performance along with the incorporation
of the attention mechanism for grade comparison between
students has been proposed [30], the intrinsic formulation of
LSTM limits its ability to model short-term consistency [21].
Despite the use of knowledge distillation [27], such models
do not consider peer performance among students.

In recent years, graph convolutional network (GCN) have
been employed to generate meaningful feature representa-
tions. In contrast to the use of grade vectors in tempo-
ral modeling approaches, these representations model the
transitions of grade distributions between courses across
semesters [12]. Here, the performance of each student is
considered for courses taken consecutively. More recently,
nodes representing either students or courses have been used
to construct student-course, student-student, and course-
course graphs [23]. These graphs consist of edge links com-
puted via grade distribution similarities; they do not model
both the long- and short-term sequential information of each
student.

While the above techniques achieve good prediction perfor-
mance, the models are optimized independently and do not
consider all the above-mentioned aspects jointly. A holistic
approach toward predicting academic performance is impor-
tant and motivated, in part, by Walberg’s theory of educa-
tional productivity. Apart from external variables such as
quality of instruction and climate, student-centric variables
that include prior achievement and student cognitive capac-
ity will influence the academic performance of an individ-

ual [43].

1.2 The Proposed Model Architecture
Inspired by student-centric factors highlighted in Sec-
tion 1.1, we propose an academic achievement-based grade
prediction (A2GP) architecture that jointly models the (i)
importance of prior courses, (ii) short-term consistency in
academic performance across previous semesters, and (iii)
benchmarking of student performance relative to their peers.
With reference to Figure 1, the first module of the proposed
architecture comprises an attention-based LSTM network
that encodes the influence of prior course grades on the pilot
course. This module is based on existing sequential mod-
els (such as LSTM) that have been employed to capture
the temporal dynamics of past academic performance [13].
These models are motivated by studies that have established
the association between course orderings and academic per-
formance [9,26]. Such an association is not surprising given
that the constructivist approach has often been adopted for
curriculum design, resulting in the influence of various prior
courses on a pilot course [37]. Such a constructivist strategy
has also shown to be effective in terms of academic achieve-
ment [2, 18] and improving content mastery that requires
higher cognitive levels [1]. Temporal modeling of perfor-
mance using LSTM is also in line with the Tinto’s Student
Integration Model which posits that persistence in higher ed-
ucation is a temporal process [5], i.e., the ability to achieve
learning outcomes of fundamental courses will influence that
of other advanced or related courses. This is further justi-
fied if the prior course serves as a pre-requisite for the pilot
course.

Compared to existing models that model long-term dynam-
ics of academic achievements, the second module consists
of a new short-term gated LSTM (STG-LSTM) that mod-
els short-term consistency in academic performance for each
student. This module is motivated by the need to consider
academic momentum that highlights the influence of work-
load (which varies across courses and semesters) on aca-
demic performance and the achievement of learning out-



comes [14]. Short-term consistency may also arise from aca-
demic performance being highly dependent on multiple (yet
often convoluted) factors such as socio-economic, psycho-
logical, and environmental conditions that a student may
face in the recent (past) semesters [36]. From developmen-
tal perspective, knowledge inquiry is known to evolve over
a series of micro-development resulting in short-term varia-
tions in performance [7]. This also aligns with findings that
demonstrate the positive effect of mastery and performance
goals on short-term and long-term consequences of student
achievement [10]. The identification of these patterns would
therefore lead to more effective grade prediction.

Beyond representing the performance of a student over time,
students are often deemed as at-risk if their performance
is consistently below par compared to their peers. In par-
ticular, for courses perceived as easy which most students
achieve a high grade, achieving a reasonable grade (e.g.,
Grade C) may still constitute as at-risk when most peers
achieved a Grade A. Conversely, a Grade C may not be
inferred as being at-risk when most peers achieved simi-
lar (or lower) grades for a course perceived by most as
challenging. Accounting for such benchmarking of grades
is important since such relative performance has shown to
achieve lower grade prediction bias than one based on ab-
solute grades [4, 41, 42]. In light of the above, the third
module involves a graph convolutional network that mod-
els grade differences between student pairs across all prior
courses taken by them. This module exploits information
derived from students who perform similarly/dissimilarly
across commonly taken courses and models such represen-
tation that describes the relative performance between stu-
dents.

For grade prediction, learned academic achievement repre-
sentations associated with temporal dynamics of past perfor-
mance, short-term performance consistency of an individual,
and relative performance against peers are synthesized via a
weighted fusion layer. We formulate a learnable parameter
in this layer that determines the relative emphasis of factors
influencing the pilot course grade. Learning the weightings
for these academic achievement representations is important
to model the underlying characteristics of a dataset that
contribute to the joint optimization of the model. Perfor-
mance of the proposed A2GP architecture is evaluated over
three student performance datasets obtained over seventeen
courses from over twenty thousand students in a university.
Results obtained highlighted that the A2GP model improves
the performance of LSTM and GCN by 19.0% and 63.3%,
respectively, in terms of F1 score for at-risk classification.

This paper is organized as follows: the problem statement
and background formulations are described in Section 2.
Technicalities of the proposed A2GP model are detailed in
Section 3. Details of the datasets, as well as, the compari-
son analysis with discussions are described in Section 4 while
Section 5 concludes the paper.

2. PRELIMINARIES
2.1 Problem Statement
The problem of grade prediction and at-risk detection from
prior grades can be described by defining, for each student
index i, the exam grade xi,l,s achieved for a prior course l

during semester s. Denoting L as the total number of prior
courses, a 1× L grade vector for semester s is given by

xi,s =
[
xi,1,s, . . . , xi,L,s

]
, (1)

where xi,l,s = ϕ is a null element corresponding to an unreg-
istered course l in that semester. The prior course grades of
a student across S number of semesters under consideration
can then be represented as an L× S matrix

Xi =
[
xT
i,1, . . . ,x

T
i,S

]
. (2)

With the above, columns of Xi form a sequence of vectors
that encapsulates the ability of a student to achieve learning
outcomes (measured by grades). Given the database of (stu-
dent, course, grade) up to semester S, the aim is to predict
grades for each student on courses he/she will be enrolling
in the coming semester.

2.2 Modeling Long-term Dynamics of
Academic Performance using LSTM

To model the academic performance across semesters, Xi

serves as features for the prediction of course grades in the
forthcoming examinations [13]. The use of Xi, therefore,
allows the model to account for courses that a student has
re-attempted. An LSTM unit in semester s is described by

hi,s = LSTM(xi,s,hi,s−1), (3)

where the above compact form is defined by

fi,s = σ(Wf · xi,s + Vf · hi,s−1 + bf ), (4a)

ui,s = σ(Wu · xi,s + Vu · hi,s−1 + bu), (4b)

oi,s = σ(Wo · xi,s + Vo · hi,s−1 + bo), (4c)

c̃i,s = σ(Wc · xi,s + Vc · hi,s−1 + bc), (4d)

ci,s = fi,s ⊙ ci,s−1 + ui,s ⊙ c̃i,s, (4e)

hi,s = oi,s ⊙ tanh(ci,s). (4f)

The variables u, f , o and their associated subscripts denote
the update, forget, and output gates, respectively. These
control gates regulate information to be stored in the cell
state ci,s in (4e) allowing LSTM to achieve long-term mem-
ory [11]. The weight matrix for input xi,s and hidden state
hi,s−1 in different gate units are denoted, respectively, by
matrices W and V . The variables c̃i,s and b are defined,
respectively, as as the cell input activation vector and bias
while σ and tanh are the activation functions. The sym-
bol ⊙ denotes element-wise multiplication. The ability of a
student to achieve the course learning outcomes is therefore
encoded in hidden states hi,s, which are then updated when
grades for the new courses are made available. Predicted
grade ŷi is then achieved via a fully-connected (FC) layer

ŷi = w · hT
i,S + b, (5)

where w and b are defined, respectively, as the weight vector
and bias scalar for the FC layer.

2.3 Modeling Relative Performance using
GCN

GCN has been applied to model the interactions between
nodes in a graph network. As opposed to [12], where the
GCN models transitions between courses across semesters,
we define A as the adjacency matrix such that its elements
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Figure 2: Modeling course importance.

Ai,j denotes the similarity of prior grades between two stu-
dents—a value of 1 is assigned between students i and j
having exactly the same prior grades. The model incor-
porates a feature matrix F with elements corresponding to
first attempt grades that a student obtained over the past
semesters for each prior course. Multiple layers of GCNs
are then applied to A and F with the (g + 1)th layer being
computed via [20]

Z(g+1) = σ
(
D− 1

2AD− 1
2Z(g)W(g)

)
. (6)

Here, D is the normalization matrix, Z(g) is the input to the
next layer, and W(g) is the weight matrix. With the input
of the first GCN layer being Z(0) = F, the output of the last
GCN layer is the student-specific graph embedding matrix

Z(G) =
[
zT1 , . . . , z

T
K

]T
, (7)

whereG is the number of GCN layers. Each node embedding
(row) vector zi for each node (student) then serves as an
input to the subsequent FC layer for grade prediction.

3. THE PROPOSED A2GP MODEL
3.1 Modeling Course Importance
Inspired by the attention mechanism in sequence-to-
sequence models [24], the first module comprises an LSTM
layer and the attention-LSTM layer to model course impor-
tance. To formulate the above and as shown in Figure 2,
columns of the grade matrix Xi in (2) serve as input se-
quences to the LSTM and the ability to achieve the course
learning outcomes is therefore encoded in hidden states hi,s

defined in (4f).

The last hidden state hi,S will be used to initialize the hid-
den state of the subsequent attention-LSTM layer. This
layer is necessary to account for the influence of the various
prior courses on the pilot course of interest. The attention
mechanism in this layer can be described by first defining

h̃i,s =

{
hi,S , if s = 1;

Wh ·
[
αi,s−1 ⊙ hi,s−1;h

′
i,s−1

]T
, if s > 1

(8)

as the hidden activation vector, where hi,s−1 is the hidden
state of the LSTM layer and h′

i,s−1 is the hidden state of the
attention-LSTM layer. Here, Wh is the weight matrix that
is to be trained, and the prime notation denotes for the at-

tention layer. Therefore, the hidden activation vector h̃i,s is

tanh
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Figure 3: Modeling consistency in student short-term perfor-
mance.

first initialized as the last hidden state hi,S from the previ-
ous LSTM layer before being updated based on the learned
semester-aware attention. Defining Wα as the weight ma-
trix, the semester-aware attention in (8) for semester s is
given by

αi,s−1 = Softmax
(
Wα[hi,s−1;h

′
i,s−1]

)
. (9)

The hidden state for the next unit h′
i,s (of this attention

layer) is then computed using student prior grade xi,s and

the hidden activation vector h̃i,s such that

h′
i,s = Attention-LSTM(xi,s, h̃i,s), (10)

where the Attention-LSTM(xi,s, h̃i,s) is defined in the same
form of LSTM(xi,s,hi,s) in (3) except for the additional
attention and hidden activation vector computed in (8)
and (9).

We note from (8) that h̃i,1 is generated from hi,S , which en-
codes the academic performance over past semesters. This
allows the attention-LSTM layer to incorporate both aggre-
gated and semester-based information simultaneously when
computing the semester-aware attention for each semester.
The last hidden state h′

i,S of the attention-LSTM layer is
then used along with short-term performance consistency
and the relative performance representation (described be-
low) for the grade prediction.

3.2 Modeling Consistency in Short-term
Performance

Modeling short-term variations in academic performance is
necessary since such variations may result from active (or
the lack of) intervention strategies administered by the aca-
demic institution or changes in social-economic status that
distracts students away from their academic pursuit [36]. In
the second module, we formulate a short-term gated LSTM
that employs, for each semester s, the average examination
score computed across three consecutive semesters s − 1, s
and s+ 1, i.e.,

ri,s =


[0, xi,s, xi,s+1] , if s = 1;

[xi,s−1, xi,s, xi,s+1] , if 1 < s < S;

[xi,s−1, xi,s, 0] , if s = S,

(11)

where xi,s is the average of non-empty elements in xi,s de-
fined in (1). Short-term performance averages are then em-



ployed to update information in the memory cell via

gi,s = tanh(Wg · ri,s + Vg · ci,s−1 + bg), (12a)

c′′i,s = gi,s ⊙ f ′′i,s ⊙ c′′i,s−1 + u′′
i,s ⊙ c̃′′i,s, (12b)

h′′
i,s = o′′

i,s ⊙ tanh(c′′i,s), (12c)

where Wg and Vg are the weight matrices and bg is the bias
term for the short-term gate gi,s. The formulations of f ′′i,s,
u′′
i,s, o

′′
i,s, the input activation function c̃′′i,s, and the hidden

state h′′
i,s are identical to those defined in (4). As shown

in (12b), both gi,s and the forget gate f ′′i,s control informa-
tion updates from previous cell state c′′i,s−1. The last hidden
state h′′

i,S is used with other academic achievement represen-
tations in the fusion layer for grade prediction.

To gain insights into the above and with reference to Fig-
ure 3, the new short-term gate defined in (12a) utilizes ri,s
and c′′i,s−1 to determine how short-term consistency in per-
formance affects the cell state update. As opposed to (4a)
where the sigmoid function is used, we employ tanh activa-
tion in (12a). This is to avoid sharp damp gradients during
back propagation, gradient saturation, and gradient updates
propagating in different directions when the sigmoid func-
tion is used [16, 31]. In addition, −1 ≤ gi,s ≤ 1 allows the
module to model both the positive and negative relationship
between performance variation and the cell states.

We also note from (12b) that the previous cell state c′′i,s−1

is weighted by both the forget gate fi,s and the short-term
gate gi,s. As per conventional LSTM described by (4a),
f ′′i,s determines the amount of information to discard from
the cell. The short-term gate incorporating ri,s and c′′i,s−1

encapsulates information pertinent to both short-term per-
formance variation and long-term past performance before
being passed to the next cell state. Unlike LSTM, where
both the input activation c̃′′i,s and the previous cell state
c′′i,s−1 are weighted by a gate learned from the current input
and the previous hidden state in (4e), only c′′i,s−1 is weighted
by gi,s and f ′′i,s in (12b). This is because the input gate u′′

i,s

does not cater for the removal of information from the cell
state. Therefore, weighing the input gate u′′

i,s by gi,s in the
second term of (12b) is ineffective. Furthermore, applying
such weighting on the output gate o′′

i,s may result in relevant
information being lost in the next hidden state.

3.3 Modeling Relative Performance Against
Peers

The third module models the relative performance between
students by employing the graph convolutional layer. We
first define a K ×L prior score matrix across all students as

F =
[
x̃T
1 , . . . , x̃

T
K

]T
, (13)

where K is the total number of students under consider-
ation and x̃i = [x̃i,1, . . . , x̃i,L] with elements x̃i,l being the
first-attempt grade of the ith student for course l. Unlike (2)
where grades across every semester are used in the first mod-
ule, only first attempts are used for the construction of peer-
performance graph since they better represent the ability of
the student in achieving the learning outcome compared to
his/her peers. In addition, the {i, j}th element in the pro-

posed K ×K adjacency matrix A is given by

Ai,j =


0, if ||Ni,j || = 0;

ρ−1
i,j =

(∑
l∈Ni,j

|x̃i,l−x̃j,l|

||Ni,j ||

)−1

, if ||Ni,j || > 0;

1, if x̃i = x̃j .

(14)
Here, we define Ni,j as the set of common courses that stu-
dents i and j have taken and ∥Ni,j∥ as the number of such
courses. Therefore, ρi,j denotes the average grade differ-
ence that students i and j have achieved for these common
courses. The above formulation implies that elements of the
adjacency matrix 0 ≤ Ai,j ≤ 1 correspond to the degree of
similarity in academic performance between two students.

With A and F, the GCN encodes peer performance via
graph representation Z(g) computed using (6). We apply

two GCN layers and the ith row of Z(2) (denoted by zi)
constitutes the graph representation corresponding to the
relative performance vector for each node (i.e., for the ith
student).

3.4 Weighted Fusion Layer and Grade
Prediction

To determine the weighting for each academic achievement
representation highlighted in Sections 3.1-3.3, a weighted
fusion layer is employed. The fusion weight is learned by
employing statistics associated with prior and semester av-
erage grades. More specifically, we define, for each student
i, a 1× 4 vector

di =
[
µi, σi, µ

′
i, σ

′
i

]
, (15)

where µi and σi are the mean and standard deviation (STD)
of non-empty elements in (2). The variables µ′

i,j and σ′
i,j

denote the mean and STD of

xi =
[
x′
i,1, . . . , x

′
i,S−1

]
, (16)

where x′
i,s is the average of non-empty elements across two

semesters xi,s−1 and xi,s. We note from the above that
di incorporates statistical properties associated with both
long- and short-term consistency of a student. These fea-
tures play an important role in influencing the contribution
of each academic achievement representation h′

i,S , h
′′
i,S , and

zi to the predicted grade. This dependence is expected given
the student prior grade and the short-term consistency have
been used as the input to each module to learn the repre-
sentations.

To determine the weights in the fusion layer, we first define
p = 1, 2, 3 as the index for the academic achievement repre-
sentations. Given di, these weights are learned via an FC
layer given by

βi,p = wp · dT
i + bp, (17)

where wp and bp are the trainable weight vector and bias
for the pth academic achievement representations. The pre-
dicted grade ŷi for student i is then given by

ŷi = w ·
[
βi,1 × h′

i,S ;βi,2 × h′′
i,S ;βi,3 × zi

]T
+ b, (18)

where w and b are defined, respectively, as the weight vector
and bias scalar for the predictor. We employed the mean-



Algorithm 1 The proposed A2GP architecture

Input: Input sequence Xi =
[
xT
i,1, . . . ,x

T
i,S

]
,

Output: Prediction score ŷi,
Module 1: Modeling course importance:

1: for student i← 1 to K do
2: for s← 1 to S do
3: h′

i,s ← Attention-LSTM(xi,s, h̃i,s) using (10)
4: end for
5: end for

Module 2: Modeling consistency in student short-term
performance:

6: for student i← 1 to K do
7: for s← 1 to S do
8: ri,s ← (xi,s−1, xi,s, xi,s+1) using (11)
9: h′′

i,s ← Short-term gated LSTM(xi,s, ri,s)
using (12)

10: end for
11: end for

Module 3: Modeling relative performance against peers:
12: F = [x̃T

1 , . . . , x̃
T
K ]T

13: for student i← 1 to K do
14: for student j ← 1 to K do
15: Ai,j ← (x̃i, x̃j) using (14)
16: end for
17: end for
18: Z ← A,F using (6)

Module 4: Weighted-fusion:
19: for student i← 1 to K do
20: di = [µi, σi, µ

′
i, σ

′
i]

21: βi,p = FC(di) using (17)
22: ŷi ← FC([βi,1× h′

i,s, βi,2× h′′
i,s, βi,3× zi,s]) using (18)

23: end for
24: return ŷi

square error loss function

L =
1

K

K∑
i=1

(yi − ŷi)
2 (19)

to compute the prediction loss for a total of K students.
Similar to [13] [33], a student is classified as at-risk if his/her
predicted grade for the pilot course is lower than the pre-
defined threshold T , i.e., the classification label is computed
by

φ̂i =

{
At-risk, if ŷi < T ;

Non at-risk, if ŷi ≥ T.
(20)

In line with Figure 1 that shows the proposed A2GP ar-
chitecture, Algorithm 1 provides a formal description of the
proposed model.

4. RESULTS AND DISCUSSION
4.1 Datasets
Three datasets have been collected from various depart-
ments in a local university with institutional review board
(IRB) approval that includes the personal data protection
policies. Since other open-source datasets employed for
grade prediction do not include past snapshots of exami-
nation records, performance of the proposed A2GP model
and baseline architectures is evaluated on the datasets from
only this university. Seventeen courses across these datasets

Table 1: Number of students in the training and testing set

Department Course
index

Training set Testing set

S A (%) S A (%)

C1,1 1241 13.54 249 6.83

Department 1

C1,2 2459 1.75 384 1.04

C1,3 1314 9.97 261 3.83

C1,4 2448 5.35 357 3.92

C1,5 1524 7.68 312 3.85

C1,6 1000 4.70 190 4.74

Total 9986 6.38 1753 3.76

C2,1 1001 12.89 223 8.07

Department 2

C2,2 600 12.33 98 7.14

C2,3 1029 4.76 355 2.25

C2,4 1034 4.84 205 2.44

C2,5 987 6.69 167 3.59

C2,6 1842 7.76 409 3.67

Total 6493 7.87 1457 4.05

C3,1 1001 12.89 133 9.02

Department 3

C3,2 600 12.33 84 8.33

C3,3 1029 4.76 245 3.27

C3,4 1842 7.76 192 5.21

C3,5 165 29.70 32 31.25

Total 4637 9.58 686 6.85

S: number of students
A: percentage of at-risk students

and their corresponding detailed information are illustrated
in Table 1. The number of students denoted by “S” and
the percentage of at-risk students denoted by “A” in each
course for training and testing are also tabulated. These core
courses have been offered to all undergraduates across the
three engineering departments during their freshman and
sophomore years. These datasets include grades obtained
by students who are enrolled from academic year (AY) 2015
to 2019. In our context, the pre-defined threshold is T = 40
which refers to the passing mark of the university.

To reflect real-world deployment, we predict course grades
using examination grades obtained in previous semesters. In
particular, the model was trained using prior courses from
AY2015 to 2018 and to predict grades for courses registered
in AY2019. In this work, the prior grade matrix Xi is of
dimension 20 × 10 representing twenty prior courses and
ten semesters across our dataset. While the undergradu-
ate degree program requires eight semesters to complete,
ten semesters were included since some students require a
longer duration to graduate.



4.2 Implementation and Performance
Metrics

The proposed A2GP model is trained using the Adam opti-
mizer [19]. Hyper-parameters for each model were initialized
using the Xavier initialization method [6] and the activation
function is a rectified linear unit (ReLU). Adopting a sys-
tematic approach [40], the learning rate is first initialized
with a small value, e.g., 1 × 10−7, before being increased
exponentially to a pre-defined upper-bound, e.g., 10. An
optimal learning rate for the model is then determined from
the range in which the model experiences the highest rate
of decrease in model loss. This corresponds to 0.8× 10−3 in
our experiments.

Performance of the grade prediction models was evaluated
via the mean absolute error defined by

MAE =
1

N

N∑
i=1

|yi − ŷi|, (21)

which describes the average absolute error between the pre-
dicted and target grades for each grade prediction model.
Classification performance of at-risk student detection was
evaluated using the F1 score

F1 =
2PR

P +R
, (22)

which is computed from the recall (R) and precision (P)
scores. The recall score quantifies the number of correct
at-risk predictions out of all actual at-risk students in the
dataset while precision quantifies the number of correct at-
risk predictions out of all detected at-risk students.

4.3 Performance Comparison in Terms of
MAE and F1

While many grade prediction algorithms exist, we focus on
models that rely only on prior grades obtained from previ-
ous semesters. This is important in our context since we
cannot assume that all courses are offered online (for the
extraction of clickstreams) or that we have access to audio-
visual information in a physical classroom setting. To this
end, we evaluate the proposed A2GP model on each pilot
course by comparing its performance with two widely used
classification algorithms (logistic regression (LR) and sup-
port vector machine (SVM)), and the LSTM [13]. We have
also implemented two variants of the LSTM-based model
(attn-LSTM [24] and STG-LSTM) and the GCN [20]. The
attn-LSTM was implemented using (8)-(10) while the STG-
LSTM is defined by (11)-(12). The GCN was modified
from [20] by highlighting the relative performance using (14).

The performance of the models for each department in terms
of MAE defined by (21) is tabulated in Table 2. With the
predicted grades, at-risk classification performance in terms
of the F1 score defined by (22) is tabulated in Table 3 for
all predictive models under consideration. Results highlight
that the proposed A2GP architecture achieves the lowest
average MAE and highest average F1 score than all base-
line models across all departments. Compared to the vari-
ants of LSTM, the LR and SVM models suffer from poor
performance for since these two models do not consider the
temporal information that is important for grade prediction.

Table 2: Performance comparison of different models using
MAE (a lower value indicates better performance)

Methods Dept. 1 Dept. 2 Dept. 3 Average

LR 0.121 0.137 0.123 0.127

SVM 0.124 0.138 0.121 0.128

LSTM [13] 0.113 0.129 0.111 0.118

attn-
LSTM [24]

0.109 0.128 0.120 0.119

STG-LSTM 0.102 0.124 0.116 0.114

GCN [20] 0.109 0.121 0.115 0.115

The proposed
A2GP model

0.104 0.119 0.109 0.111

Dept.: Department

It is also interesting to note that all models achieve lower
grade prediction and at-risk classification performance for
Departments 2 and 3 compared to Department 1. This is
because Department 1 has a mandatory set of courses for
all students while students from Departments 2 and 3 have
the freedom to select courses not offered by their respec-
tive schools. Due to this difference in the course selection
procedure, there are fewer commonly taken courses between
students in Departments 2 and 3. Since GCN determines the
relative performance of a student in comparison to his/her
peers, an insufficient number of overlapping courses makes it
more challenging to predict the grades for the pilot courses.
On the same note, since there exist various combinations
of courses taken by students from Departments 2 and 3,
the LSTM-based models (attn-LSTM and STG-LSTM) are
unable to identify similar sequences of temporal information
among students. Therefore, diversity in the prior courses re-
sults in the poor prediction of a common pilot course grade.

In terms of at-risk classification for Department 1, the attn-
LSTM model (with an F1 score of 0.324) achieves an ap-
proximate 17% improvement compared to LSTM. This im-
provement is attributed to attn-LSTM being able to detect
the prior courses with higher importance compared to LSTM
that equally weighs all courses to determine the grade for the
pilot courses. The STG-LSTMmodel, on the other hand, ac-
counts for the short-term fluctuation of student performance
during the update of hidden states. This is in contrast to
LSTM that updates the hidden state with equal importance
applied to previous hidden states irrespective of any varia-
tions in performance. This results in a 10% reduction in the
average MAE and 30% increase in an average F1 score for
STG-LSTM over that of LSTM.

With regard to the non-temporal approach, since the GCN
model constructs an input graph based on grade differences
between student pairs (for identifying relative performance),
variance of grades within a given dataset would determine
the extent of distinguishability among the students. Figure 4
shows the relationship between the F1 score obtained using
GCN and the standard deviation σCi of the prior grades for



Table 3: At-risk prediction performance using F1 score (a higher value signifies better performance)

Department
index

Course
index

LR SVM LSTM [13]
attn-

LSTM [24]
STG-LSTM GCN [20]

The proposed
A2GP model

Department 1

C1,1 0.372 0.341 0.293 0.4 0.457 0.375 0.439
C1,2 0.222 0.222 0.24 0.308 0.4 0.286 0.444
C1,3 0.345 0.222 0.348 0.381 0.438 0.308 0.48
C1,4 0.174 0.154 0.34 0.218 0.381 0.211 0.368
C1,5 0.313 0.294 0.25 0.435 0.467 0.313 0.526
C1,6 0.143 0.222 0.143 0.2 0.154 0 0.286

Average 0.261 0.243 0.269 0.324 0.383 0.249 0.424

Department 2

C2,1 0.291 0.314 0.241 0.321 0.290 0.276 0.328
C2,2 0.235 0.264 0.3 0.174 0.25 0.111 0.348
C2,3 0.286 0.264 0.318 0.273 0.19 0.231 0.32
C2,4 0 0 0.231 0.095 0.286 0 0.08
C2,5 0 0.167 0.182 0.222 0.133 0 0.273
C2,6 0.313 0.3 0.341 0.114 0.217 0.211 0.28

Average 0.187 0.218 0.269 0.200 0.228 0.138 0.271

Department 3

C3,1 0.214 0.244 0.267 0.353 0.357 0.308 0.4
C3,2 0.3 0.221 0.353 0.308 0.174 0.25 0.222
C3,3 0.253 0.244 0.353 0.154 0.4 0.333 0.4
C3,4 0.1 0.164 0.235 0.118 0.077 0 0.167
C3,5 0.221 0.2 0.571 0.615 0.621 0.444 0.606

Average 0.218 0.215 0.356 0.310 0.326 0.267 0.359

Average 0.222 0.226 0.295 0.276 0.311 0.215 0.351
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Figure 4: Relationship between F1 score of modeling relative
performance against peer and average of σi.

all students. A smaller value of σCi denotes a high similarity
in performance among all students taking that course, im-
plying that it is challenging for GCN to differentiate at-risk
student performance from well-performing students (low F1
score). Therefore, we note that the ability of GCN for grade
prediction is dependent on the underlying statistical prop-
erties of a dataset, resulting in varying performance across
the courses for Department 1. We also note that GCN is not
able to detect any at-risk students for some of the courses
(reflected by the F1 score of zero in Table 1) since there were
only few students who were actually at-risk. With most of
the students achieving good grades in these courses, the per-
formance variation among students is minimal, resulting in
GCN not being able to identify relative performance differ-
ences.
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Figure 5: Relationship between F1 score of modeling short-
term performance and average of σ′

i.

Compared to the above models, the proposed A2GP model
achieves the lowest average MAE of 0.111 and highest aver-
age F1 score of 0.351 across the three departments. These
results highlight the importance of synthesizing the three
dimensions associated with course importance, performance
consistency, and benchmarking. Although the performance
of individual modules (attention module and short-term
gated module) are modestly higher in comparison to LSTM,
A2GP includes a weighted fusion that adaptively determines
the importance of each module depending on the relevance of
the academic achievement representations to each dataset.
Figure 6 illustrates the performance of our proposed A2GP
model in terms of F1 score with a weighted fusion layer (im-
plemented via (18)) or an equal fusion layer (where β1=
β2=β3 = 1). It is important to highlight that the weighted
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Figure 7: Ablation of the proposed architecture.

fusion layer achieves significantly higher F1 scores for several
courses with the remaining courses exhibiting similar perfor-
mance as that of the equally weighted configuration. In par-
ticular, A2GP with weighted fusion (implemented via (17))
achieves an improvement of 0.263 F1 score for course C1,2

over that of the equally fusion strategy.

As described in Section 3.4, the underlying statistics of stu-
dent prior exam grades di have been used to learn the fusion
weights βi,p. Figure 5 shows the variation of F1 with the
mean of STD σ′ defined by averaging σ′

i according to (15)
over all students. Results plotted in this figure was gener-
ated by evaluating STG-LSTM over all courses offered by
Department 1. A high value of σ′ implies many students in
this course exhibit short-term performance fluctuations in
the past semesters. It can be seen that the F1 score reduces
with increasing σ′. This implies that higher fluctuations
in short-term student performance will pose a challenge for
the model to detect at-risk students. To address limita-
tions faced by individual models, the weighted fusion layer
in the A2GP model de-emphasizes the aspects affected by
the dataset while emphasizing other academic achievement
representations which, in turn, aid the grade prediction pro-
cess.

4.4 Ablation Test
Figure 7 shows results associated with an ablation test per-
formed on the A2GP model. Here, at-risk prediction per-

formance is determined when each of the academic achieve-
ment representation is removed from the A2GP architec-
ture. Among all three representations, the average perfor-
mance across all courses reduces most significantly when
attn-LSTM, i.e., h′

i,s is removed. This is due to the im-
pact of identifying course importance on the entire cohort
since constructivist approach is often adopted during cur-
riculum development. The STG-LSTM model, on the other
hand, is student-specific—fluctuation in individual perfor-
mance depends on unique circumstances not generalizable
for the other students. Therefore, the A2GP model is less
sensitive to STG-LSTM compared to attn-LSTM. Remov-
ing GCN results in the least difference in prediction perfor-
mance since different courses exhibit varying degree of grade
spread, with some lacking sufficient information for GCN to
discern among student performance resulting in an inappro-
priate representation. Nonetheless, incorporating peer per-
formance will still be beneficial to A2GP model as seen in
Figure 7.

5. CONCLUSIONS AND FUTURE WORK
An academic achievement-based grade prediction architec-
ture is proposed for grade prediction and at-risk student de-
tection. To utilize three important aspects in student prior
performance—course importance, short-term performance
fluctuation, and relative performance against peers, three
modules have been formulated and fused. The first mod-
ule learns the prior grade representation along with course



importance by employing the attention-based LSTM model.
The new STG-LSTM in the second module is motivated
by the need to model short-term fluctuation in academic
performance. The third module is motivated by the need
to model relative performance when detecting at-risk stu-
dent—students are often deemed as at-risk if their perfor-
mance is consistently below par compared to their peers. We
evaluated the prediction performance of the proposed A2GP
model by comparing its performance with baseline models.
Results obtained showed that the proposed architecture out-
performs existing at-risk detection algorithms across seven-
teen undergraduate courses from three departments. Im-
proving the F1 score in at-risk student detection facilitates
the administration of pre-emptive interventions by instruc-
tors, counsellors, or pastoral care managers.

There are possible avenues for future work. First, A2GP has
been optimized for use with prior examination grades and
has not been validated for online learning activities. Be-
havioral features associated with the consumption of online
assets may provide additional (and often complementary)
information that may aid grade prediction. Secondly, fur-
ther investigations can be performed on the fusion weights
defined by (17). These weights may offer insights into the
importance of different representations influenced by char-
acteristics that govern the cohort performance within each
course.
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