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ABSTRACT
Providing timely feedback is crucial in promoting academic
achievement and student success. However, for multifarious
reasons (e.g., limited teaching resources), feedback often ar-
rives too late for learners to act on the feedback and improve
learning. Thus, automated feedback systems have emerged
to tackle educational tasks in various domains, including
novice programming, short-essay writing, and open-ended
questions. However, to the best of our knowledge, no previ-
ous study has investigated automated feedback generation
on students’ project reports. In this paper, we present a
novel data-driven system, named Insta-Reviewer, for auto-
matically generating instant feedback on students’ project
reports, using state-of-the-art natural language processing
(NLP) models. We also propose a framework for manually
evaluating system-generated feedback. Experimental results
show that feedback generated by Insta-Reviewer on real stu-
dents’ project reports can achieve near-human performance.
Our work demonstrates the feasibility of automatic feedback
generation for students’ project reports while highlighting
several prominent challenges for future research.
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1. INTRODUCTION
Feedback plays a vital role in the student learning process,
as it can help students reinforce or correct their understand-
ing of knowledge and content by giving them clear guidance
on how to improve their learning [1, 19, 22, 39]. Further-
more, instant feedback is usually more effective than delayed
feedback, presumably because timely feedback is more likely
to motivate students to stay on task and encourage them to
achieve learning goals [21, 51, 14]. However, owing to vari-
ous constraints (e.g., staff availability), feedback often comes
too late for students to enact the advice and benefit their
learning [48, 38, 32, 22]. Students reported in a prior study

that delayed feedback is perceived as irrelevant because it
has been so long that they have forgotten about the con-
tent, which discourages them from following the feedback
[38]. Thus, tardy feedback can unintentionally position stu-
dents as passive recipients of feedback information and limit
their engagement with feedback and learning [8, 38].

One way of bringing about the much-needed immediacy is
by way of automatic generation of instant feedback on stu-
dents’ work. Thanks to recent technological advancements,
a variety of automatic feedback systems have emerged to
tackle educational tasks in various domains, including novice
programming [31, 56], short-essay writing [49, 5], and open-
ended short answers [28, 3]. For instance, Malik and Wu pro-
posed generative models for providing feedback on short an-
swers and different types of programming assignments [28].
Marwan et al. designed a hybrid method to deliver instant
feedback for block-based programming [31]. In addition to
this, many other impressive studies focus on educational
tasks that demand instant feedback to facilitate students’
learning and show promising results across modalities and
domains (e.g., [27, 36, 47, 2, 29]). It can be argued that au-
tomatic feedback systems will be integral parts of the future
AI-powered educational ecosystem [41].

However, to the best of our knowledge, no attempt has been
made to evaluate the feasibility of automatic feedback gen-
eration on students’ project reports. It is well-known that
course projects are an essential part of many university cur-
ricula, especially STEM courses [4, 17]. These projects can
help students reinforce their theoretical knowledge and de-
velop a host of skills that are increasingly important in the
professional world [30, 17]. However, delivering immediate
feedback on project reports is often infeasible for instructors.
We summarize the reasons why such an automated feedback
system for students’ project reports is significant as follows:

1. Despite the fact that course projects have many pos-
itive educational impacts on students, the burden of
providing timely feedback may prevent instructors from
offering sufficient course projects. In this case, an au-
tomated feedback system can encourage instructors to
provide more project work in classes.

2. Many instructors can merely provide summative feed-
back for a final project at the end of a semester, which
does not give students an opportunity to implement
the advice. However, if an automated feedback system
is available to provide formative feedback, students will
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have guidance on how to revise their work and reinforce
their learning without adding workload to instructors.

3. An automated feedback system can help promote ed-
ucational equity and diversity by giving students the
benefit of quality feedback on projects in an institution
that has high teaching loads and limited or nonexistent
teaching assistant support, or even in a MOOC.

In this paper, we present a data-driven system, named Insta-
Reviewer, for generating instant textual feedback on stu-
dents’ project reports. Insta-Reviewer utilizes a select-then-
generate paradigm consisting of two main steps: 1) the
paradigm first uses an unsupervised method, called cross-
entropy extraction, to summarize original reports to lengths
acceptable for input into our text generation model used in
the second step, and then 2) employs a supervised text-to-
text generation model called BART to generate plausible
and readable textual feedback for the corresponding report.
In order to explore the quality of generated feedback, we
employ a comprehensive set of evaluation metrics, includ-
ing a content-overlap metric ROUGE, a model-based metric
BERTScore, and a new human-centered evaluation metric.

To investigate the potential promise of our system, we design
experiments to answer the following research questions:
RQ1: How effective is the proposed approach for generating
feedback on students’ project reports?
RQ2: What are the problems of system-generated reviews?
What are they not good at?
RQ3: How does the system perform compared with other
potential methods?
RQ4: How does the automated feedback system perform in
different small-data settings?
RQ5: Does the Insta-Reviewer automated feedback system
raise any ethical concerns?

Our results show that feedback generated by Insta-Reviewer
on real students’ project reports can achieve near-human
performance, while it may include some non-factual or am-
biguous statements in generated feedback. Our work demon-
strates the feasibility of automated instant-feedback genera-
tion on students’ project reports. Experimental results also
highlight several major challenges for future research.

Our main contributions are: 1) we present an effective data-
driven approach for generating feedback on students’ project
reports; 2) we collect a new dataset of students’ reports and
expert reviews to facilitate future research endeavors; 3) we
propose a new framework for manually evaluating generated
feedback; 4) we evaluate the effectiveness of our approach in
different small-data settings to help others who intend to
apply the approach to their datasets; 5) we highlight several
prominent challenges for future research.

The remainder of the paper is organized as follows: Section
2 presents related work. Section 3 describes the dataset used
for this study. Section 4 elaborates our methodology for au-
tomatically generating feedback for students’ project reports
and explains the new human-evaluation metric. Section 5
presents and discusses our experimental results. Section 6
concludes the paper, mentions the limitations of our work
and provides some discussion about future research.

2. LITERATURE REVIEW
In the following, we first review prior studies on automated
feedback systems. Then we survey potential metrics for eval-
uating system-generated feedback. Finally, we review previ-
ous work related to ethical concerns in feedback generation.

2.1 Automated Feedback Systems
In the field of education, feedback is defined as information
provided by an agent (e.g., teacher, peer) about a learner’s
performance or understanding, and it is one of the most sig-
nificant influences on student learning and achievement [19].
Previous research has been devoted to designing a variety of
automated feedback systems that provide feedback on vari-
ous forms of student work, such as short-answer questions,
essays, and programming problems. Although these efforts
were not intended to provide feedback on student project re-
ports, we reviewed these studies to gain some insight. The
feedback-generation models (i.e., the feedback engines) used
in previous studies on automated feedback systems for stu-
dent work can be broadly categorized into two groups:

Expert-driven methods: Expert-driven methods (also called
rule-based methods) use a set of expert-designed rules to
provide feedback. For instance, Narciss et al. [34] presented
an intelligent tutoring system for students learning math-
ematics. The system uses a set of pre-defined rules pro-
vided by domain experts to deliver feedback for students’
answers to numerical or multiple-choice questions. Nagata
et al. [33] introduced an approach for leveraging the expert-
driven method to diagnose preposition errors and produce
feedback for learners’ English writing. While expert-driven
methods are typically accurate and not data-hungry, they
are not suitable for dealing with complex open-ended prob-
lems (e.g., generating feedback for students’ project reports)
because creating and maintaining a vast set of expert-design
rules for such open-ended problems is nearly impossible. Ad-
ditionally, these methods usually produce feedback that is
limited to fixed expressions without dynamic explanations.

Data-driven methods: Recent technological advances in ar-
tificial intelligence have enabled the development of var-
ious data-driven automated feedback systems to produce
feedback for more complex open-ended tasks. Data-driven
methods generate feedback by learning the mappings (i.e.,
patterns) from student work to expert feedback by means
of machine-learning or deep-learning algorithms [10]. For
example, Lu and Cutumisu [27] implemented several deep-
learning models, including CNN, CNN+LSTM, and CNN+Bi-
LSTM, for generating textual feedback on students’ essays.
However, traditional deep-learning models usually fail to
capture long-span dependencies in long documents and rely
on large amounts of training data. More recent work has be-
gun to use large-scale pre-trained language models, such as
BERT [11], BART [23], and GPT-2 [40], for generating feed-
back on open-ended student work. These language models
use the attention mechanism [45] to learn long-span depen-
dencies and are pre-trained on large generic corpora in an
unsupervised manner to reduce the need for labeled data.
For instance, Olney [35] attempted to generate elaborated
feedback for student responses using the ELI5 model and
achieved promising results. In this paper, we also use such a
pre-trained language model to exploit its ability to capture
long-span dependencies in student reports.



2.2 Evaluation of Feedback Generation
Effective metrics for evaluating generated feedback are es-
sential since we use them to compare different approaches
and quantify the progress made on this research problem.
However, unlike other tasks (e.g., text classification), ac-
curately evaluating system-generated feedback (and many
other natural language generation problems) is in itself a
huge challenge, mainly because generating feedback is a highly
open-ended task. For instance, an automated feedback sys-
tem can generate multiple plausible reviews for the same
student report, but all these reviews can be vastly different.

All existing evaluation methods for natural language gener-
ation tasks can be grouped into three categories: 1) content-
overlap metrics, 2) model-based metrics, and 3) human-
centered evaluation metrics. Content-overlap metrics and
model-based metrics automatically evaluate a text-generation
system by measuring the similarity between generated texts
and reference texts provided by domain experts. Human-
centered evaluation asks people to assess the quality of system-
generated texts against set task-specific criteria [9].

It is worth noting that the ultimate goal of our Insta-Reviewer
automated feedback system is to generate feedback that is
valuable to students instead of generating the exact same
feedback as provided by instructors. For this reason, human-
authored evaluation should be viewed as the gold standard
when evaluating generated feedback. However, human eval-
uations are inconsistent and subjective, which can lead to er-
roneous conclusions or prevent researchers from comparing
results across systems [9]. Thus, we also employ a content-
overlap metric and a model-based metric to validate our
human-evaluation results. In the following paragraphs, we
survey potential metrics that can be applied to our task.

Content-overlap metrics: Content-overlap metrics refer to a
set of metrics that evaluate the quality of generation by com-
paring generated texts with reference texts (e.g., ground-
truth feedback provided by instructors) based on the content
overlap, such as n-gram match. Despite the fact that this set
of metrics has many limitations (e.g., they do not take syn-
onyms into account), text-generation research usually uses
metrics from this set for benchmark analysis with models
since they are objective and fast to calculate. Two of the
most commonly used content-overlap metrics for evaluating
generated text are BLEU [37] and ROUGE [25].

BLEU (the Bilingual Evaluation Understudy) is a precision-
based content-overlap metric proposed by Papineni et al.
[37] in 2002. The precision-based metric means that we
compare the two texts by counting the number of words or
n-grams in the generated text that occur in the human ref-
erence and dividing the count by the length of the reference
text. Compared to ROUGE, BLEU focuses on precision and
is suitable for tasks that favor high precision. However, re-
call is also essential for our task since we expect more words
from the expert feedback to appear in the system-generated
feedback. On the other hand, both recall and precision can
be taken into account for the ROUGE metric [7].

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) is the other most commonly used content-overlap met-
ric introduced by Lin [25] in 2004. The original ROUGE

score is basically a recall-based version of BLEU. That is,
for ROUGE, we check how many words or n-grams in the
reference text appear in the generated text. Nevertheless,
entirely removing precision can have substantial adverse ef-
fects (e.g., a system may generate extremely long text strings
to capture all words in the reference text). In recent years,
ROUGE has commonly referred to ROUGE-F1 that com-
bines both precision and recall ROUGE scores in the har-
monic mean. We report ROUGE-F1 scores in results since
both recall and precision are vital for our system.

Model-based metrics: Model-based metrics use learned rep-
resentations of words and sentences to compute semantic
similarity between generated and reference texts. Model-
based metrics are generally more correlated with human
judgment than content-overlap metrics, but their behavior
is not interpretable [9]. Given the excellent performance of
BERT [11] across many tasks, recent work on model-based
metrics commonly uses pre-trained contextual embeddings
from BERT or similar pre-trained language models for eval-
uating the semantic equivalence between the texts [55, 53,
43]. One of the most widely used metrics is BERTScore [55].

BERTScore is a model-based metric proposed by Zhang et
al. in 2020 and has been shown to correlate well with hu-
man judgments for many text-generation tasks. BERTScore
leverages the pre-trained embedding from BERT and matches
words in generated and reference sentences by cosine simi-
larity. Moreover, BERTScore considers both precision and
recall and combines them to compute an F1 measure, which
is appropriate for evaluating generated feedback in our task.
Thus, we employ BERTScore to measure semantic similarity
between expert feedback and generated feedback.

Human-centered evaluation: Human-centered evaluation asks
human evaluators to judge the quality of generated text
along some specific dimensions (e.g., readability). Caligiuri
and Thomas [6] found that a positive tone and suggestions
for improvement are key features of good reviews. Jia et
al. [20] mentioned that providing suggestions, mentioning
problems, and using a positive tone, are main characteris-
tics of effective feedback. Celikeyilmaz et al. [9] pointed
out that fluency and factuality are essential for evaluating
system-generated text. In this paper, we manually evaluate
generated feedback in five dimensions: Readability, Sugges-
tions, Problems, Positive Tone, and Factuality. The details
of these evaluation dimensions are described in Section 4.5.3.

2.3 Ethical Concerns in Feedback Generation
To date, ethical issues in feedback generation have received
scant attention in the research literature. Celikyilmaz et
al. [9] pointed out that a potential ethical issue that may
appear in text-generation tasks is the problem of generating
improper or offensive language. Li et al. [24] also mentioned
that using pre-trained language models for text-generation
tasks may raise ethical issues, such as generating private con-
tent, because corpora used for pre-training are pulled from
the web without carefully filtering. However, there is still a
lack of systematic methods for evaluating how effectively a
system can avoid generating inappropriate text. For these
reasons and others, this work considers the ethical implica-
tions of an automated feedback system on student project
reports by manually inspecting all generated feedback.



Table 1: Sample Human Reference Reviews

Very good writeup, as far as it goes. Good discussion of test cases and reasons for refactoring. It would have helped to see
some code snippets. Good section on Future Refactoring Opportunities.

A very good description of changes, and appropriate code snippets are shown. Manual testing is shown with annotated
screenshots, which are very useful. In a Rspec test, sending emails to an actual person’s address is not a good practice.

The wiki page covers all necessary items, but the “test plan” part can be more elaborated. And the last screenshot is
useless. It will be better to show the DB records, instead of table structure.

Table 2: Statistics on the Dataset. We measure the percentage of reports that contain more than 1024 tokens since it is the
maximum input length limit of the BART model, and we utilize BART to craft the generation function in our system.

# of data samples = 484 Average
Percentile

Maximum Over 1024 tokens
5th 25th 50th 75th 95th

Reports
# of words 1193 405 734 1060 1499 2374 6512
# of subword tokens 1643 583 1040 1489 2025 3272 8422 76 %

Summarized Reports
# of words 704 395 649 742 803 865 908
# of subword tokens 951 580 1004 1021 1023 1024 1024 0 %

Reference Reviews
# of words 55 13 33 48 72 114 258
# of subword tokens 71 19 43 61 90 147 335 -

3. DATA
In this section, we introduce a new dataset collected for this
study. Firstly, we describe the data source in Section 3.1.
Then, we explain in Section 3.2 how participants’ privacy
rights were respected during the data collection process. Fi-
nally, we present statistics on the dataset in Section 3.3.

3.1 Data Source
The data used in this study are collected from a graduate-
level object-oriented development course at a public univer-
sity in the United States. For a course assignment, two
to four students form a group and work together on some
course project, bid on topics from a list of potential projects
provided by course instructors. The dataset includes group
projects where students refactor code from an open-source
project Expertiza, add new features to it, or write auto-
mated tests for a software module that needs them.

As a part of project deliverables, each team is required to
submit a group report to document the work that has been
completed, methodologies that they have utilized, and other
project-related material (e.g., how they test their code).
Such group reports are also called wiki pages since they are
added to the wiki document maintained by the open-source
project Expertiza. The instructor reviews each of these wiki
pages (i.e., each group report) and provides textual feedback
on each of them. To better understand our data, URLs to
three anonymous and de-identified reports are provided in
footnotes123. Three randomly sampled4 instructor reviews
from our dataset are displayed in Table 1.

1Sample report 1: https://anonymous.4open.science/r/
EDM22-BF52/Student%20Report%201.pdf
2Sample report 2: https://anonymous.4open.science/r/
EDM22-BF52/Student%20Report%202.pdf
3Sample report 3: https://anonymous.4open.science/r/
EDM22-BF52/Student%20Report%203.pdf
4According to our IRB protocol, in order to protect partic-
ipants’ privacy rights, we do not display instructor reviews
for the sample group reports.

3.2 Privacy protection
In this work, we take our responsibility to protect the pri-
vacy of students’ data very seriously. The use of the dataset
has been approved by the IRB at our institution. Sensitive
student data was de-identified and handled in a way that
is FERPA compliant. More specifically, our data protection
and de-identification procedure consist of four main steps:
1) we took our data from an anonymized database, which
uses random identifiers for students and groups; 2) we uti-
lized regular-expression techniques to automatically remove
all names from reports; 3) we manually inspected and re-
moved remaining sensitive data, such as links to documents
that might identify individual authors; 4) we stored data
securely on a cloud drive managed by the university.

3.3 Statistics on the Dataset
We collected de-identified students’ project reports and asso-
ciated textual feedback provided by instructors from twelve
semesters between Spring 2015 and Spring 2021. This gave
us a set of 484 group projects. Table 2 summarizes statistics
from the dataset. Note that since the pre-trained language
model BART (detailed in Section 4) has a maximum input
length limit of 1024 tokens5, we employ an unsupervised
method to summarize original reports to lengths acceptable
for input into the pre-trained BART. Statistics on these sum-
marized reports are provided in the third row of the table.

We measured the average number of words and tokens for re-
ports, summarized reports, and expert reviews in our dataset.
The average number of words for each original report is 1193,
which corresponds to 1643 subword tokens. We found that
75.8% of the reports comprise more than 1024 tokens. The
average number of words in each summarized report is 704
(equivalent to 951 subword tokens). For expert reviews, the
average number of words and the average number of tokens
per instructor review are 55 and 71, respectively.

5A token is an instance of a sequence of characters that are
grouped together as a useful semantic unit for processing.
It is similar to, but not identical with, morpheme.

https://anonymous.4open.science/r/EDM22-BF52/Student%20Report%201.pdf
https://anonymous.4open.science/r/EDM22-BF52/Student%20Report%201.pdf
https://anonymous.4open.science/r/EDM22-BF52/Student%20Report%202.pdf
https://anonymous.4open.science/r/EDM22-BF52/Student%20Report%202.pdf
https://anonymous.4open.science/r/EDM22-BF52/Student%20Report%203.pdf
https://anonymous.4open.science/r/EDM22-BF52/Student%20Report%203.pdf


Figure 1: Operation of our Insta-Reviewer System. The system uses a select-then-generate paradigm [44, 18, 52]. The first
step is to extract salient sentences (within the length limit) from students’ project reports. The second step is to utilize a
supervised NLP model to generate feedback for students’ reports. Details of the system are described throughout Section 4.

4. METHODOLOGY
In this section, we detail our data-driven approach for auto-
matically generating feedback on students’ project reports.
We first formally define our task in Section 4.1. Then, we
present the overall design of our feedback-generation sys-
tem in Section 4.2. After that, Section 4.3-4.4 elaborates all
components of the system. A set of metrics for evaluating
generated textual feedback is given in Section 4.5. Finally,
in Section 4.6, some ablation experiments are proposed to
understand the contribution of each component.

4.1 Problem Formulation
We formulate the task of automatic feedback generation for
students’ project reports as a text-to-text generation prob-
lem, where the source text is a long project report and the
target text is a review. Our dataset can be represented as

D = (Xi, Y i)
N=484

i=1 , where Xi = ⟨xi
1, ..., x

i
j , ..., x

i
n⟩ denotes a

sequence of input tokens representing an instance of report,
and Y i = ⟨yi

1, ..., y
i
k, ..., y

i
m⟩ denotes a sequence of output to-

kens representing the corresponding textual feedback. Each
token xi

j or yi
k is drawn from a token vocabulary V.

Then, the problem can be formally described as:

Y = FM(X,C) (1)

where the model, or generation function, FM takes a se-
quence of tokens X (i.e., a project report) as the input, and
produces a sequence of tokens Y (i.e., generated feedback
for the project report) as the output, while satisfying a set
of constraints C, which is a collection of desired properties
(e.g., fluency, coherence, and length) for the output text.

The objective of the task is to effectively model the genera-
tion function FM in a data-driven manner using the dataset,
so that it can generate plausible and readable feedback for
unseen reports. In this work, the generation function FM is
crafted based on a pre-trained language model (PLM) called
BART (detailed in Section 4.4), which has been demon-
strated to be the state-of-the-art method to model the gener-
ation function for various text-to-text generation tasks [23].

4.2 System Design
Despite the fact that the pre-trained language model BART
is an effective method to model the generation function FM,
it has an input length limit of 1024 tokens6 [23]. Never-
theless, group reports are usually longer than that. In our
dataset, 75.8% of the reports contain more than 1024 to-
kens, and the longest report is approximately eight times
longer than that limit. One simple fix is to truncate the
report by discarding all tokens beyond the length limit, but
this can cause loss of critical information from the inputs
(this hypothesis is verified in Section 4.6.1). Thus, we adopt
a select-then-generate method [18, 44, 52] to generate feed-
back on student project reports, as illustrated in Figure 1.

Overall, the select-then-generate paradigm decomposes the
problem into two sequential subproblems to resolve the issue
of overlength input documents: 1) an unsupervised sentence-
level extractive summarization task, and 2) a supervised
PLM-based text-to-text generation task. More formally, the
problem description becomes,

Y = FM(SE(X),C) (2)

where the input to the generation function FM becomes
SE(X), which represents a summarized report. The new
function SE represents an extractive summarizer, which can
effectively extract salient sentences from an original report
X and produce a summarized version of the report as the
input to the feedback-generation function FM.

Thus, our automated feedback-generation system comprises
two stages. In the first stage, we use an unsupervised method,
called cross-entropy extraction, to summarize original re-
ports to lengths acceptable for input into the PLM BART
(i.e., the implementation of the generation function FM).
In the second stage, we train the PLM BART on the sum-
marized reports SE(X) and reference reviews Y . In the fol-
lowing sections (Section 4.3-4.4), we detail each stage of our
feedback-generation system Insta-Reviewer.

6The length is limited to 1024 since the BART authors [23]
chose this number and pre-trained the model with this limit.



4.3 Step 1: Cross-Entropy Extraction
The goal of the first step is to summarize original over-
length reports to lengths acceptable for input into the pre-
trained language model (PLM) BART that will be used
in the second step, while retaining as diverse a subset of
content as possible. We adopt an unsupervised extractive-
summarization method, called cross-entropy extraction [15].

The cross-entropy method is an unsupervised technique that
treats sentence-level extractive summarization as a combi-
natorial optimization problem [42]. More formally, we can
let SD denote the set of all sentences in the report we are
trying to summarize. From this set we want to extract a
subset of sentences S ⊂ SD that maximizes some quality
target function Q(S). This quality target function can be
comprised of whatever features and measures deemed ap-
plicable to the task at hand. In our case, we used only a
single feature in our quality function, namely the diversity
of vocabulary in the summary. The reasoning behind this
is that sentences with a more diverse vocabulary will also
cover a more diverse set of information from the text. To
measure this diversity explicitly, we calculate the unigram
LM entropy of the summary S, as shown below,

Q(S) = −
∑
w∈S

pS(w) log pS(w) (3)

pS(w) =
Count(w)

Len(S)
(4)

Note that in the above equations w represents a single word
in the summary S. Additionally, the function Count(w)
measures the frequency of the word w in summary S and
Len(S) is the total number of words in the summary. Ad-
ditionally, to encourage the method to prefer summaries as
close to the length constraint as possible, we added an ad-
ditional term to this quality function that is proportional to
the number of tokens in S, denoted Tokens(S), the intu-
ition behind this being that the BART model will perform
better in most cases when it has more text to work with.
The final quality function with this added length term is
shown below, where β, our proportionality constant, is a
hyper-parameter of the model.

Q(S) = β ·Tokens(S)−
∑
w∈S

pS(w) log pS(w) (5)

In order to enforce the length constraint on our summaries,
we simply assign Q(S) = −∞ whenever S has a length of
greater than 1024 BART tokens. The actual output of the
cross-entropy method is a vector p = ⟨p1, p2, . . . , pn⟩ indi-
cating the probability of selection in the summary for each
of the n sentences in the original document. Initially, these
probabilities start out the same for each sentence, but they
quickly convert to either 0, for sentences that result in low
Q values, or to 1, for sentences that result in high Q values.
Below are the steps of the algorithm we used for carrying
out this cross-entropy extraction procedure.

1. Preprocessing Text: For each student project report,
we split it into its n sentences, enumerating each ac-
cording to their order in the report. We then tokenize
each sentence into word tokens, being sure to remove
all stop words, punctuation, etc., when doing so.

2. Initialize p: Initially we want each sentence to be equally
likely to be chosen, so set p0 = ⟨1/2, 1/2, . . . , 1/2⟩. If
n > 60 then we reduce this probability to ensure a
sufficient sample of summaries that meet our length
constraint. Then we set t = 0.

3. Sample Summaries: We sample N Bernoulli vectors,
X1, X2, . . ., XN according to the probability vector
pt−1. The sentences selected from each of these vectors
define our N sample summaries S1, S2, . . ., SN . Set t
= t+1.

4. Quality Scores: For each of the summaries Si, we cal-
culate its quality performance score according to the
above equations. We determine the cutoff value of the
elite sample, γt, which is the Q value of the (1 − ρ)
sample quantile.

γt = Q(S)⌈(1−ρ)N⌉ (6)

5. Update p: We use the sample values to update our
probabilities, storing them as p̂t, according to the up-
date rule below:

p̂t,j =

∑N
j=1 δ[Q(Sj)≥γt]δ[Xi,j=1]∑N

j=1 δ[Q(Sj)≥γt]

(7)

where δ[c] is the Kronecker-delta function which eval-
uates to 1 if the condition c is satisfied, otherwise 0.

6. Smooth p: To balance exploration and exploitation of
the summary samples, we smooth pt like so:

pt = αp̂t + (1− α)pt−1 (8)

7. Termination: If the value of γt has not changed in 3
iterations then the process terminates, returning the
current pt. Otherwise, it returns to step 3 and repeats.

In our implementation of the above algorithm, we found
the following parameter settings to be optimal: N = 1000,
ρ = .05, α = .7. To get our final truncated summary text,
we simply sample one more Bernoulli vector, X, using the
final sentence extraction probabilities p. After doing so, we
check that the resulting summary defined by the sentences
in X meets our length constraint. If it does not, then we
would sample a new Bernoulli vector X until we found a
summary that did (though this was never necessary).

4.4 Step 2: PLM-based Generation Model
We now describe the second step of the approach. The ob-
jective of the second step is to effectively craft the feedback-
generation function FM in Equation 2. We first introduce
the BART model used for crafting FM, then we describe the
beam-search method for improving the performance.

4.4.1 Modeling the Generation Function with BART
In this work, we employ a state-of-the-art PLM BART [23],
which stands for bidirectional and auto-regressive transform-
ers, to model the generation function FM. The BART model
is suitable for text-to-text generation tasks since it utilizes
an encoder-decoder architecture (as illustrated in Figure 2),
which can effectively model complex mappings (i.e., the un-
derlying patterns) from one sequence of text (e.g., summa-
rized reports) to another (e.g., feedback).



Figure 2: Illustration of an encoder-decoder architecture.
The encoder can convert an input sequence of text (e.g., a
summarized report) into a rich numerical representation, and
then the decoder generates the output sequence (e.g., feed-
back) by iteratively predicting the most probable next word.

The BART framework consists of two steps: pre-training
and fine-tuning. Instead of training the model from scratch
on our dataset, the BART model is first pre-trained on a
large generic corpus over different pre-training tasks, and
then all parameters of the model are fine-tuned on our data.
The model can acquire a sophisticated “understanding” of
human grammar through the pre-training process, thus sig-
nificantly reducing the need for annotated data when train-
ing the feedback-generation model while improving conver-
gence rate and generalization [13]. In this work, we use the
pre-trained checkpoint“facebook/bart-large-cnn7”to initial-
ize all parameters of the model and then fine-tune the model
on a training set drawn from our dataset D.

4.4.2 Diverse beam search for decoding
After fine-tuning the BART model on our data, we use the
diverse beam search (DBS) [46] algorithm to decode the out-
put sequences in inference time to generate better feedback.
In the original BART model setting, feedback is generated
by iteratively selecting the word with the highest probabil-
ity at each position in the sequence, which is referred to as
greedy decoding. Greedily choosing the word with the high-
est probability at each step might be optimal at the current
spot in the sequence, but as we move through the rest of the
full sentence, it might turn out to be a non-optimal choice
(output can be ungrammatical, unnatural, and nonsensical)
since the greedy decoding algorithm lacks backtracking.

On the other hand, the DBS algorithm keeps track of the
top-n most probable next words, where n is the number of
beams. The next set of beams is chosen by considering all
possible next-word extensions of the existing set and select-
ing the n most likely extensions. Additionally, in order to
improve the diversity in the outputs, all beams are divided
into groups, and diversity between the groups is enforced by
the DBS algorithm. In our experiments, we set beam size
to 4 and the number of groups to 2 since this combination
yields the best results. DBS is applied to all models in this
work, including the BigBirdPegasus model (Section 4.6.2).

4.5 Evaluation Metrics
7https://huggingface.co/facebook/bart-large-cnn

We evaluate generated feedback with a comprehensive set
of metrics, including a content-overlap metric ROUGE, a
model-based metric BERTScore, and a new human-evaluation
metric. As previously mentioned, the ultimate goal of Insta-
Reviewer is to generate feedback that is helpful to students
instead of generating the same feedback as provided by in-
structors. To this end, human-centered evaluation is con-
sidered the gold standard. ROUGE and BERTScore are
employed to validate our human-evaluation results since hu-
man evaluations may be inconsistent and subjective, which
can lead to erroneous conclusions [9]. The intuition is that
while instructor feedback may only focus on certain aspects
and be imperfect, it is valuable to know how similar the gen-
erated feedback is to the feedback provided by instructors.
The implementations of the metrics are described below.

4.5.1 Content-overlap Metric: ROUGE
We use the standard ROUGE metric to measure content
overlap between generated feedback and expert feedback.
Specifically, we report the F1 scores for ROUGE-1, ROUGE-
2, and ROUGE-Lsum, respectively measuring the word-overlap,
bigram-overlap, and longest common sequence between the
texts. We obtain our ROUGE scores using the Google rouge
package8 [25, 16]. Porter stemming is enabled to remove
plurals and word suffixes (e.g., “ing”, “ion”, “ment”).

4.5.2 Model-based Metric: BERTScore
The BERTScore metric is leveraged to assess the seman-
tic equivalence between generated feedback and expert feed-
back. We report the F1 measure of BERTScore that com-
bines both precision and recall, which is proper for eval-
uating generated feedback in our task. We calculate the
BERTScore utilizing the official BERTScore script9 [55].

4.5.3 Human Evaluation
After reviewing relevant papers (e.g., [6, 20, 50, 57]) and
discussions among the authors of this paper, we selected
the following five dimensions to evaluate the feedback man-
ually: Readability, Suggestions, Problems, Positive Tone,
and Factuality. Our scores for these five manual-evaluation
dimensions are calculated as follows:

(i) Readability (READ): In this work, readability is de-
fined as the quality of feedback in grammar, word
choice, and coherence. We judge it using a five-point
rating scale: 0. Incomprehensible 1. Not fluent and in-
coherent 2. Somewhat fluent but incoherent 3. Fluent
but somewhat incoherent 4. Fluent and coherent.

(ii) Suggestions (SUGG): Providing suggestions is a key
feature of quality feedback that is valuable to students.
We give a score of 1 if the feedback contains at least one
valid suggestion statement that can guide the reviewee
in how to correct a problem or make improvements.
Otherwise, we give a score of 0.

(iii) Problems (PROB): Pointing out something that is
going wrong in students’ work is also important for
helping learners. We give a score of 1 if the feedback
describes at least one issue that needs to be addressed
in the student report. Otherwise, we give a score of 0.

8https://github.com/google-research/google-
research/tree/master/rouge
9https://github.com/Tiiiger/bert score



(iv) Positive Tone (TONE): Feedback phrased in a posi-
tive tone can better stimulate students’ reflective com-
petence. We give feedback a score of 1 if it has an
overall positive semantic orientation, 0.5 if it is neu-
tral, and 0 if it is negative.

(v) Factuality (FACT): The statements in generated feed-
back should be factually correct. Otherwise, they may
inadvertently mislead the reviewee and negatively im-
pact learning. Factuality is calculated as:

FACT =
Count(factually correct statements)

Count(total statements)

where the numerator is the total number of factually
correct statements, and the denominator is the total
number of statements in the feedback. If the denomi-
nator is 0, we directly give a score of 0.

This set of evaluation criteria is certainly not perfect, but
it balances the accuracy and cost of the evaluation. For ex-
ample, we could score the “Problems” dimension in a more
sophisticated and accurate way, but it would be very time-
consuming and expensive. We leave more accurate and effi-
cient human-evaluation criteria for future work.

4.6 Ablation experiments
In order to understand the contribution of each step in our
method, we designed two ablation experiments:

4.6.1 Ablation Exp. 1 - Naïve BART:
In the first ablation experiment, we intend to understand the
contribution of the cross-entropy (CE) summarization. As
we mentioned in Section 4.2, a straightforward way to solve
the BART’s length-limit problem is to truncate all tokens
beyond the length limit, which we hypothesize may lead to
a loss of critical information from the inputs. Therefore,
we measure the performance of a BART model that sim-
ply truncates all tokens exceeding the length limit of 1024
as input, and we call this setup - “Näıve BART.” If ade-
quate information is contained in the truncated reports to
generate feedback on students’ reports, then “CE + BART”
should perform similarly to “Näıve BART.” Otherwise, it
would demonstrate that using CE to summarize the original
students’ project reports is better than simply truncating all
tokens that exceed the length limit. In other words, it will
suggest that the CE method can effectively summarize stu-
dents’ reports while retaining critical information that helps
the model generate feedback, and the CE step is necessary.

4.6.2 Ablation Exp. 2 - BigBirdPegasus:
In the second ablation experiment, we investigate whether
the “CE + BART” method can be replaced using the re-
cently proposed sparse-attention-based PLM BigbirdPegsus
[54], which extends the input length limit to 4096 tokens.
Briefly, BigBirdPegasus increases the input length limit at
the cost of using a sparse attention mechanism, which may
reduce the ability of the model to fit complex mappings be-
tween texts. Similar to BART, BigBirdPegasus also consists
of the pre-training and fine-tuning steps. In this experiment,
we use the pre-trained checkpoint “google/bigbird-pegasus-
large-arxiv10” to initialize all parameters of BigbirdPegsus
and then fine-tune the model on our data.

10https://huggingface.co/google/bigbird-pegasus-large-arxiv

5. EXPERIMENTS AND RESULTS
5.1 Experimental Setup
5.1.1 Training Details

For all experiments, we train our models with a batch size
of 1/2, a learning rate of 2e-5/3e-5/5e-5, epochs of 2/3, and
the AdamW optimizer [26] with a weight decay of 0.01 and a
linear rate scheduler of 10% warm-up steps. For our dataset
D, we use an 80-10-10 split for training, validation, and test
data. After finding the optimal hyper-parameters, we merge
the training and validation sets into the new training data.

5.1.2 Hardware Setup
The BART models are trained on an NVIDIA RTX6000
GPU (24GB). The BigBirdPegasus model (mentioned in
Section 4.6.2) is trained on an NVIDIA A6000 GPU (48GB).
We also employ the automatic mixed-precision training (use
of both 16-bit and 32-bit floating-point types) to speed up
the training processes.

5.2 Experimental Results
To investigate the potential promise of our system, we design
experiments to answer the following research questions:

RQ1: How effective is the proposed approach for generating
feedback on students’ project reports?
The goal of our first experiment is to find out if our auto-
mated feedback system Insta-Reviewer is effective in gen-
erating some readable and helpful feedback for students’
project reports. The evaluation results of Insta-Reviewer are
shown in Table 3. Some generated feedback for actual stu-
dent reports is shown in Table 5, and their evaluation scores
are shown in Table 4. According to Table 3, the ROUGE1,
ROUGE2, ROUGELsum, and BERTScore for our “CE +
BART” method are 28.54, 6.39, 18.21, and 59.18, respec-
tively. These results imply that the generated and expert
feedback are basically consistent in semantics, and there is
some overlap in words (more precisely, n-grams).

We also evaluated the feedback provided by instructors, and
the first row shows the human-evaluation scores for it. Com-
pared to the expert feedback, we surprisingly find that in
terms of “Problems” and “Positive Tone,” our method can
outperform human experts by 6% and 2%. However, it
is worth noting that the generated feedback tends to men-
tion more generic problems (e.g., missing a test plan) rather
than project-specific issues (e.g., “xxx files should be de-
scribed”). Additionally, the expert feedback can outperform
the generated feedback, with gaps of 6%, 16%, 15.2% for
“Readability,” “Suggestions,” and “Factuality,” respectively.
In summary, although our system is not as good as experts
at providing suggestions and may produce some non-factual
statements, it is good at generating fluent and positive feed-
back that mentions problems that need to be addressed.

RQ2: What are the problems of system-generated reviews?
What are they not good at?
In the second experiment, we aim to explore the potential is-
sues in system-generated feedback in more detail. Although
the vast majority of the feedback is fluent, positive, and fac-
tually correct, we find two potential problems after manually
inspecting all system-generated feedback in the test set.



Table 3: ROUGE F1 (with porter stemming), BERTScore, and Human Evaluation scores (%) on the test set (n=50). All
our ROUGE scores have a 95% confidence interval (CI) of at most ±2.98 as reported by the official ROUGE script (bootstrap
resampling). Our BERTScore has a 95% CI of at most ±1.54. The BERTScore script does not support BigBirdPegasus currently.

Method ROUGE
BS

Human Evaluation

R1 R2 RLsum READ SUGG PROB TONE FACT Average

1. Expert Feedback - - - - 100.0 82.0 90.0 93.0 100.0 93.00

Insta-Reviewer 2. CE + BART 28.54 6.39 18.21 59.18 94.0 66.0 96.0 95.0 84.8 87.16
Ablation Exp 1 3. Näıve BART 25.88 4.98 17.23 58.03 82.0 58.0 94.0 93.0 76.8 80.76
Ablation Exp 2 4. BigBirdPegasus 15.92 4.04 13.45 - 56.0 2.0 12.0 58.0 23.4 30.28

Table 4: ROUGE F1 (with porter stemming), BERTScore, and Human Evaluation scores (%) for the sample generated feedback
shown in the Table 5. †“I would suggest that the reader read the ...” is not a valid suggestion for the reviewee.

ROUGE
BERTScore

Human Evaluation

R1 R2 RLsum READ SUGG PROB TONE FACT Average

Generated Feedback 1 27.52 1.87 20.18 59.17 100.0 100.0 100.0 100.0 100.0 100.0
Generated Feedback 2 45.09 18.00 21.57 66.79 100.0 0.00† 100.0 100.0 83.33 76.67
Generated Feedback 3 22.22 0.00 13.89 52.92 80.00 0.00 100.0 100.0 80.00 72.00

Table 5: Sample expert and generated feedback. Scores for
the generated feedback are shown in Table 4. The generated
feedback may contain non-factual or ambiguous statements.

Expert Feedback 1: “The page is pretty well organized in
what changes they made. Their pictures were not taken
as a screenshot, instead were just taken with their phone
camera. They didn’t provide a manual test plan, which
is problematic as we have no good way of verifying their
changes without significant work involved.”

Generated Feedback 1:“The writeup is quite readable, and
the changes are described in good detail. However, the
code changes are not described in prose, and there is no
explanation of how they are implemented. The test plan is
not described, and it would be much more useful to have
a description of the tests that are to be added.”

Expert Feedback 2: “Your examples say that code was
added, but don’t describe the code or what it is used for.
The reader needs to figure that out by reading the code.
For someone following on, it would be much more useful
to have a description of how the code works. ”

Generated Feedback 2: “The writeup is very readable, but
it does not explain the changes made to the code. It is
not clear how the code was changed. The test plan is not
described. There is no description of the tests. I would
suggest that the reader read the code to figure out what
they test.”

Expert Feedback 3: “Well written, but does not mention
design patterns or principles. ‘Gemfiles’ should be down-
graded. Schema changes should be shown as migrations
and not direct changes in schema file.”

Generated Feedback 3: “The wiki page is very short, but
the changes are described well. It is not clear why the
changes were made. The code changes are not described
in prose. They (← code snippets) are just shown. I would
have liked to see more explanation of the changes”

Firstly, the automated feedback system may occasionally
(≈15.2% of all statements) generate some non-factual or
ambiguous statements in the feedback. For instance, the
“generated feedback 2” shown in Table 5 contains a non-
factual statement (italicized): “. . . there is no description of
the tests. I would suggest that the reader read the code to
figure out what they test.” However, this statement should
probably be “. . . a description of the tests needs to be added.
Otherwise, readers need to read the code to figure out what
you test.”

Secondly, some pieces of text frequently appear in differ-
ent generated feedback. For instance, we find that 66% of
the system-generated feedback contains the sentence “the
writeup is very/quite readable.” We speculate that this hap-
pens because 14% of the expert feedback that used for train-
ing contains the exact same sentence, which introduces some
sort of “imbalance” problem. This repetition problem is not
necessarily a drawback of the system, but it suggests that
high-frequency text pieces can influence the generation.

RQ3: How does the system perform compared with other po-
tential methods?
We now turn our attention to the experimental results of the
two ablation experiments detailed in Section 4.6. The eval-
uation results are presented in Table 3. The second row, the
third row, and the fourth row show the performance scores
for our Insta-Reviewer system, näıve BART (the method
utilized for the ablation experiment 1), and BigBirdPeagsus
(the model used for the ablation experiment 2), respectively.

The goal of the first ablation experiment is to verify our
hypothesis that using the cross-entropy extraction (CE) to
summarize the original students’ project reports is better
than simply truncating all tokens beyond the length limit of
BART. By looking at the ROUGE scores and BERTScore,
we can find that the “CE + BART” method consistently
outperforms the “näıve BART” method, with gaps of 2.66,
1.41, 0.98, and 1.15 for R1, R2, RLsum, and BERTScore



Table 6: ROUGE F1 (with porter stemming) and BERTScore
on the test set (n=50) in small-data settings (≤ 100 samples).
For each score, we report a 95% confidence interval (CI).

data
points

ROUGE
BERTScore

R1 R2 RLsum

434 28.54±2.98 6.39±1.56 18.21±1.83 59.18±1.54

50 24.29±2.47 4.99±0.94 17.42±1.70 56.12±1.42
100 25.75±2.65 5.56±1.15 17.86±1.61 57.36±1.43

respectively. Additionally, based on the human evaluation
scores, “CE + BART” significantly (≥ 8%) outperforms the
“Näıve BART” method on “Readability,”“Suggestions,” and
“Factuality.” The “CE + BART” method can also achieve
higher (≥ 2%) scores on dimensions “problems” and “pos-
itive tone.” The results demonstrate that the CE method
can effectively summarize students’ reports while retaining
critical information that helps the model generate feedback.

The second ablation experiment aims to know whether the
sparse-attention-based PLM BigBirdPeagsus can effectively
fit the complex mappings from student reports to textual
feedback and replace our“CE + BART”approach. As shown
in Table 3, the results clearly indicate that “CE + BART”
substantially outperform the BigBirdPeagsus model on all
metrics. The results suggest that although the BigBirdPeag-
sus model extends the input length limit to 4096 by using
the sparse-attention mechanism, it may not be suitable for
complicated tasks such as generating feedback.

RQ4: How does the automated feedback system perform in
different small-data settings?
In order to help other researchers who intend to apply our
approach on their datasets, we evaluated the effectiveness
of the approach in different small-data settings. Table 6
shows the ROUGE scores and BERTScore when training
with only 50 and 100 data samples, respectively. The scores
(R1=25.75, R2=5.56, RLsum=17.86, BS=57.36) for our model
when training with 100 samples are similar to the scores
(R1=25.88, R2=4.98, RLsum=17.23, BS=58.03) for the“Näıve
BART”when training with 434 samples. The results demon-
strate that the performance of our approach is acceptable in
small-data settings. Thus, our method can potentially be
applied to other tasks that have limited data.

RQ5: Does the Insta-Reviewer automatic feedback system
raise any ethical concerns?
The objective of the last experiment is to investigate whether
the automated feedback system raises any ethical concerns.
In this work, we consider two main potential ethical issues
related to the system. The first major concern is whether
the system will generate improper or offensive language. The
second potential issue is whether the generated feedback will
contain some private content. Although we have filtered
out all inappropriate information from our dataset, these
ethical concerns may still arise since the BART model is
pre-trained on a large-scale corpus crawled from the Inter-
net without fine-grained filtering. Therefore, we manually
vetted all generated feedback, and failed to find any of the
aforementioned ethical transgressions.

6. CONCLUSION
Timely feedback is critical to learning because it is more
likely to motivate students to stay on task and achieve their
learning goals. This suggests that future AI-powered educa-
tional applications will include automated feedback systems
to generate real-time feedback. In this paper, we have pre-
sented a data-driven system, named Insta-Reviewer, for gen-
erating instant textual feedback on students’ project reports.
The system leverages a select-then-generate paradigm con-
sisting of two main steps: 1) cross-entropy extraction and 2)
BART-based supervised text-to-text generation. The results
demonstrate that the generated feedback could achieve near-
human performance and even outperform human experts in
the “Problems” and “Positive Tone” dimensions. However,
the system may occasionally generate some non-factual or
ambiguous statements in the feedback. The generated feed-
back seems to be free of any ethical complications. Our work
demonstrates the feasibility of automatic feedback genera-
tion for students’ project reports while laying the ground-
work for future research on this topic.

Limitations: There are three main limitations to this study.
Firstly, we simply used textual information extracted from
the student reports and ignored all images. As a result,
our model could not produce feedback like “Their pictures
were not taken as a screenshot, instead were just taken with
their phone camera.” If we could design a multi-modality
model that incorporates all text, images, and artifacts such
as code into the input, we would be able to provide more
comprehensive feedback to students. Secondly, we used a
set of metrics, including ROUGE, BERTScore, and human-
evaluation scores to evaluate the generated feedback. How-
ever, ROUGE and BERTScore cannot accurately reflect the
quality of the generated feedback. Human evaluation can
more accurately assess the quality, but it is inconsistent, sub-
jective, and time-consuming. Thus, we believe it is worth-
while to explore more effective automatic metrics to evaluate
the generation. Thirdly, we manually inspected all gener-
ated feedback, and found that it did not raise any ethical
concerns. Nevertheless, this result does not guarantee that
the model will never produce improper or offensive language.
Systematic methods should be investigated to evaluate how
the system can avoid generating inappropriate language.
However, this problem is particularly challenging because
the output of neural networks is not always predictable.

Future Work: An important direction for future work is to
investigate how to avoid generating non-factual statements
in feedback. This problem of factual correctness has two
potential solutions. The first promising way is to automati-
cally evaluate the correctness of each sentence in generated
feedback and remove all non-factual statements before de-
livering the feedback to students. Dusek & Kasner [12] have
proposed an entailment-based model to evaluate the cor-
rectness of the generated text. However, this approach does
not capture which part of the generated text is non-factual.
Future work can explore further along this direction. The
other possible method to address the problem of non-factual
statements is to design new architectures that can more ef-
fectively capture the complex mappings from student reports
to feedback. The latter approach is significantly more chal-
lenging but may get to the root of the problem.
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