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ABSTRACT 
What can eye movements reveal about reading, a complex skill 
ubiquitous in everyday life? Research suggests that gaze can reflect 
short-term comprehension for facts, but it is unknown whether it 
can measure long-term, deep comprehension. We tracked gaze 
while 147 participants read long, connected, informative texts and 
completed assessments of rote (factual) and inference comprehen-
sion (connecting ideas) while reading a text, after reading a text, 
after reading five texts, and after a seven-day delay. Gaze-based 
student-independent computational models predicted both immedi-
ate and long-term rote and inference comprehension with moderate 
accuracies. Surprisingly, the models were most accurate for com-
prehension assessed after reading all texts and predicted 
comprehension even after a week-long delay. This shows that eye 
movements can provide a lens into the cognitive processes under-
lying reading comprehension, including inference formation, and 
the consolidation of information into long-term memory, which has 
implications for intelligent student interfaces that can automatically 
detect and repair comprehension in real-time.  
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1. INTRODUCTION 
Reading comprehension is the extraction of meaning from text. 
This activity takes place many times a day, whether reading the 
news, absorbing technical information at school or work, or reading 
a novel for pleasure. Difficulty in reading comprehension can slow 
the progression of such activities, and comprehension failures can 
lead to misunderstandings and inaccuracies. The rise of computer-
ized reading via e-books, the Internet, and other media opens up the 
exciting possibility of intelligent interfaces that can track reading 
comprehension as it unfolds based on measurable signals (behav-
iors) from the reader [13, 51].  

Eye-gaze is perhaps one attractive signal to explore because it pro-
vides a lens into cognitive processes [30, 48] and it can be passively 
and noninvasively recorded. In particular, there is a long history of 
using eye gaze in student-models of cognitive, affective, and social 

processes during learning [8, 15, 61]. In the context of reading com-
prehension researchers have developed automatic models for 
skimming [3] and mind wandering (zone outs) [19] detection. 
These models have also been used for real-time intervention. For 
example, Mills et al. [41] designed an attention-aware reading in-
tervention that prompted participants to re-read sections of text 
based on a real-time gaze-based model of mind wandering [19] and 
found this to improve reading comprehension. In addition, real-
time modifications can be made to text content, such as adapting 
the text to be easier when comprehension difficulty is detected [53], 
or enabling gaze-contingent actions such as presenting a glossary 
for technical terms [3].  

Whereas these examples focus on adapting the reading interface 
based on ongoing comprehension processes, such as mind wander-
ing or comprehension difficulty, another possibility is to base 
adaptations on comprehension outcomes. For example, if gaze can 
be used to prospectively predict whether a student will comprehend 
a page or an entire text, adaptive interventions can be designed to 
address such deficits at their onset. Such a system would entail de-
veloping a model to monitor comprehension outcomes from gaze 
as a first step, a possibility we explore here. Specifically, we exam-
ine whether machine-learned models of gaze can be used to predict 
different types of comprehension outcomes (factual vs. those re-
quiring inferencing) assessed at different time intervals (during a 
text, after a text, after multiple texts, and greater than a week). In 
addition to potential applications, the present research advances the 
empirical knowledge base of eye movements in reading compre-
hension, and to our best knowledge, is the first such study. 

2. BACKGROUND AND RELATED 
WORK 

2.1 Reading Comprehension 
Most theories of reading posit that it involves hierarchically inter-
acting levels of processing - from the sub-lexical and lexical levels 
[25] and the access of word-level meaning [45] to the formation of 
a literal then a more abstract meaning-based encoding of the text at 
the sentence-level (Figure 1 links a-c; [59]). Higher-order (or 
deeper) processing incorporates elaborative inferences from prior 
knowledge (Figure 1 n) [32] and integration across multiple sec-
tions within the text and even between texts (bridging inferences), 
forming a situation (or mental) model (Figure 1 d-g) [24, 39]. These 
above shallow and deep comprehension processes unfold in parallel 
[33] and interact with one another to provide a cohesive narrative 
of text. Both are critical in that shallow, perceptual encoding of in-
formation is important to construct the mental representations to 
support inferences from the text, and inferences are important to 
bridge ideas in the text into a cohesive narrative (Figure 1d; [34]). 
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It is therefore critical to develop models of comprehension that ac-
count for multiple levels of comprehension, which we address by 
focusing on varying depths of comprehension, such as rote 
(knowledge of factual content from text) and inference (deep) com-
prehension (for examples, see Table 2). 

Comprehension also unfolds over timescales of milliseconds, sec-
onds, minutes, hours, and beyond. For instance, reprocessing of 
remembered information can occur in milliseconds without re-fix-
ating the part of the text that was not correctly encoded initially [6, 
40], whereas comprehension of earlier sentences affects encoding 
of later content and vice versa (e.g., via bridging inferences [34]), 
a process that may unfold over seconds or even minutes. Further, 
memory traces acquired during reading one text may interfere with 
another [63] prior to being consolidated into long-term memory 
during sleep [43]. Thus, it is unclear if eye movements captured 
during the initial encoding of text (Figure 1 b,h) will be useful to 
predict comprehension at later stages after these intervening pro-
cesses have unfolded (Figure 1 i-m). We address this by 
investigating the link between gaze and comprehension assessed at 
multiple time points. 

 
Figure 1. An overview of the process of reading comprehension. 

2.2 Eye Movements During Reading 
Theories of gaze control during reading shed light on the mecha-
nisms linking cognitive processes and measurable gaze features 
[18, 50], particularly for lower-level lexical processes. For exam-
ple, eye movements are determined to some extent by text 
properties, where fixations are shorter on more frequent [47] and 
shorter [49] words. But eye movements are also influenced by 
higher-level comprehension [5], for example the same word may 
be fixated for longer if it is contextually surprising versus expected 

[38] or regressive eye movements can reconcile disparities in com-
prehension [9], such as in the case of ambiguous sentences [23] (but 
this can also occur covertly without a regression [7]).  

Gaze has also been linked to several processes that support com-
prehension. In particular, attentional lapses (mind wandering) 
which are negatively associated with comprehension  [14, 54] have 
been linked with fewer and longer fixations (see brief review by 
Faber et al. [20]). Similarly, skim reading manifests as fewer fixa-
tions [37] and fewer regressive saccades [42], but in contrast to 
mind wandering, these fixations are shorter than for normal reading 
[56].   

Researchers have leveraged these findings to develop gaze-based 
models of reading comprehension as noted in Table 1. Whereas 
there have been attempts to model comprehension from other sig-
nals, such as facial expressions [58], we focus on gaze here. In 
general, most studies compute gaze statistics aggregated over time 
to give “global” measures at the level of an entire page, passage, or 
reader for use as features in shallow machine learning classifiers 
(e.g., Random Forest). For example, D’Mello et al. [16] used linear 
regression models to predict responses to multiple-choice questions 
targeting rote (factual) information of the text interspersed during 
reading trained on a small number of global gaze features grounded 
in the experimental literature. Similarly, Copeland and colleagues 
trained shallow neural networks to predict comprehension scores 
from gaze [10–12].  

Deep neural networks are capable of modeling gaze behavior [35, 
62], so it is plausible that an end-to-end system could be designed 
to predict comprehension. To this point, Ahn et al. [1] used convo-
lutional neural networks (CNN) and long short-term memory 
(LSTM) models to model several reading comprehension metrics 
(passage- and participant-level comprehension, perceived diffi-
culty, English language skill) from raw fixation-level data 
(location, duration, and pupil diameter) but their model perfor-
mance was scarcely above chance and the results did not generalize 
to new readers.  

To this point, a vast majority of studies do not provide evidence of 
generalizability to new people where data from the same partici-
pants are in either the training or test set (but not both). Further, as 
evident in Table 1, almost all studies focus on rote or inference 
comprehension or a combination of the two, which makes it diffi-
cult to compare the performance of gaze-based models for either 
type; comprehension is almost always assessed during reading or 
immediately after, but never after a longer delay when interference 
and memory consolidation processes unfold.  

Table 1: Review of gaze-based computational models of reading comprehension 

Study Comprehension Type Assessment Time Participant-level 
Generalization 

Small, predeter-
mined feature set 

Copeland & Gedeon, 
2013 

Rote During reading No Yes 

Copeland et al., 2014 Rote Immediately after reading No Yes 
Martínez-Gómez & Ai-
zawa, 2014 

Rote 
 

Immediately after each text/section Yes  Yes 
 

Wallot et al., 2015 Rote Immediately after reading No Yes 
Copeland et al., 2016 Rote Immediately after each text/section  No Yes 
Ahn et al., 2020 Rote and inference Immediately after each passage No NA 
D’Mello et al., 2020 Rote  During reading Yes Yes 

Southwell et al., 2020 Rote (2 studies) and 
inference (1 study) 

Roughly 30 minutes after reading Yes Yes 



2.3 Current Study: Contribution & Novelty 
As reviewed above, there is reason to suggest that gaze can provide 
an important signal to automatically measure comprehension dur-
ing reading. However, despite some initial attempts towards this 
goal (Table 1), substantial items remain including: (1) differentiat-
ing the predictive value of gaze on different depths of 
comprehension; and (2) different time onsets from the initial read-
ing of the text (where gaze data is acquired) and when 
comprehension is assessed; (3) developing models that generalize 
to new students, and (4) testing whether deep sequence learning 
models can improve comprehension prediction above standard 
classifiers.  

We addressed these issues by testing whether gaze could be used to 
predict rote and inference comprehension (#1 above) assessed at 
four time points (during reading, after each text, after all texts, and 
at least seven days following reading; #2), using a large dataset of 
eye movements recorded as 147 participants read five long exposi-
tory texts. Random forest models were used to evaluate whether a 
broad set of page-level gaze features (109 features total) could be 
used to detect reading comprehension on each page across depth 
and time by comparing them to two baseline models. We also tested 
a long-short-term memory (LSTM) deep neural network to exam-
ine whether temporal sequences of fixations could improve 
predictive accuracy (#4). Critically, participant-level cross-valida-
tion was used to increase the validity of the model on new 
participants (#3).  

It should be noted that the present goal is more scientific in nature 
– to investigate the relationship between eye tracking and reading 
comprehension outcomes – rather than application oriented. As 
such, although we used a machine-learning predictive modeling ap-
proach [17], the goal was to use the models to investigate the 
question of the  link between gaze and comprehension depth and 
durability (persistence across time) rather than to engineer the most 
predictive model. For this reason, we largely restricted the feature 
space to high-level eye gaze features and some contextual variables 
but did not include information on textual content and difficulty of 
the assessment items.  

3. METHOD 
3.1 Data Collection 
Data was collected as part of a larger study investigating neuro-
physiology during reading comprehension. Only aspects germane 
to the present study are presented here. The data analyzed here have 
not been previously published. 

Participants (N=147, age 23±6 years, 67% female, 1% other) were 
students from a large public University in the Western US. Partici-
pants were paid $20 per hour plus $10 for a follow-up survey via 
Amazon gift cards. All procedures were approved by the institu-
tion’s internal review board and all participants provided informed 
consent.  

Binocular gaze was tracked using a high-resolution desktop-
mounted eye tracker (SR Research EyeLink 1000+) with a sam-
pling rate of 1000Hz. Stimuli were displayed on a 23.8”, 
1920x1080 pixel display, and participants viewed the screen at a 
distance of ~90cm. A chin rest was used to minimize movement 
during the study. 

Participants read five expository texts of around 1000 words each, 
where a single text was split into 10 pages. Each text was on the 
topic of behavioral research methods: Bias, Hypothesis, Casual 

Claims, Validity, and Variables. The texts had a mean Flesch-Kin-
caid grade level (a measure of textual difficulty) of 13.2 indicating 
an advanced reading level [22] suitable for college students. Read-
ing was self-paced in that participants pressed a key to advance to 
the next page but could not advance back to a previous page. On 
average, participants spent 5.5 minutes (1.8 SD) reading each text, 
for a total average reading time of 27.6 minutes (9.2 SD). 

Reading comprehension was assessed via: 1) Rote items - four-al-
ternative forced-choice item targeting factual knowledge explicitly 
presented in the text); 2) Inference items - a statement which is ei-
ther a valid or false inference from the text, which the participant 
identified as ‘true’ or ‘false’ (see Table 2 for examples). Rote and 
inference questions were developed by researchers led by an in-
structor of a behavioral research methods undergraduate course. 
They were then piloted and refined using Mechanical Turk in order 
to calibrate the difficulty to the appropriate level. Items with less 
than 20% accuracy or greater than 80% accuracy were reexamined 
and either discarded or adapted based on patterns of responses. The 
final assessments and texts included in the study were tested on 10 
unique participants per text.  

Table 2: Examples of a rote question and inference items 

 

Both assessment items occurred at four time points: (A1) “during 
text” occurred immediately after reading the corresponding page, 
(A2) “after each” occurred after each individual text was com-
pleted; (A3) “after all” occurred once all five texts were read; and 
(A4) "delay” occurred a minimum of seven days after the reading 
session (Figure 2; median completion time 8.0 days, mean comple-
tion time 11.3 days after reading). The assessment items were 
linked to content covered on a particular page such that gaze on that 
page could be associated with a corresponding assessment item 
(Figure 2). At each time point, each participant received assess-
ments corresponding to a randomized subset of two pages for each 
text from a pool of questions common to the A1, A2 and A3 assess-
ments (Figure 2) but without overlap (e.g., if a page was selected 
for A1, then it could not be used for A2 and A3). A4 assessments 
were selected from a different pool of questions than A1-A3.  

Text Question 
“Occam’s razor, also 
called the principle of par-
simony, teaches that 
hypotheses introduced to 
explain relationships 
should be as parsimonious 
as possible. We ‘cut away’ 
what is superfluous.” 

(Rote Question) What is Occam’s Razor? 
A) The process by which we search for 
the simplest explanation for an observa-
tion (correct);  
B) The process by which we search for 
connections between facts;  
C) A tool used by those who search for 
truth;  
D) A book by the philosopher William of 
Occam  

Sentence S3: Internal va-
lidity refers to whether the 
relationship between the 
variables is free of con-
founds 
.…… 
Sentence S5: Content va-
lidity refers to the extent to 
which a measure repre-
sents all facets of a given 
construct. 

(Inference Question) True or False:  In-
ternal validity is not a prerequisite for 
content validity. 
 
False (correct response because for a test 
to separately measure all facets of a con-
struct (S5) it must be able to identify 
relationships free of confounds (S3)).  



 
Figure 2.  Four different timings of assessment questions. Black 
boxes indicate assessments, grey boxes indicate example pages 
within text, and colors indicate the five individual texts (and 
subsequently the corresponding text of the assessment ques-
tions.  

3.2 Data Processing and Feature Extraction 
Gaze data was processed with EyeLink’s event detection algorithm, 
using a velocity threshold of 30°/s and an acceleration threshold of 
9500°/s2. The right eye was used in the analyses if available, other-
wise the left eye was used. No manual alignment of eye movements 
was done to address eye tracking errors as this would not be possi-
ble in a real-time application. Further, a pilot study comparing 
features (see Table 3) extracted from aligned vs. unaligned tested 
on the A1 (‘during text’) assessments yielded highly similar results.  

Fixations and saccades greater than the 99th percentile across par-
ticipants were removed to account for mis-parsed fixations and 
saccades (i.e., saccade amplitudes greater than 20°, durations above 
600 ms, peak velocity below 5°/s or above 800°/s, distances over 
1000 pixels, and fixation durations below 40 ms and above 3000 
ms). The first and last fixations on a page were removed as these 
likely corresponded to orienting rather than reading behaviors.  

Table 3. Gaze Feature Definitions 

The word “proportion” indicates these features were normalized by the total number of fixations on the given page. Prop. = Propor-
tion 

Feature Description 
Fixation Duration Duration of a fixation in milliseconds 

Fixation Count Number of fixations on a page 
Saccade Amplitude Degrees of visual angle the eye travels during a saccade 
Saccade Velocity Saccade amplitude divided by saccade duration 
Saccade Distance Euclidian distance between saccade start and end points 
Saccade Duration Duration in milliseconds of a saccade 
Saccade Relative Angle  Acute angle between the line segments of two saccades 
Horizontal Saccade Angle Angle between a saccade and the horizontal axis 
Pupil Diameter (Z) Diameter of the pupil, z-scored within-participant 
Fixation Dispersion Root mean square of distance from each fixation to the mean fixation position on a page 

Horizontal Saccade Prop. Proportion of saccades no greater than 30 degrees above or below the horizontal axis to the right 
or left 

Forward Horizontal Saccade Prop. Proportion of saccades no greater than 30 degrees above or below the horizontal axis only to the 
right 

Blink Count Number of blinks on a given page 
Blink Duration Duration in milliseconds of a blink 

Dwell Time   Sum of the durations across all fixations that fell in a given interest area (i.e., the box bounding 
each word). Reflects the amount of time spent fixating on the words   

IA Fixation Prop.   Total proportion of fixations that landed in a given interest area (e.g., 2 for word #12 “follow-
ing” in Figure 3, 2/13 for the proportion) 

Regression-In Prop. Proportion of times an interest area was entered at the beginning of a regression. (e.g.,1 for #3 
“start” in Figure 3, and 1/13 for the proportion) 

Regression-Out Full Prop. Proportion of times an interest area was regressed from (e.g., 2 for “experiment” #13 in Figure 
3, and 2/3 for the proportion) 

First Pass Regression-Out Prop. Proportion of times an interest area was regressed from on the first pass (before having read any 
text past that interest area). (e.g., 1 for “experiment” #13 in Figure 3, and 1/13 for the propor-
tion) 

Regression Path Duration   Total time from when an interest area is fixated until it is exited to the right (also called go-past 
duration). This includes all the time spent regressing until that interest area is passed. (e.g., the 
sum of the first fixation on “experiment” #13 in addition to the sum of the 3 subsequent regres-
sive fixations, and the last fixation on that same word in Figure 3).       

Selective Regression Path Duration   Total gaze duration (duration of fixations and refixations) on an interest area before leaving the 
interest area to the right (e.g., 2 for the word “following” and the word “experiment” #13 in Fig-
ure 3).   



3.2.1 Gaze Features 
Global (content-independent) gaze features (Table 3) were calcu-
lated as statistical functions over low-level features at the page-
level (including min, max, mean, median, sum, skew, kurtosis, and 
standard deviation) and have been previously used to predict com-
prehension and mind wandering [4, 19, 55]. A second set of 
features captured the fixations corresponding to interest areas, 
which were rectangular boxes around individual words and punc-
tuation computed with EyeLink Dataviewer (see example in Figure 
3). The gaze models consisted of these 109 features plus three con-
text features (see below). One goal of these features is to find 
participant-general patterns in gaze and comprehension, so to ac-
count for the variation in individual differences in fixation rates [26, 
60], we normalized interest area features by the total number of fix-
ations on a given page.  

 
Figure 3. Hypothetical fixations (n = 13) and saccades on the 
text. The numbers indicate the interest area index for the 
word/punctuation they are above, the circles indicate fixations 
and the lines indicate saccades. The circles with darker outlines 
are the first and last fixation, for reference. The unfilled circles 
denote regressive fixations.   

Table 4 includes summary statistics for a few key gaze features 
used in the present study, which are consistent with typical values 
observed during reading [46, 48]. The mean fixation duration was 
210.30 ms, well in range of the 200-250 ms average during reading, 
and the mean saccade duration of 42.04 ms is close to the average 
saccade duration of 50 ms during reading [46]. Further, the average 
saccade amplitude in the study was 3.46 degrees, whereas the aver-
age during reading is reported to be 2 degrees [48]. This study does 
differ slightly in regressive fixations, as it is estimated that 10-15% 
of saccades are regressive during reading [46], where this study had 
34%.  There was also a slightly higher horizontal saccade propor-
tional (95%) than previous studies (e.g., 85% in D’Mello et al. 
[16]).    

Table 4. Gaze summary statistics computed over participants. 
IA = interest area. 

Feature  M (SD)  
Mean Saccade Amplitude  3.46 (0.45)  
Total Scan Path Length  422.68 (105.61)  
Fixation Dispersion  0.41 (0.03)  
Mean Fixation Duration  210.84 (25.20)  
Mean Saccade Duration  42.04 (8.94)  
Horizontal Saccade Proportion  0.95 (0.03)  
Mean Pupil Size (z)  0.11 (0.30)  
Regression Fixation Proportion  0.34 (0.09)  
IA Percent Visited  0.56 (0.08)  
Proportion of Fixations in IAs  0.91 (0.06)  
Mean IA Regression Path Duration  984.57 (450.88)  
Mean Blink Duration  189.91 (229.87)  
  

3.2.2 Baseline Models: Context Features, Shuffled 
Labels and Shuffled Fixation Events 

Context features capture situational factors independent of gaze and 
were used as a baseline measure to gauge the added value of gaze 
features. They included reading rate (reading time divided by the 
number of characters on a page), text order, and the eye tracker cal-
ibration error. For a second baseline, we fit gaze models where 
comprehension scores were shuffled within each participant, pre-
serving the distribution of the features, but breaking the temporal 
dependency between gaze and the comprehension. Additionally, 
the LSTM baseline models shuffled the units in the sequence of 
fixation events (see below), preserving the distribution of the fea-
tures, but breaking the temporal dependency between fixation 
events. 

3.3 Machine Learning Models 
We chose Random Forest classifiers since they incorporate nonlin-
earity and interactivity among features and have good 
generalization properties. The random forest classifier was imple-
mented in sklearn, with 100 estimators, minimum of 15 samples per 
leaf, and the maximum number of features set to the square root of 
the total number of features. The class weights of the models were 
balanced by setting the weights to be inversely proportional to the 
number of samples in each class. Note that no resampling was done 
on either the training or testing sets: setting the class weights to 
‘balanced’ simply penalizes wrong predictions made on the minor-
ity class. 

We also trained LSTM models (implemented in Keras) to examine 
to what extent the sequence of local fixation events can be used to 
predict reading comprehension. Each unit in the sequences repre-
sents a fixation event, which was described by five features: 1) 
fixation duration, 2) average horizontal (x) position, 3) average ver-
tical (y) position, 4) average pupil size, and 5) the elapsed time 
since the end of last fixation. We also explored using other features, 
such as the position of the previous and next fixation, and the dis-
tance between the current and previous fixation, but this did not 
improve model performance. The maximum sequence length was 
set to 160 units, which is longer than 85% of the sequences. For 
those shorter than 160 units, 0s were filled at the beginning and for 
the longer ones, the last 160 units were kept. The LSTM network 
included a LSTM layer followed by two fully connected layers and 
used the binary cross entropy loss function. We tuned the following 
hyper-parameters: the number of hidden nodes in the LSTM layer 
(e.g., 8,16, 32), the number of nodes in the fully connected layers 
(e.g., 8, 16, 32), batch size (e.g., 16, 32, 64), and dropout rate (e.g., 
0, 0.2, 0.4). The hyper-parameters for each model were selected 
through a random search in 4-fold cross validation with 50% of data 
for training, 25% for validation, and 25% for testing. 

3.4 Validation, Metrics, and Statistical Com-
parisons 

We used four-fold cross-validation at the participant level to ensure 
generalizability to new participants [16]. Here, the dataset was ran-
domly split into four folds, with the data from a given participant 
only being in a single fold. The process was repeated 10 times with 
a different random partitioning of the folds for each run. The same 
fold assignments were used to train the Random Forest gaze models 
and baseline models per run, but fold assignments were not pre-
served for the LSTM models as they were run in a different 
pipeline. For the random forest models, we only used participants 
who completed all assessments for a fair comparison across time 
(N=122). All participants (irrespective of whether they completed 



all assessments) were used for the LSTMs to maximize the data 
needed for these data-intensive models (N=147). Because there was 
very little variability across runs, predictions were pooled for each 
participant from all runs prior to computing accuracy measures.  

Performance was evaluated using the area under the precision-re-
call curve (AUPRC), which ranges from 0 to 1 with the ratio of true 
classes to total data (i.e., base rates) indicating baseline classifica-
tion by guessing. The AUPRC was used because it is well-suited 
for class imbalance unlike the receiver operator curve (ROC) which 
may provide an overly optimistic view of model performance when 
classes are imbalanced [29]. AUPRCs were separately computed 
for each assessment type and time on a per-participant basis, result-
ing in eight values per participant per classification model. 

We used linear mixed models [21] via the lmer package in R [2] to 
compare the percent improvement of AUPRCs over baseline 
(100*((AUPRC – base rate) / base rate)). Mixed models are the rec-
ommended approach due to the repeated nature of the data (i.e., 

eight values per participant per model). Here, participant was in-
cluded as an intercept-only random effect. We probed significant 
effects with the emmeans (estimated marginal means) package us-
ing a false discovery rate (FDR) adjustment for multiple 
comparisons and a two-tailed p < .05 significant criterion. 

4. RESULTS  
4.1 Observed comprehension differences 

across depth and time 
We first considered how comprehension changed as a function of 
depth and time (Figure 4). To examine the extent to which each 
assessment measured the same construct, we first computed the 
proportion correct for each assessment for each participant. From 
here, we computed the Pearson correlation between the comprehen-
sion scores for each pairwise assessment (Table 5 upper diagonal). 
Overall, the average correlation was 0.23 and ranged from -0.13 to 
0.54, suggesting that there was some overlap but also unique infor-
mation in what each assessment measured.

 

Table 5. Pairwise Pearson correlations of comprehension scores and gaze model probabilities averaged over participants. The up-
per diagonal (white) contains the correlation between comprehension accuracies across depth and time. The lower diagonal (grey) 

contains the correlations between random forest gaze model probabilities across depth and time. 

 

Next, we examined how averaged participant-level comprehension 
measures varied as a function of depth and time using the following 
linear mixed-effects model: proportion correct ~ depth*time + 
(1|participant). There were significant main effects (ps < 0.01) and 
interactions (ps < 0.07). For the main effect of comprehension 
depth, the rote assessment scores were significantly higher than the 
inference assessments (B = 0.05, p = 0.01). We then probed the sig-
nificant interactions using emmeans. For rote comprehension, the 
mean score during reading was statistically equivalent to the score 
after reading each text (p = 0.10) which were both statistically 
greater (p < 0.05) than assessments after reading all the texts (p > 
0.05) and at delay (p > 0.05), suggesting the following pattern: 
[During = After Each] > [After All = Delay]. This suggested that as 
people read, rote comprehension was stable but dropped upon com-
pletion of reading. Inference comprehension was stable across the 
reading session but dropped at delay with the pattern of signifi-
cance: [During = After Each = After All] > Delay.   

 
Figure 4. Predicted comprehension score from the mixed model 
as a function of depth and time. Error bands represent 95% 
confidence intervals. 

 

Assessment  Rote:  
During  

Rote:  
After Each  

Rote:  
After All  

Rote:  
Delay  

Inference: 
During  

Inference: 
After Each  

Inference: 
After All  

Inference:  
Delay  

Rote: During  -  0.33 0.42 0.35 0.38 0.13 0.08 0.11 
Rote: After Each  0.19 - 0.54 0.37 0.26 0.23 0.17 0.11 

Rote: After All   0.51  0.04 - 0.47 0.44 0.22 0.18 0.18 
Rote: Delay  -0.01   0.18 -0.02  - 0.35 0.26 0.25 0.18 

Inference: During  0.62 0.05 0.51 -0.03 -  0.17 0.16 0.14 

Inference After Each   0.02  0.21  -0.10 0.10  -0.02  - 0.20 0.10 

Inference: After All  0.02 -0.01 0.16 0.02 0.00 0.00 -  -0.13 
Inference: Delay   0.16 0.07 0.30 -0.10 0.18 -0.28 -0.07 - 



4.2 Gaze Models can predict short and long-
term reading comprehension 

Gaze vs. shuffled (Random Forest and LSTM). Our first com-
parison examined whether the random forest gaze models 
performed significantly better than the shuffled models across 
depth and time (Figure 5): percent improvement ~ model type 
(shuffled vs. gaze)*depth*time + (1|participant). Overall, there was 
a significant interaction between model type and time (p < 0.001). 
All other interactions and main effects were non-significant (all ps 
> 0.05). When probing the model type x time interaction, we found 
that the gaze models outperformed the shuffled models for all cases 
(Figure 5; ps < 0.001) except for the “after each” model (p = 0.37), 
though the trend was in the expected direction. When we repeated 
the analysis for the LSTM model, the interactions and main effects 
of interest were non-significant (all ps > 0.28), indicating that they 
performed at chance in all cases and was indistinguishable from the 
shuffled model. Given the chance performance of the LSTMs, we 
focus on the random forest model results. 

 
Figure 5. Gaze versus shuffled models. Comparison of the per-
cent improvement for the gaze and shuffled models across time. 
Error bands represent 95% confidence intervals. 

Gaze vs. context (Random Forest only). Our second analysis 
evaluated whether the random forest gaze models performed sig-
nificantly better than the context models across depth and time 
(Figure 6): percent improvement ~ model type (gaze vs. con-
text)*depth*time + (1|participant). Overall, there was a model by 
time interaction (p = 0.002), indicating that the gaze model outper-
formed the context model for all cases (ps < 0.05) except for the 
“after each” model (p = 0.14), though the trend was in the expected 
direction. Furthermore, there were no significant differences across 
time for the context model, as expected. However, for gaze, there 
were differences across time (Figure 6b). Specifically, the model 
performance for comprehension assessed after reading all texts was 
statistically equivalent to the delay model (p = 0.90) which was 
statistically higher than for assessments during reading (p = 0.02) 
which was in turn equivalent to assessments after each text (p = 
0.34), suggesting the following pattern: [After All = Delay] > [Dur-
ing = After Each]. There were no significant main effects nor 
interactions for comprehension depth, indicating similar patterns 
for rote and inference comprehension items. 

 
Figure 6. Comparison for percent improvement of gaze vs. con-
text (A) across time and (B) across depth and time. Error bands 
represent 95% confidence intervals.  

Table 6. Mean AUPRCs with 95% CIs computed over partici-
pants for the Random Forest models 

Assessment  Gaze  Context  Base 
Rate 

Rote: During  0.81 [0.80, 0.81] 0.77 [0.77, 0.78]  0.76 
Rote: After Each  0.76 [0.76, 0.76] 0.74 [0.74, 0.75]  0.72 
Rote: After All  0.75 [0.75, 0.76] 0.71 [0.71, 0.72]  0.68 
Rote: Delay  0.75 [0.75, 0.75] 0.68 [0.68, 0.69]  0.68 
Inference: During  0.80 [0.80, 0.81] 0.78 [0.78, 0.78]  0.75 
Inference: After Each  0.78 [0.78, 0.78] 0.76 [0.76, 0.76]  0.73 
Inference: After All  0.80 [0.80, 0.80] 0.74 [0.74, 0.75]  0.73 
Inference: Delay  0.71 [0.70, 0.71] 0.65 [0.65, 0.65] 0.63 

 

Model discrimination. To understand to what extent the random 
forest gaze model predictions were generally picking up on the 
same comprehension constructs, we computed the average model 
probabilities for each participant and assessment and correlated 
them (Table 5, grey diagonal). Overall, the average correlation was 
0.10 and ranged from -0.28 to 0.62, suggesting that the models were 



discriminating among the different comprehension assessments, 
with the highest correlation being between Rote During and Infer-
ence During, suggesting the model might be picking up on similar 
gaze patterns for both ‘During’ assessments.  

4.3 Feature Analyses (Random Forest only) 
We examined impurity-based feature importances from the Ran-
dom Forest model to determine which aspects of gaze were most 
predictive of comprehension and whether the predicted features dif-
fered across comprehension types and delays. Here, we computed 
the correlation of the feature importances between each pairwise 
assessment for each run and then averaged across runs (Table 7). 
The grand average correlation excluding the diagonals was 0.15, 
indicating some overlap of feature importances across depth and 
time despite the broad range of features. Overall, the rote measures 
showed a mean rs = 0.23, with a range from -0.01 to 0.35 (light 
grey in Table 7), with rote comprehension during reading showing 
the lowest correlations with the other rote assessments (rs = -0.01, 
0.06, and 0.16 compared to rs = 0.27, 0.30, and 0.35 for the other 
rote assessments). Conversely, the inference comprehension 
measures showed a wide range of correlations with each other 
(from rs = -0.14 to 0.57). This is in part due to the delayed inference 
assessments showing negative correlations with all other inference 
assessments (rs = -0.14, -0.05, -0.10), while all other correlations 

were positive, with inferencing assessed during reading and after 
reading all texts showing the highest correlation (r = 0.57). Corre-
lations among rote and inference assessments showed a mean rs = 
0.15, with a range from -0.10 to 0.57 and the strongest correlations 
among the delayed rote assessments and inferencing assessed dur-
ing the session (rs from 0.26 to 0.57). Thus, the pattern of inter-
associations among feature importances is mixed.  

We then assessed which features were most important to compre-
hension across depth and time. To this end, we first computed the 
overall mean feature importances for each run across all assess-
ments and averaged across runs. We then grouped and averaged 
each set of statistical features together to assess relative importance 
of each feature type. For example, for the “fixation duration” fea-
ture set, the feature importances for the eight statistical features of 
fixation duration were averaged together. We found that the top 
four feature categories were: the selective regression path duration 
(average importance = 0.0103), regression fixation proportion (av-
erage importance = 0.0097), calibration error (average importance 
= 0.0094), and interest area dwell time (average importance = 
0.0094). Although these features were the most important, it ap-
peared that all features contributed to model performance as they 
were all greater than zero (Figure 7).

 

 
Figure 7. Rank-ordered mean feature importance across assessments.  

Table 7. Pairwise feature importance Pearson correlations averaged over runs 

 

Assessment  Rote:  
During  

Rote:  
After Each  

Rote:  
After All  

Rote:  
Delay  

Inference: 
During  

Inference: 
After Each  

Inference: 
After All  

Inference:  
Delay  

Rote: During  -  -0.01  0.16 0.06 -0.01 0.10 -0.10 0.02 
Rote: After Each    -  0.27 0.30 0.35 0.10 0.32 -0.05 
Rote: After All      -  0.35 0.06 0.35 0.05 -0.03 
Rote: Delay        -  0.57 0.26 0.46 -0.04 
Inference: During          -  0.15 0.57 -0.14 
Inference After Each            -  0.13 -0.05 
Inference: After All              -  -0.10 
Inference: Delay                -  



Figure 8. Example gaze on pages with accurate (A) and inaccurate (B) comprehension on a question asked immediately after read-
ing the page. Saccades are shown with green lines and fixations with blue circles. 

5. DISCUSSION 
Our goal was to investigate the relationship between eye tracking 
and reading comprehension outcomes by identifying whether gaze-
based models of reading could predict different depths of compre-
hension at varying degrees of delay. We discuss our main findings 
followed by applications, and limitations. 

5.1  Main Findings 
Beginning with observed rote and inference comprehension, we 
found that accuracies were highest during reading and dropped 
when assessed at seven days post-study, which is what we would 
expect. Nevertheless, the gaze-based Random Forest models could 
still predict both comprehension types significantly better than 
baselines during all stages of reading except for the “after each” 
assessment, which followed the same trend. Furthermore, we found 
a pattern such that gaze became more predictive of comprehension 
as time progressed within the main reading session, with perfor-
mance peaking for assessments administered after reading all the 
texts. 

As noted in Figure 1, theories of reading comprehension posit that 
readers first attend to and encode the text at the surface-level to 
form a text-based representation followed by a situational (mental) 
model via bridging inferences and elaboration, which is then con-
solidated into long-term memory. While there are reasons to expect 
that gaze should predict rote, short-term retention of information 
that simply requires attention to and basic encoding of the text (as 
others have shown – see Table 1), our results indicate that it is also 
related to the processes underlying deep, long-term comprehension 
which are typically viewed as internal cognitive processes that oc-
cur in the absence of eye movements [40]. To our knowledge, this 
is the first study to show that gaze during reading is predictive of 
deep, long-term comprehension since previous work has mainly fo-
cused on rote comprehension [55].   

Second, while our models demonstrated participant-level generali-
zability (in contrast to prior work – see Table 1), the percent 
improvements of our models relative to baseline were admittedly 
modest. However, as indicated in the Introduction, the present goal 
was not to develop the most predictive model but to examine the 
predictive accuracy of a set of eye gaze features across comprehen-
sion depth and time. As such, we did not include many pertinent 
non-gaze features (e.g., text difficulty; item difficulty) that may be 
highly predictive when coupled with eye gaze. 

It should be noted that D’Mello et al. [16] found that a gaze model 
yielded very high accuracies (AUROCs close to 0.9) for modeling 
rote comprehension during reading. One key difference is the 
D’Mello et al. study only measured rote comprehension with the 
items triggered in response to an automated mind-wandering detec-
tor. This may have engendered a very different reading strategy 
(and corresponding eye movement patterns) entailing skimming the 
text to identify targets for subsequent questions (the authors 
acknowledge this in Mills et al. [14]) than the more general reading 
strategies required here given the variety of comprehension 
measures. Thus, the high-accuracy scores reported in D’Mello et al. 
[16] might not generalize more broadly. 

Third, there was overlap in feature importances across depth and 
time, with the top four predictive features being the selective re-
gression path duration, regression fixation proportion, calibration 
error, and dwell time per interest area. It is possible these features 
capture measures of processing later in the time course of reading, 
and rereading text for comprehension repair, both of which are key 
to higher-level comprehension [9]. Dwell time, for instance, re-
flects the processing time (early and late), and in combination with 
selective regression path duration could be indicating processing 
difficulty later in reading a page (e.g., low selective regression path 
duration but high dwell time suggests difficulties only later on in 
the comprehension of a page [36]).  Regression fixation proportion 
is also an important indication of comprehension repair [46, 52], 
and has been used in previous gaze models of comprehension [55]. 
Because it is difficult to interpret the direction of association of in-
dividual features in random forest models (due to interactivity), 
these patterns are speculative, and await further empirical data. 

Historically, regressions have been one of the more difficult aspects 
of eye behavior to capture [48]. While it has long been posited that 
regressions occur when a reader experiences a difficulty in compre-
hension which triggers the reader to look back in the text to repair 
their comprehension deficit [9], several studies have linked an in-
crease in regressions to better comprehension [28, 52], while others 
show the opposite effect [31]. Regression fixation proportion, the 
feature with the second highest average importance, indicates how 
often readers did not understand the text and acted to repair their 
comprehension [46], and might also be a way to distinguish better 
from poor readers, as better readers reread less and are more adept 
at redirecting their gaze efficiently [64]. Figure 8 shows an example 
of gaze behavior that leads to accurate and inaccurate comprehen-
sion. Note that in Figure 8A there are more regressions (seen as 



long saccades cutting across multiple lines of text) and more read-
ing in the middle of the text- an area which might have been giving 
the student some difficulty. On the other hand, the gaze on the page 
with inaccurate comprehension demonstrates a more even pattern 
of eye movements: possibly less attention to the text and less com-
prehension repair.  

We also found that calibration error was predictive of comprehen-
sion. Indeed, prior work has found that greater pre-trial fixation 
dispersion is predictive of mind wandering [65]. Because mind 
wandering is negatively related to comprehension [14, 54], it might 
be the case that calibration error (and pre-trial fixation dispersion) 
is also negatively predictive of comprehension. 

5.2 Applications 
This research is a step towards gaze-based computational models 
of reading comprehension. Such models can be integrated into 
adaptive systems that trigger assessments and provide opportunities 
to correct comprehension deficiencies when lapses of comprehen-
sion are detected (similar to the gaze-based models that adaptively 
trigger interventions when mind wandering is detected [4, 13, 19, 
27]). Given the modest accuracies obtained in the present study, the 
most immediate applications are in interventions that can be ap-
plied in a ‘fail-soft’ manner. These do not disrupt the student and 
do not pose any harm if comprehension is miss-classified. Inter-
leaving questions during reading is one such example [57] , as is 
encouraging re-reading at the end of a text or adaptively selecting 
post-reading assessments based on model-assessed comprehension 
during reading.  

With further research, more fine-grained interventions that target 
different depths (rote vs. inference) and timescales (short- or long-
term comprehension) are also feasible. For instance, if a student is 
preparing for an upcoming examination, models and interventions 
supporting long-term comprehension might be preferred compared 
to cases where short-term retention suffices (reading a short arti-
cle). Other possible interventions include reducing textual 
difficulty or providing scaffolds when comprehension difficulties 
are detected [53] or even increasing difficulty when the reader is 
not being sufficiently challenged (e.g., the reverse cohesion effect 
[44] where good comprehenders benefit more from texts with lower 
cohesion).  

In addition to direct intervention, the models also have applications 
with respect to assessment. For example, if the rote and inference 
models consistently (i.e., across multiple participants) predict high 
and low comprehension scores on a given page, respectively, this 
might suggest that there is a cohesion gap with respect to the con-
tent on the page that is impeding inference generation.  

5.3 Limitations 
Like all studies, ours has limitations. First, we only examined gaze 
on a particular page, thereby overly constraining the models. There-
fore, there may have been other factors, such as gaze on the 
preceding page, that might have been relevant to reading compre-
hension but were not incorporated into the gaze models. 

Furthermore, it is possible that the lab settings changed behaviors 
relative to how participants would behave in more ecologically 
valid settings. Specifically, participants donned other sensors and 
face masks to adhere to COVID safety procedures, which may have 
resulted in discomfort and unnatural reading behaviors (but see Ta-
ble 4 which showed high horizontal saccade proportion and percent 
of fixations in interest areas indicating people were on task).  

Next, the classes in the data were imbalanced, and we chose to not 
balance the classes since this might not capture real-world variation 
in comprehension. However, class imbalance might have intro-
duced a confound when comparing model performance over time 
in that accuracies reflected the level of class imbalance rather than 
differences in comprehension depth and time. To address this pos-
sibility, we did test models on balanced classes and results did not 
change.  

Although the present study demonstrated cross-participant general-
ization, participants only read one set of texts and therefore it is 
unknown whether the models would generalize to new texts. That 
said, because we used features which capture relative changes in 
gaze (e.g., angles) as opposed to absolute, stimulus-dependent val-
ues (e.g., coordinates), we think they are likely to generalize to 
similar contexts. To this point, prior work using similar global 
page-level features demonstrated cross-task-generalization for 
mostly rote comprehension after reading [55], but this is an empir-
ical question for comprehension models at different depths and 
time delays.  

Finally, the LSTMs yielded chance-level performance. This was 
despite using features that reflected relative changes in gaze (e.g., 
relative angles) in contrast to prior LSTM work that used absolute 
fixation coordinates [1]. It might be the case that there are not gen-
eralizable patterns in local gaze dynamics that are predictive of 
comprehension. Alternatively, and more likely, there might not 
have been sufficient data to learn these patterns should they exist 
given the relatively small number of training examples compared 
to the number of parameters in the LSTM models.  

5.4 Concluding Remarks 
Reading comprehension is a complex cognitive process that is crit-
ical to daily tasks. It unfolds across different depths and over time, 
raising the question of what eye movements known to index initial 
encoding of information can reveal about the processes underlying 
deep, long-term comprehension (Figure 1). Our results show, for 
the first time, that eye movements have the potential to provide an 
index into deeper inference-level comprehension assessed as late as 
a week after reading, indicating they capture far more than tempo-
rary surface-level encoding of a text.  
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