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ABSTRACT

A strategy for allocating merit-based awards and need-based
aid is critical to a university. Such a strategy, however, must
address multiple, sometimes competing objectives. We in-
troduce an approach that couples a gradient boosting clas-
sifier for predicting outcomes from an allocation strategy
with a local search optimization algorithm, which optimizes
strategies based on their expected outcomes. Unlike most
existing approaches that focus strictly on allocating merit-
based awards, ours optimizes simultaneously the allocation
of both merit-based awards and need-based aid. Further, the
multi-objective optimization lets users experiment with dif-
ferent combinations of institution-centric and student-centric
objectives to deliver outcomes that suit desired goals. With
this approach, we identify multiple allocation strategies that
would yield higher enrollment, revenue, or students’ afford-
ability and access to higher education than the University’s
existing strategy. In particular, one strategy suggests that
with moderate changes to the current funding structure the
University can increase students’ access to higher education
by more than 100%, while still maintaining a similar level
of enrollment and revenue.

Keywords
institutional data analytics, financial aid optimization, schol-
arship distribution, enrollment management

1. INTRODUCTION

Public universities in the United States (US) create recruit-
ment policies amidst decreased state funding and increased
costs of attendance. Decreased funding was predicted as a
result of state deficits [17]. This is now evident in data show-
ing falling state appropriations as a percent of total revenue
for public 4-year institutions from academic year 2008-09
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(23.8%) to academic year 2018-19 (16.5%) [12]. Decreased
state funding necessitates a greater reliance on tuition and
fee revenue from enrolled students.

From academic year 2011-12 through 2016-17 tuition and
fees increased by 9% at public 4-year institutions, making
college too costly for an increasing proportion of students
(especially those from low- and lower-middle-income fami-
lies) [3, 9, 26]. Students are being priced out of college or
choosing to take out loans and/or work while pursuing a
course of study [25]. This rising cost has resulted in a na-
tional college debt crisis in which 57% of debtors with federal
student loan debt owe up to $20,000 [3].

The combination of decreased funding and increased costs
of attendance have implications for enrollment management
activities. An increased reliance on tuition and fee revenue
means that setting policies surrounding student recruitment
efforts and accurately forecasting their outcomes is increas-
ingly important to universities’ income and budget projec-
tions [2, 38]. However, these recruitment efforts are hindered
by the increased prices charged to students. Higher prices
reduce enrollment rates particularly for low-income students
in public institutions [22]. The use of financial aid as an
enrollment management tool to counteract these increased
prices is well-established [15]. Further, the positive impact
of both federal and state need-based financial aid programs
on students from low-income families has also been explored
[3, 8, 9]. With increasing costs of attendance leading to
crises of affordability and access, universities should explore
the role of need-based aid in their enrollment management
strategies.

The call to optimize enrollment management activities with
the consideration of access and affordability is one that ap-
pears difficult to achieve. However, the student and finan-
cial data needed for such predictions and optimizations are
stored in universities’ existing data systems [31]. Despite
having access to this data, universities are not quick to lever-
age it themselves perhaps due to untrained personnel or poor
data infrastructure [31, 32]. Instead, the data and these
analyses are outsourced to external consulting firms who or-
ganize and process the data to be used in proprietary models
[16]. With this type of industry environment there is limited
published work to demonstrate how machine learning pre-
diction and optimization can be used in tandem to inform
university recruitment policies.
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Existing work on financial aid optimization has been limited
in two regards: (1) the optimization only takes enrollment
as the sole objective and (2) the resulting strategy is for
merit-based aid only [4, 28]. The limiting of the optimiza-
tion to enrollment is short-sighted in that universities are
targeting multiple objectives that may not move with en-
rollment. Additionally, when only considering merit-based
awards, student-centric outcomes like access and affordabil-
ity are neglected despite their increasing importance in the
dialogue surrounding higher education. Our work seeks to
address these shortcomings.

Our approach consists of an interactive feedback loop be-
tween two core components: a gradient-boosting classifier
and auto-start local search optimizer. First, given a current
strategy for award and aid allocation (together with many
other features), the classifier is used to predict enrollment,
revenue, the affordability and accessibility of higher educa-
tion, and other outcomes. These predicted outcomes are
then used by an optimizer to revise the current strategy and
suggest a possibly better one. The interaction between the
classifier and optimizer forms a feedback loop that is the
basis of the optimization. This loop aims to identify opti-
mal strategies for allocating awards and aid with expected
outcomes specified by the University. The novelty of this
work includes (1) the allocation both merit-based awards
and need-based aid in the optimization process; (2) the in-
clusion of the affordability and accessibility of higher edu-
cation in the optimization of allocation strategies; and (3)
an auto-start local search optimization that allows users to
target institution-centric and student-centric objectives in a
flexible way to produce desirable outcomes.

2. RELATED WORK

The following describes research on enrollment prediction,
scholarship allocation, and financial aid optimization. There
is significant work on predicting enrollment, but far less with
regard to optimization and allocation of scholarships. Most
authors looked at only one of these issues and most work
has been primarily concerned with merit-based aid alone.

Predicting Enrollment. Universities’ increased reliance on
tuition and fee revenue has increased pressure on their lim-
ited resources to accurately predict and increase enrollment
(i.e. yield). Recruitment counselors need to allocate their
limited time to contact students ”on-the-fence” about their
enrollment decisions [10]. This business need led to the lit-
erature on enrollment prediction at the individual applicant
level using data mining and machine learning techniques.

There is a host of research that relies on logistic regression
techniques to create these individual enrollment probabili-
ties. A 2002 paper by DesJardins used a logistic regression to
reveal the enrollment probabilities of applicants before any
financial aid offers had been made. The resulting model,
which relied heavily on demographic features, had a correct
classification rate of approximately 67% [10]. In 2006, Goen-
ner and Pauls used a logistic regression to predict the en-
rollment of students who had inquired about the university.
The resulting model was 89% accurate at out-of-sample pre-
dictions [14]. Similarly, a 2014 paper by Sugrue generated a
logistic regression to predict enrollment yield [34].

In another vein of literature, other prediction techniques are
explored. Two related works explore the effectiveness of neu-
ral network models in predicting individual enrollment prob-
abilities for applicants. A 1998 paper by Walczak revealed
that a backpropogation neural network model could result in
a 56% decrease in recruitment counselor caseloads due to its
accuracy [39]. In a follow-up study, Walczak and Sincich ex-
plicitly compare the performance of neural network models
to that of logistic regression and find that neural networks
produce better results [40]. Chang similarly explores the effi-
cacy of various prediction techniques, specifying models for
logistic regression, neural networks, and classification and
regression tree (CR&T). The work showed that both neural
networks and CR&T outperformed logistic regression when
judged based on prediction accuracy [6].

Scholarship Disbursement/Allocation. Not all scholarship
policies employed by universities are rule-based. In these
cases, the business process of selecting the applicants to re-
ceive an award may be ineffective and inefficient. Literature
has shown that data mining techniques can be effective in
creating rule-based scholarship allocation policies to help re-
duce business process inefficiencies. In 2019, Rohman et al.
illustrated how an ID3 decision tree algorithm could gener-
ate rules to select the scholarship applicants most likely to
be awarded a scholarship. This general rule allowed for the
efficient identification of applicants so that offers could be
made [27]. Alhassan and Lawal similarly used a tree-based
data mining classification technique to determine a generic
rule for scholarship disbursal. They found the technique to
be effective and efficient [1].

Optimization of financial aid policies. Mathematical pro-
gramming models are effective tools for generating and eval-
uating financial aid strategies. Spaulding and Olswang use
discriminant analysis to test the efficacy of various aid strate-
gies [33]. Linear programming was used by Sugrue et al in
2006 as an aid decision tool where the goal was to maximize
net revenue with budget, average Scholastic Assessment Test
(SAT) scores, recruitment pools, and enrollment targets as
constraints [37]. In later work, Sugrue again employed a
linear programming approach to optimize the quality of the
incoming class with estimates of yield rates being derived
from previous years’ yield rates [35].

More recent research has incorporated enrollment prediction
models with optimization techniques to recommend financial
aid strategies. In 2015 Sarafraz et al used a neural network
model to predict enrollment and then employed a genetic al-
gorithm to find a scholarship strategy that maximized total
enrollment [28]. In 2019 Sugrue used data from the Univer-
sity of Miami to develop a merit-based aid allocation model
that predicted enrollment via logistic regression and max-
imized the quality of the incoming class via a linear pro-
gramming model [36]. In 2020 Aulck et al tested a group of
machine learning tools to predict the enrollment decisions of
admitted, domestic nonresident first-time students and then
used those results in a genetic algorithm to recommend an
optimal disbursement strategy for a domestic non-resident
merit scholarship that would maximize enrollment [4].

None of these previous works have considered merit-based
award and need-based aid strategies simultaneously as our



paper proposes to do. Further, this joint consideration de-
mands the consideration of a what an appropriate optimiza-
tion objective should be given that the recruitment goals of
merit-based awards and need-based aid differ in some re-
gards. Though the joint consideration of merit and need
strategies in one optimization problem does complicate the
process, a multi-objective approach needs to be researched
since these aid strategies compete for the same limited bud-
get resources.

Local-search optimization. Local search is a heuristic method
for solving computationally hard problems. A local search
algorithm starts with an initial candidate solution and it-
eratively moves to a neighbor solution in hopes of finding
better and better candidate solutions. The algorithm stops
when it cannot find a neighbor solution that is better than
the current candidate solution. For local search to work, a
neighbor relation must be defined so that from an arbitrary
candidate solution, a neighbor solution can be generated.

Stochastic hill climbing [20] is a fast local search method
because it greedily moves from one candidate solution to a
better one. It is similar to a popular method, stochastic
gradient descent [19], but it is faster because it does not
need to estimate the gradient of the objective function. The
main disadvantage of stochastic hill climbing is that it is
often stuck in locally optimal solutions.

Two popular methods that can find globally optimal solu-
tions are simulated annealing [21] and genetic algorithms
[41]. In a number of applications, genetic algorithms pro-
duced slightly better solutions than simulated annealing [30].
Nevertheless, simulated annealing and its variant, simulated
quenching [18], seem to suit our technical approach better
than genetic algorithm because it is not obvious to us how
we can meaningfully apply the genetic algorithm’s crossover
operator to allocation strategies.

3. METHODS

3.1 Overview of the problem and challenges
Merit-based awards and need-based aid. At the University,
a certain amount of financial award or aid is offered to each
applicant based on his or her profile on merit (academic per-
formance) and need. Merit-based award eligibility is calcu-
lated based on a combination of standardized test scores (i.e.
American College Testing (ACT) and Scholastic Assessment
Test (SAT)) and high school GPA. Need-based aid eligibil-
ity is determined by expected family contribution from the
Free Application for Federal Student Aid (FAFSA) and then
adjusted in an ad hoc manner based on items such as cost of
attendance and how much federal aid and other merit-based
awards are promised to students. A student may receive
both merit awards and financial aid. The allocation strategy
of merit awards and aid strives to be fair in that two students
with the same residency and academic performance profile
will receive the same merit offer and two students with the
same residency and need profile will receive the same aid
offer. These offers are made in a guaranteed fashion in that
each admitted applicant will be offered a merit-based award
and/or need-based aid so long as requirements are met.

Allocation strategy of awards and aid. In the context of this
work, an allocation strategy consists of a merit-based allo-
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Figure 1: Overview of the technical approach

cation strategy and a need-based allocation strategy. Each
allocation strategy consists of (1) a list of buckets into which
students are placed, and (2) how much financial award or aid
students in each bucket will receive.

An allocation strategy has an important impact on the bud-
get of the University because it affects enrollment in com-
plex ways. Enrollment affects revenue. Revenue affects the
number and amounts of awards and aid the University can
give to its students. And awards and aid directly affect the
applicants’ decision to enroll at the University. Increasing
awards and aid can increase enrollment, but may reduce rev-
enue, which in turn limits the University’s ability to increase
awards and aid.

Our mission. Our team was tasked with revising the Univer-
sity’s current way of offering merit-based awards and need-
based aid. Although the current system is fair, as it should
be, the Financial Aid Office has thought that due to multiple
reasons the current strategy might not be optimal. We were
asked to generate a revised strategy that uniformly impacts
the domestic student body in a way that improves multiple,
possibly conflicting objectives such as increasing enrollment,
increasing revenue, increasing student performance profiles,
and making higher education more accessible and affordable.

Technical approach. An overview of our approach is depicted
in Figure 1. The approach utilizes a feedback loop that con-
tinually revises a feature set from which a classifier learns
to predict various outcomes. In contrast to the traditional
setting where features stay fixed, the features in our model
are continually revised in this feedback loop. This is possible
due to the fact that the University can change award and
aid offer amounts, which is part of the feature set used to
predict enrollment, revenue and other outcomes. The feed-
back loop is an iterative interaction between the classifier,
which predicts expected outcomes, and an optimizer, which
evaluates the outcomes and suggests a revised strategy with



possibly better outcomes. In each iteration of this interac-
tion, depicted in Figure 1, the current allocation strategy
dictates offer amounts for awards and aid. This changes the
features, which leads the classifier to relearn and re-predict
multiple outcomes (e.g. enrollment, revenue, student afford-
ability and accessibility, etc.). This allows the auto-start
local-search optimizer to revise and possibly improve the
current strategy; and so on and so forth.

3.2 Data Collection and Cleaning

Data for this research is all first-time freshmen (FTF) do-
mestic admitted applicants to the University in the Fall
2020. The data on students is compiled from the Univer-
sity’s admission application, the FAFSA, and the student
information system. Only the students who filed a FAFSA
(making them eligible for need-based aid) are included re-
sulting 7,564 observations which is approximately 67% of
the total number of domestic FTF students for that term.
Data from the admission application includes admission test
scores, high school GPA, location/residency, and intended
major. Data from the FAFSA includes expected family con-
tribution and family income. Data from the student in-
formation system includes whether or not the student had
previously enrolled at the institution as a dual enrollment
student, aid offer amounts for various categories of aid, and
an enrollment indicator. Of the 7,564 students 2,340 chose
to enroll (approximately 31%). No demographic variables
are used in the study so as to avoid bias in recommending
aid strategies to the University.

Financial data points are expected full time tuition, merit-
based award offers, need-based aid offers, actual and esti-
mated Pell grant offers, and all other aid offers before loans.
Estimated Pell grant offers are included as the University
will make offers prior to actual Pell amounts being known.
These are estimated based on cost of attendance and ex-
pected family contribution using the Pell schedules released
each year with the assumption that students will enroll full
time. Each of the aid offer features enters the predictive
model independently and in a total financial aid variable.
These offer amounts are not manipulated when generating
the predictive model, but are updated during the optimiza-
tion process.

3.3 Feature Engineering

Prior to building prediction models and optimizations, fea-
ture engineering is done using Pandas [23]. Categorical
variables are either converted to binary indicators or con-
verted to binary dummies. Continuous distance variables
that measure distance from the University and its key mar-
ket competitors are converted to binary daily and weekly
commute variables. We compute an historic 5-year aver-
age yield by high school to serve as a proxy of familiarity
and/or social network at the University. We convert the
major declared on the application into five major group bi-
nary indicators: STEM, Fine Arts, Health, Business, and
Humanities. The feature engineering results in 95 features
from our data sources on which to build our predictions.

Two important features that affect applicants’ decisions to
enroll are the promised amounts of merit-based awards and
need-based aid. These features are determined by a specific
strategy for allocating awards and aid. As indicated in Fig-

ure 1, these two features are updated during an optimization
process that traverses through the solution space to find an
optimal one. As the features are updated, the classification
model relearns to update its estimate of enrollment proba-
bilities.

3.4 Modeling enrollment

The data is stored in a matrix D where each row represents
an applicant’s profile. The first column of D is the binary
enrollment variable, y, where y; being equal to 1 means ap-
plicant ¢ enrolled at the University and y; being equal to
0 means the applicant did not enroll at the University. All
other columns of D are features that a classifier uses to learn
y. The goal in modeling enrollment is to assess the viabil-
ity of using popular classification methods to predict enroll-
ment, and to identify and adopt the best method to assist
in the optimization of strategies for allocating merit-based
awards and need-based aid.

Classifiers. We investigate the performance of several popu-
lar classifiers that can predict enrollment probabilities. These
include classification methods based on diverse approaches
such as support vector, logistic regression, and k-nearest
neighbors. We also consider the ensemble methods of ran-
dom forest, AdaBoost [29], gradient boosting [13], and a
more regularized version of gradient boosting known as ex-
treme gradient boosting [7]. Many of these methods do not
strictly predict probabilities of a target variable. Rather,
they can provide quantities that can loosely be interpreted
as probabilities. For example, in case of ensemble methods,
which output quantities based on binary decisions of the
base learners, we interpret these quantities as probabilities.
We used available implementations of these methods in the
scikit-learn [24] and xgboost [7] libraries.

Data scaling. Classification methods such as support vec-
tor, logistic regression, and k-nearest neighbors operate on
distances between data points. Since distances between dif-
ferent features are not of the same scales, the features need
to be standardized first. We employ a popular method of
data standardization. For each data point, we subtract from
it the mean of the training samples, and then divide that by
the standard deviation of the training samples.

Performance metrics. We employ multiple metrics to mea-
sure the performance of the classifiers from multiple perspec-
tives. Since the data is imbalanced, a single metric, e.g. ac-
curacy, does not meaningfully reflect different aspects of the
performance of a classifier. We consider 3 compound met-
rics: F-score, balanced accuracy, and AUC (area under the
ROC curve), which show different aspects of performance.
F-score is a useful metric when we are interested in the abil-
ity to predict class-1 samples (applicants who ultimately en-
roll at the university). It combines two individual measures
and is defined as éf:ff:ﬁgi‘ss::;.itt;;iifi) , where precision is the
probability that a positive prediction is correctly predicted,
and sensitivity is the true positive rate or the probability
that class-1 samples are correctly predicted. Balanced ac-
curacy is used when we are equally interested in the ability
to predict both class-1 and class-0 samples. It gives equal
weights to true positive rates (sensitivity) and true negative
rates (specificity). AUC is useful when we are interested in
the trade-offs between sensitivity and specificity at various




thresholds as it sums up the area under the curve defined by
sensitivity (true positive rate) and 1-specificity (false posi-
tive rate).

Comparison to baseline. To gauge the performance of each
classification method, we compare its performance to that
of two baseline methods. The first baseline is a popular
method, ZeroR [11], which always predicts the most frequent
label in the training set. The second baseline, Stratified,
makes predictions based on the distribution of the labels in
the training set.

Cross-validation. To determine the performance of each clas-
sifier under a metric, we train the classifier using 90% of the
data and test it using the other 10% of the data. We ex-
periment with two popular cross-validation methods of par-
titioning the data randomly into training and testing sets:
(1) repeated random subsampling (up to 50 random splits)
and (2) k-fold with k=5 and 10. Although the data parti-
tions are randomly generated, in each iteration, we compare
the classifiers using the same random partition.

3.5 Optimization of allocation strategies
Algorithm 1 AutoStart-Optimizer( so,C, D, d, St )

1: s ¢ s0; best_strategy < so

2: Run Stochastic Hill Climb to find Amax

3: T ﬁ"ﬁ
4: while progress is still being made do
5 T+« T-§
6
7
8

for i from 1 to St do
s—value < C.compute_value(s)
t + RandomNeighbor(s)

9: D .update_strategy (t)
10: Cfit(Xp,yp)
11: A = C.compute_value(t) - s_value
12: if A > 0 or with probability eT then
13: st
14: if s is better than best_strategy then
15: best_strategy < s
16: end if
17: else
18: D .roll_back_strategy/(s)
19: C.ﬁt(XD,yD)
20: end if
21:  end for

22: end while
23: return best_strategy

Local search optimization. Simulated annealing [21] is in-
spired from a physical annealing process, in which an ini-
tially hot temperature lets the local search explore the solu-
tion space more freely, allowing the adoption of neighbor so-
lutions that are not as good as the candidate solution. As the
search goes on, the temperature cools down and the search
is more aggressive in finding better solutions. When the
temperature is low enough the search essentially becomes a
stochastic hill climb. Starting at a high initial temperature,
the annealing is known to be able to escape locally optimal
solutions and reach a globally optimal solution eventually.

We adopt a modified version of simulated quenching [18],
which is a variant of simulated annealing. It is faster than

simulated annealing because it cools temperatures faster. It
is shown that in practice simulated quenching was as good
as simulated annealing [18].

While Figure 1 provides a high-level description of each iter-
ation of the optimization, Algorithm 1 provides a more de-
tailed description of how the optimization utilizes simulated
quenching to find optimal strategies for allocating merit-
based awards and need-based aid. The algorithm takes as
input an initial allocation strategy (so), which is an estimate
from the university’s current strategy; a classifier C', which
learns from historical or updated features to predict enroll-
ment probabilities; an interface D to dataset, which can
updates features based on a new strategy or rollbacks previ-
ous features based on a previous strategy; ¢ and St, which
dictate how fast the temperature schedule is decreased and
how long the temperature is kept constant, in each quench-
ing step.

The simulated quenching process aims to improve upon the
initial strategy, so, by moving from one neighboring strat-
egy to the next. A better neighboring strategy replaces the
current one. Additionally, a worse neighboring strategy can
also replace the current one with a certain probability (lines
12-13, Algorithm 1), which is determined by the current
temperature 7' and how much worse the neighbor is. At
a higher temperature 7', a worse neighboring strategy can
replace the current one in hopes of getting to an eventual
better optimum.

Auto-start simulated quenching To explore the search space
liberally at the start of the search, the initial temperature
needs to be sufficiently high. This initial temperature is,
however, problem dependent. As such, users generally have
to experiment with different values to find an appropriate
one. We employ a stochastic hill climber to derive an initial
temperature to start the simulated quenching process with-
out requiring users to initiate the search by specifying an
initial temperature (lines 2-3 in Algorithm 1). We set the
initial temperature T to lﬁ(rgf‘g) , where Anmax is the difference
between the worst strategy and the best strategy (local op-
timum) that the stochastic hill climber finds. At this initial
temperature, the largest backward move is accepted with
probability 0.5. As T decreases, this probability decreases
and a backward move is less likely allowed. When T is small
enough, the search effectively turns into a stochastic hill
climber.

Solution representation. The local search algorithm navi-
gates through the search space of allocation strategies to
find an optimal solution (strategy). An allocation strategy
consists of a merit-based award allocation strategy and a
need-based aid allocation strategy. Each consists of (1) a list
of buckets into which students are placed and (2) how much
money students in each bucket will receive. Buckets and
amounts must be increasing. This means a higher achieve-
ment results in higher merit-based amounts, and higher need
results in higher need-based amounts. As an example, con-
sider this allocation strategy:

e Achievement buckets: [0, 0.25, 0.50, 0.75, 1]
e Merit amounts: [$0, $2000, $6000, $10000]



e Need buckets: [$0, $500, $5000, $10000, $20000, $40000]
e Need amounts: [$0, $1000, $1500, $2500, $3000]

If an applicant’s achievement index (or need index) falls be-
tween bucket[j] and bucket[j+ 1], then the applicant receives
amounts[j]. For example, if applicant ¢ has a merit index of
0.4 and a need index of $15000, then the applicant will re-
ceive a merit-based amount of M; = $2000 and a need-based
amount of N; = $2500. Collectively, the offered amounts of
merit-based awards and need-based aid are captured in the
features M and N of D.

Generating neighboring strategies. Local search requires the
ability to generate a neighboring strategy from a current
candidate strategy. The two main steps of how the function
RandomNeighbor (line 8, Algorithm 1) generates a neigh-
boring strategy for a given strategy s are as follows:

1: First, select with probability 0.5 either the merit amounts
list or the need amounts list of s. Call this list A =
[a1,- -+ ,ak].

2: Second, with probability 0.5, either add a small amount
to a random amount a, (1 < r < k) in A, or remove a
small amount from a random amount a, in A.

RandomNeighbor keeps repeating these steps of adding or
removing small amounts from A until it finds a neighboring
strategy that satisfies the following constraints: (1) A re-
mains in an increasing order ; (2) the resulting amount, a,
must be sufficiently different from its adjacent entries (ar—1
and a,41); and (3) the minimum amount in A cannot be too
small (in case of a remove) or the maximum amount in A
cannot be too big (in case of an add).

Updating allocation strategies and relearning. To determine
if a neighboring strategy ¢ is better or worse than the current
one two steps must be taken. First, we have to use this
strategy t to update the merit-based awards (feature M of
the dataset D) and need-based aid (feature N of the dataset
D) for all applicants (rows of D). Second, we have to refit
the classifier C' to this updated dataset. These two steps are
shown in lines 9-10 of Algorithm 1.

If t ends up replacing s, the search moves on to the next
iteration. If ¢ does not replace s, we have to roll back to
strategy s and refit the classifier C' to the previous dataset
with strategy s (lines 18-19, Algorithm 1).

Expected outcomes as a result of an allocation strategy. An
allocation of funds to awards and aid affects enrollment,
which affects multiple outcomes that the University is inter-
ested in. We utilized a classification method, e.g. gradient
boosting, to predict enrollment probabilities of applicants.
This enables us to compute the expected outcomes that we
are interested in. Let y = (y1,--- ,yn) be the binary target
variable enrollment, and let p = (p1,- - , pn), where p; is the
probability that applicant ¢ enrolls at the University.

The expected outcomes we are interested in include:

e Expected enrollment = ). p;. Denote the expected
enrollment as F.

e Expected net revenue = Zipi - R;, where R; is net
revenue obtained from applicant i. R; = t; — (m;+n;),
where t; is the tuition that the applicant pays, and m;
and n; are the merit-based and need-based amounts
offered to this applicant.

e Expected unmet need = % -y, pi- (COA; — EFC; —
Pell; — M; — N;), where COA, EFC, and Pell are cost
of attendance, expected family contribution, federal
Pell grant; and M and N are the University’s merit-
based award and need-based aid. A positive unmet
need amount is what the applicant is expected to bor-
row to pay for attending the University. This definition
is widely used as a measure affordability.

o Expected accessibility = Y, p; - I;, where I; = 1 iff ap-
plicant i is offered some financial aid (i.e. M;+N; > 0)
and has unmet need that exceeds a certain threshold.
Note that M; and N; are the amounts of merit-based
award and need-based aid that applicant ¢ is promised.
This threshold is set by the University and is believed
to represent a level of need that is not surmountable
through existing State and Federal programs.

e Expected return on investment = % It
is the expected revenue divided by the expected total

promised amounts of awards and aid.

e Expected achievement = % . Zipi - A;, where A; is

the achievement index of applicant ¢ and is calculated
from a combination of the applicant’s standardized test
scores (e.g. SAT or ACT) and high school GPA. Ap-
plicant ¢ is offered a merit-based award in an amount
of M; based on A;.

Multi-objective optimization. Algorithm 1 aims to find a
strategy s* that maximizes the weighted sum of expected
enrollment (enr), net revenue (rev), unmet need (un), acces-
sibility (acc), return of investment (roi), and achievement
(ach) as follows:

f(s,D,C) = ay - Elenr] + as - E[rev] — as - E[un]
+ ay - Efacc] + as - E[roi] + ag - Efach] (1)

where «;’s are the weights of the expected outcomes. Im-
plicitly, the allocation strategy s is applied to the data D,
from which the classifier C' learns to predict enrollment the
probability p, which is used to compute the expected values
on the right hand side of the equation.

Although we do not expect the algorithm to find a strategy
that is optimal in each individual objective, an overall opti-
mal value of the function should benefit both the University
and the applicants. While higher expected values of enroll-
ment, revenue, and achievement benefit the University, less
unmet need and high accessibility benefit applicants. On
the one hand, it seems that reducing unmet need for ap-
plicants may reduce revenue. On the other hand, making
attendance more affordable may actually increase both the
expected enrollment, which in turn may increase the ex-
pected revenue. In other words, increasing merit-based and
need-based amounts may reduce the revenue from each en-
rolled applicant, but may increase the number of enrolled
applicants and, ultimately, the overall revenue.



Table 1: Performance of predicting enrollment

balanced accuracy F-score AUC

Gradient Boosting 0.91 0.88 0.96
XGB 0.91 0.88 0.96
AdaBoost 0.88 0.84 0.95
Random Forest 0.77 0.69 0.92
Linear SVC 0.72 0.61 0.83
KNN 0.61 0.44 0.69
Stratified baseline 0.50 0.30 0.50

ZeroR baseline 0.50 - 0.50

Users can experiment with a’s to give different weights to
different objectives to obtain realistically acceptable trade-
offs and improvements among the individual objectives.

Constraints. In constructing this research, certain constraints
were determined by the University’s administration. These
constraints reflect the administration’s perspective on the
competitive environment and internal business processes that
will support any proposed strategy. These constraints de-
pend on the award structure under consideration. For merit-
based awards, there could be no more than 6 awards with
award amounts restricted to a specific range. The need-
based aid strategy specification was limited to 4 awards
with their own maximum and minimum constraints on aid
amounts. It is worth noting that the maximum value for a
merit-based award was four times higher than the maximum
need-based aid amount. Need-based aid eligibility also had
a minimum need index cutoff (COA; — EFC; — M; — Pell;).
For both allocation strategies there needed to be a minimum
difference of $100 between award buckets.

4. RESULTS

Predicting enrollment. We found gradient boosting [29] was
the highest performing classifier and had very high perfor-
mance in predicting enrollment. This result was obtained
by comparing optimized versions of 6 different popular clas-
sification approaches, which could make probabilistic pre-
dictions. Figure 2 shows the ROC curve of the classifiers in
one random partition the data into 90% training and 10%
testing sets. The figure shows an excellent trade-off between
true positive rate and false positive rate for the two top per-
formers (gradient boosting and extreme gradient boosting).

Table 1 shows the performance of the classifiers averaged
across 10 folds of cross validation. In validating the classi-
fiers, we experimented with k-fold cross validation and re-
peated subsampling at various parameters. We ultimately
decided that a 10-fold cross validation was a slightly better
choice for our study than the others. All classifiers per-
formed significantly better than the two baselines. Note
that given the imbalance of the data, ZeroR did not predict
any positive label, resulting in undefined precision and F-
score. Gradient Boosting [29] and Extreme Gradient Boost-
ing [7] had the same highest performance across all 3 metrics
(balanced accuracy, F-score, and AUC). Gradient Boosting,
AdaBoost, and Random Forest were optimized after consid-
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Figure 2: ROC curve of enrollment prediction

ering various values of maximum depth and minimum leaf
size of the decision-tree base learners.

Given an allocation strategy for awards and aid, we em-
ployed a gradient boosting classifier to predict expected out-
comes if we were to apply the strategy. To assess this strat-
egy, we compare the expected outcomes to the actual out-
comes that were obtained from the original data based on
the University’s existing strategy for allocating awards and
aid.

Defining strategies for allocating funds. A strategy for simu-
lated quenching consists of 3 parameters: (1) the number of
steps in decreasing an initial temperature, (2) the number
of times to keep the current temperature constant, and (3)
the weights (a;’s) of the expected outcomes in Equation 1.
For example, we denote SQ-enr-100,3 as the strategy that
optimizes enrollment where temperatures are decreased 100
steps, and each temperature is kept constant for 3 steps.
As another example, we denote SQ-enr-un-2,0.6,100,3 as the
strategy that optimizes enrollment and unmet need with
weights 2 and 0.6, respectively, where temperatures are de-
creased 100 steps, and each temperature is kept constant for
3 steps.

Table 2 shows the expected outcomes (averaged across 10
random runs) relative to the baseline (actual outcomes) of
a few distinguishing strategies. These expected outcomes
are from (1) a strategy for optimizing enrollment; (2) two
strategies for optimizing enrollment and unmet need; and
(3) seven strategies for optimizing enrollment, unmet need,
and revenue.

For clarity, expected outcomes are grouped into two cate-
gories: institution-centric outcomes and student-centric out-
comes. In general, it is difficult to find a strategy that can
improve all of the outcomes simultaneously.



Table 2: Expected outcomes of different strategies versus actual outcomes

Institution-Centric Student-Centric Budget Change
Enrollment Revenue ROI Achievement | Accessibility Unmet need | Total Funding
Strategy (%) (%) (%) (%) (%) (%) (%)

SQ-enr-100,3 32.0 29.0 -1.0 -2.0 189.0 3320.0 48.0
SQ-enr-un-2,0.6,100,3 17.0 -26.0 -3.0 -1.0 132.0 -403.0 191.0
SQ-enr-un-2,0.6,100,5 22.0 -25.0 -3.0 -2.0 142.0 -51.0 216.0
SQ-enr-un-rev-1,0.5,2,100,1 5.8 146 2.7 0.4 119.8 1247.0 28.1
SQ-enr-un-rev-1,0.5,2,100,5 8.1 16.6 2.9 0.4 125.7 1429.7 245
SQ-enr-un-rev-1,0.6,2,100,1 11.8 6.5 -0.8 0.7 132.4 948.7 34.9
SQ-enr-un-rev-1,0.6,2,100,2 8.3 6.9 -0.2 0.5 124.0 825.0 15.5
SQ-enr-un-rev-1,0.6,2,100,3 5.7 1.7  -0.6 -0.4 115.8 345.7 23.2
SQ-enr-un-rev-1,0.6,2,100,4 3.5 -0.2  -0.5 -0.3 109.8 135.2 19.5
SQ-enr-un-rev-1,0.6,2,100,5 2.0 48 04 0.2 104.3 -288.6 29.9

Table 3: A comparison between the actual outcomes and expected outcomes resulting from a conservative solution for distributing

awards and aid

Institution-Centric Outcomes

Enrollment Revenue ROI  Merit

Student-Centric Outcomes

Accessibility Unmet need

Budget Changes
Total Funding Awards  Aid

1.3% 01% -02% -0.1%

104.7%

-$2.7 6.5% -2.2%  93.4%

Low impact on expected ROI and achievement in optimiza-
tion strategies. In our evaluation of different strategies, it
seems that the impact on expected ROI and merit profiles
is relatively small. Percent changes to ROI are reported in
column 5 of Table 2. ROI deviates 3% from the baseline
in either direction at most, with the majority of deviations
being a decrease of 1% or less. Similarly, expected achieve-
ment decreases from the baseline by 2% at most, which is
equivalent to less than a one point drop in average ACT
scores. As such these particular outcomes are not discussed
at length in results discussed subsequently.

Optimizing for enrollment alone is good for the University but
bad for students. Previous literature focused on optimizing
for enrollment alone [4, 28]. In Table 2 this strategy is rep-
resented by SQ-enr-100,3. Enrollment and net revenue in-
crease 32% and 29% over actual figures, respectively. These
results appear attractive if considered in isolation. How-
ever, this return comes at the expense of a 48% increase in
the total financial aid budget as well as a $3320 increase
in the average amount of unmet need carried by matric-
ulates, indicating attending the University has been made
less affordable on average. This increase in expected aver-
age unmet need is particularly interesting when compared
with the 189% increase in accessibility. Together afford-
ability and accessibility are student-centric outcomes often
paired in institutional mission statements. However, there
appears to be a trade-off between the two. The extension of
more strategic awards and aid to those students with fewer
means, may increase their likelihood of attending but it will
also raise the average amount of unmet need as the awards
and aid are not enough to offset the total cost.

Optimizing for both enrollment and unmet need is good for
students but bad for the University. Since optimizing for
enrollment alone increases unmet need, we next examine
the impact of optimizing for both simultaneously. SQ-enr-
un-2,0.6,100,3 and SQ-enr-un-2,0.6,100,5 in Table 2 are two
such strategies for this dual optimization specification. In
both strategies the University sees improvements in terms of
enrollment (17 - 22% increase), accessibility (increase 132-
142%), and unmet need (decrease $51 - $403). However,
these improvements are costly the University. To achieve
this, total financial aid funding is anticipated to rise 191-
216%, causing a reduction in net tuition revenue of 25%.
This trade-off between affordability and net revenue neces-
sitates a more nuanced optimization specification.

Optimizing for enrollment, unmet need and revenue results
in reasonable trade-offs. If the University wishes to strike a
balance between institution- and student-centric outcomes,
enrollment, unmet need, and revenue must be simultane-
ously optimized. Seven different strategies for such a spec-
ification are seen in the last two sections of Table 2. From
the University’s perspective, each of these strategies results
in modest increases in enrollment (2% - 11.8%) and has a
negligible to modest impact on expected net revenue (-4.8%
-16.6%). Further, each requires significantly less investment
in total funding as compared to optimizing for enrollment
or enrollment/affordability and, in some cases, could result
in cost savings. From the student perspective there is still a
marked gain in accessibility of over 100% in all of the strate-
gies. Unmet need, as a measure of affordability, on average
still experiences an increase over the actual amount under
all but one strategy, but the amount of the increase in unmet
need is always below $3000, which is a great improvement



Table 4: Effects of allocation strategies on the distribution of
merit-based awards and need-based aid

Total
Awards Aid Funding
Strategy (%) (%) (%)

SQ-enr-un-2,0.6,100,5 160.0 779.0 216.0
SQ-enr-un-2,0.6,100,3 147.0  624.0 191.0
SQ-enr-100,3 54.0 1079.0 48.0
SQ-enr-un-rev-1,0.6,2,100,5 19.6 133.2 29.9
SQ-enr-un-rev-1,0.5,2,100,5 -5.6  441.8 34.9
SQ-enr-un-rev-1,0.6,2,100,3 -0.1 256.4 23.2
SQ-enr-un-rev-1,0.6,2,100,4 -1.2 226.9 19.5
SQ-enr-un-rev-1,0.6,2,100,2 -15.8 328.8 15.5
SQ-enr-un-rev-1,0.6,2,100,1 -57.4  304.9 -24.5
SQ-enr-un-rev-1,0.5,2,100,1 -56.2  253.8 -28.1

over optimizing for enrollment alone.

Few moderate strategic changes can increase accessibility sig-
nificantly. After we identify a viable strategy, we can narrow
it down to a specific solution that maybe adoptable by the
University. Adopting a bold strategy that is recommended
by an algorithm can be risky. A few reasons that threaten
the validity of such a strategy include (1) flawed assumptions
made by the model, (2) insufficient amounts of data, and (3)
external forces that influence enrollment decisions that are
not captured by the data, particularly in a pandemic year.
These and other reasons make it hard for administrators to
adopt bold strategies even if they might predict large in-
creases in expected outcomes. At times, risk-averse admin-
istrators may prefer solutions that make moderate changes,
but can move the needle in some significant way.

In addressing this, we identified a viable solution, which
came from a random run of the SQ-enr-un-rev-1,0.6,2,100,4
strategy, which optimized for enrollment, affordability and
revenue. Table 3 shows the expected outcomes as a result
of adopting this solution.

If this solution is adopted, we expect that accessibility can
increase more than 100% from baseline, while keeping en-
rollment, revenue, and most other relevant outcomes nearly
identical as the status quo. For this big expected increase in
accessibility to happen, the solution calls for an increase of
6.5% in financial aid funding, and a redistribution of merit-
based awards (decreasing 2.2%) to need-based aid (increas-
ing 93.4%).

How allocation strategies affect the redistribution of institu-
tion funds. As we assess strategies, we find that different lev-
els of aggressiveness in financial aid spending are demanded.
Table 4 illustrates this point by taking each strategy from
Table 2 and presenting the percent change in expected spend
on merit-based awards, need-based aid, and the total finan-
cial aid. As we move down through the table, the level of
the impact on total financial aid generally decreases.

Table 5: Performance and runtime from optimizing enroll-
ment of stochastic hill climbing (SHC) and simulated quench-

ing (SQ)

Runtime Enrollment

Strategy (sec) (%)
SHC-enr-100 8.6 314
SQ-enr-100,1 16.9 31.9
SQ-enr-100,2 24.4 32.1
SQ-enr-100,3 34.1 32.2
SQ-enr-100,4 438 32.0
SQ-enr-100,5 50.0 32.3

We find that optimizing for both enrollment and unmet need
(SQ-enr-un-2,0.6,100,5 and SQ-enr-un-2,0.6,100,3) is a very
aggressive approach as the optimization seeks to enroll as
many students as possible with the smallest amount of un-
met need. This leads to increases in both the expected merit
and need spend with an overall budget increase of approxi-
mately 200%. A less aggressive strategy is the optimization
of enrollment alone (SQ-enr-100,3). This strategy seeks en-
rollment by focusing on expanding need-based aid by 1079%
and merit-based awards by only 54%. Since the amount of
need-based aid was lower to start with this only results in a
48% increase in the total budget.

It is only when revenue is added to the optimization’s ob-
jective with enrollment and unmet need that we reach more
moderate budget increases and, eventually, cost savings. These
strategies recommend a reduction in merit-based awards and
a redistribution of funds to need-based aid.

Comparing simulated quenching and stochastic hill climb-
ing. To contrast the runtime and performance of the two
methods, we set both to have 100 iterations. For simulated
quenching, temperature is decreased in each iteration, and in
each iteration, the temperature is kept constant for another
m steps. Thus, in addition to an overhead for estimating
the initial temperature, the runtime of simulated quenching
should be approximately m times slower than hill climbing.
This can be observed in Table 5 for m = 1,2,3,4,5. Simi-
larly, in terms of runtime, simulated quenching is slower than
hill climbing by a constant that is directly proportional to
m, when both methods were used to optimize for enrollment
and affordability (Table 6) and, respectively, for enrollment,
affordability, and revenue (Table 7). These tables show the
average performance and runtime of the two methods over
10 random runs.

When optimized for enrollment (Table 5), simulated quench-
ing has a higher increase (from 31.9% to 32.3%) than stochas-
tic hill climbing (31.4%). Further, this increase grows with
higher values of m (from 1 to 11). When optimized for
enrollment and affordability (Table 6), performance also in-
creases with higher values of m (from 1 to 11). However, the
increase in performance seems to be on affordability than on
enrollment. When optimized for enrollment, affordability,
and revenue (Table 7), affordability increases, while enroll-
ment and revenue decrease with higher values of m.



Table 6: Performance and runtime from optimizing enrollment and affordability of stochastic hill climbing (SHC) and simulated

quenching (SQ)

Runtime Enrollment Unmet Need
Strategy (sec) (%) (9)

SHC-enr-aff-100 10.2 16.9 -1031.9
SQ-enr-aff-2,0.5,100,1 19.6 26.3 -1193.0
SQ-enr-aff-2,0.5,100,3 39.5 16.7 403.2
SQ-enr-aff-2,0.5,100,5 53.1 21.9 51.4
SQ-enr-aff-2,0.5,100,7 66.4 21.1 205.6
SQ-enr-aff-2,0.5,100,9 84.6 16.1 602.2
SQ-enr-aff-2,0.5,100,11 98.5 18.0 489.6

Table 7: Performance and runtime from optimizing enrollment, affordability and revenue of stochastic hill climbing (SHC) and

simulated quenching (SQ)

Runtime
Strategy (sec)

SHC-enr-aff-rev-100 36.5
SQ-enr-aff-rev-1,0.6,2,100,1 19.3
SQ-enr-aff-rev-1,0.6,2,100,2 121.5
SQ-enr-aff-rev-1,0.6,2,100,3 160.5
SQ-enr-aff-rev-1,0.6,2,100,4 197.6
SQ-enr-aff-rev-1,0.6,2,100,5 227.5

Enrollment Revenue Unmet Need
(%) (%) (%)

11.0 6.4 -1091.8

11.8 6.5 -948.7

8.3 6.9 -825.0

5.7 1.7 -345.7

3.5 -0.2 -135.2

1.8 -4.5 283.2

In our application, keeping the same temperature longer for
simulated quenching (i.e. with large values of m) increases
objective scores, but does not seem to produce solutions with
more meaningful impacts on expected outcomes.

S. DISCUSSIONS AND CONCLUSIONS

We addressed multiple outcomes for each selected strategy.
Two of those outcomes, achievement and ROI, did not see
meaningful changes for the strategies selected. In the case
of achievement, we could not improve it significantly over
the actual outcomes. Perhaps this was due to the fact that
as strategies drive the need-based aid budget upward we
are successfully recruiting students from lower-income back-
grounds who have traditionally scored lower in standardized
tests [5]. Or there could be a limit to our ability to recruit
high achieving students due to the University-constrained
maximum merit-based award amount. For ROI, we could
identify strategies that yielded small amounts of increase.
However, those strategies were not as compelling as those
we chose to include.

In our application, globally optimal solutions may be im-
practical. For example, a strategy that yields a 200% in-
crease in enrollment might be mathematically optimal, but
may not be accommodated easily. One could impose con-
straints. In our experimentation with the local search ap-
proach, however, having constraints on multiple objectives
did not lead to great solutions. It can be very hard for
a local search to navigate the search space from an initial
random solution to get to an optimal solution that satisfies

multiple constraints. Our approach, instead, is to optimize
a relatively constraint-free multi-objective function and be
optimistic that locally optimal solutions are also practical.
Experimenting with different combinations of objectives and
ways to control the optimization, we could find strategies
that accommodate different levels of risk tolerance.

Thus, this approach provides a path for administrators to
weigh risks versus rewards in terms of increasing merit-based
awards and need-based aid to support students while main-
taining an acceptable level of revenue and enrollment. Ta-
ble 2 shows the trade-offs in how spending on financial aid
funding can affect expected enrollment and revenue. In par-
ticular, we were able to identify and recommend a viable
solution that requires moderate changes in the budget and
yet increases accessibility by more than 100% in Table 3.

Our approach can be adapted to solve other problems that
share the same types of interactions between a classifier and
an optimizer. In such problems, the classifier expects a set
of features that keep evolving based on an external strategy,
and the optimizer evaluates expected outcomes predicted by
the classifier to recommend a better strategy. For optimiza-
tion, we employ local search, which is flexible and easily
adaptable to different types of problems. For classification,
although we employ gradient boosting, any method that is
readily available from popular tool kits such as scikit-learn
[24] can be used as long as it can make dependable predic-
tions for the problem of interest.
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