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ABSTRACT 
Ten years after the announcement of the “rise of the super 

experiment” at Educational Data Mining 2012, challenges to 

implementing “internet scale” educational experiments often 

persist for educational technology providers, especially when they 

seek to test substantive instructional interventions. Studies that 

deploy and test interventions, when informed by data-driven 

modeling, are often described as “close the loop” studies. Studies 

that close the loop attempt to link improvements in statistical and 

machine learning models of learning to real-world learning 

outcomes. After first considering challenges to internet scale 

experiments, we review several educational data science/mining 

studies that close the loop between data-driven modeling and 

learning outcomes. Next, we describe UpGrade, an open source 

architecture that, when integrated with educational technologies, 

helps overcome challenges to large-scale field trials (or internet 

scale experiments) that close the loop between data-driven work 

and real-world learning outcomes. In addition to describing 

preliminary randomized experiments that have been conducted and 

will soon be conducted using the architecture in two educational 

technology platforms, we end with a “call for contributors and 

integrators.” UpGrade contributors and integrators will be 

researchers and developers who seek to drive continuous, data-

driven improvements in real-world settings where learning with 

technology occurs. 
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1. INTRODUCTION 
At Educational Data Mining 2012, Stamper et al. [18] described 

“the rise of the super experiment” and the Super Experiment 

Framework (SEF), which conceptualizes data-driven educational 

experimentation at the lab scale, school scale, and internet scale. 

Lab scale experiments may have sample sizes in the range of 1-100; 

school scale experiments range in sample size between tens of 

learners and thousands of learners, and internet scale experiments 

may have sample sizes ranging from thousands of learners to 

millions of learners. Experiments at each scale have benefits and 

drawbacks, and there are important ways in which experiments at 

each scale can inform the design and implementation of 

experiments at the other scales. The authors’ presentation of the 

SEF concludes by laying out several key challenges for internet 

scale experiments. We briefly present their four posited challenges 

and review several (types of) educational data science/mining 

(EDS/EDM) studies that “close the loop” before describing the 

UpGrade open source architecture for conducting experiments in 

educational technologies at any of the SEF’s scales and how 

UpGrade helps educational technology developers address these 

challenges. 

2. CHALLENGES FOR INTERNET 

SCALE EXPERIMENTS 
Stamper et al. [18] lay out four key challenges for internet scale 

educational experiments. The first challenge is attracting a large 

user-base to the learning platform on which one would like to 

conduct such experiments. While an important issue, we leave the 

much broader discussion of large-scale adoption of educational 

technologies and software for learning for another day and assume 

that a researcher seeking to “close the loop” already is satisfied that 

they have a sufficiently large and diverse user-base to answer their 

research questions.  

The second challenge they suggest, in the context of an educational 

game deployed via the Brainpop.com platform, is “instrumenting 

software for generating data logs that measure player performance, 

learning, and engagement” [18]. This is another broad, general 

challenge for developing software for learning, whether an 

educational game, intelligent tutoring system (ITS), or other type 

of learning software. Well-instrumented learning software provides 

insights about learners and their learning process, behaviors, 

engagement, and related facets of their learning experience that are 

the purview of nearly all work published at Educational Data 

Mining and related venues. We assume that readers and platform 

developers already recognize the importance of generating 

meaningful data from their learning platforms if they seek to run 

studies that close the loop or similar internet scale educational 

experiments. 

Features of UpGrade target the third and fourth challenges raised 

by Stamper et al. [18]. The third challenge they pose is “the 

configuration of the software to allow for experimental designs” 

[18]. Being able to run experiments within a piece of software 

requires that different variants or instances of elements within an 

application’s design space can be instantiated and deployed in 

software, abstracted in such a way that the software can deliver 
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users to particular experiences based on their condition assignment. 

The software must also have some way of assigning users to 

particular experimental conditions. While variants within a target 

application’s design space must still be created, UpGrade serves as 

an enabling technology to make experimental management (e.g., 

handling complexities of random assignment and tracking of users’ 

condition assignments) less onerous for technology developers. 

One way of viewing UpGrade is as an enabling technology that 

makes A/B testing or experimentation a relatively simple matter of 

instrumenting target applications by implementing appropriate 

application programming interface (API) “hooks” to UpGrade 

rather than having to implement complex experimental 

management logic within the target application itself. Just as 

learning software developers increasingly understand the 

importance of instrumenting their software for high quality learning 

data collection, UpGrade may serve to further the goal that basic 

instrumentation in learning software will allow for rigorous 

learning engineering, involving experimentation and testing of new 

content, software features, instructional approaches, and other 

factors of interest to both researchers and technology developers. 

The fourth challenge is two-fold, as Stamper et al. [18] note that 

“researchers increasingly face the challenge of making use of tens 

of thousands of subjects in an efficient manner” while also pointing 

out that some experiments may create inconsistent user 

experiences. While the authors view inconsistent user experiences 

as a potential catalyst for reducing overall participation, we take 

inconsistent user experiences as a more fundamental potential 

barrier to delivering internet scale experiments. Educational 

technology providers might reasonably refuse to deploy 

experiments at all if there are potential scenarios in which 

unsatisfying, inconsistent, or disengaging user experiences are 

likely to result.  

Enabling technologies for large-scale educational experiments like 

UpGrade ought to deliver flexible options and capabilities to 

researchers and developers to deploy complex, substantive 

experiments and experimental designs in ways that still maintain 

high quality, consistent learning experiences. By illustrating 

practical examples of how studies that “close the loop” based on 

EDS/EDM insights might noticeably affect (or not) the learning 

experiences of real K-12 students and teachers, we motivate how 

UpGrade helps to meet many of the challenges raised by internet 

scale experiments. 

3. “CLOSING THE LOOP” 
We consider two kinds of potential “close the loop” studies drawn 

from literature in EDS/EDM and ITS research to provide a simple 

illustration of the types of considerations educational technology 

providers might make in delivering internet scale field trials or 

experiments to users in settings like K-12 classrooms. One case is 

intended to illustrate a situation in which a relatively simple, user-

level random assignment study is unlikely to raise any concerns 

about consistency of learner experience while the other illustrates 

some potential concerns about consistency that might arise. In the 

section that follows, we describe important features and 

affordances of the UpGrade architecture in more detail to show how 

it enables researchers and educational technology developers to 

deploy experiments that address these concerns about consistency 

as well as provide other options for delivering high quality 

experiments for learning engineering.  

The overarching goal of “closing the loop” with experiments is to 

evaluate whether observed improvements in (usually statistical) 

outcomes like prediction accuracy of particular models translate 

into improved learning outcomes for students in a target system. 

Learning outcomes of interest in target systems might include 

efficiency of practice, time to skill mastery, or gains in performance 

from a pre-test measure to a post-test measure, among others. 

Our example “close the loop” studies are related to how data-driven 

modeling of learner performance informs the specification and 

parameterization of so-called knowledge component (KC; or skill) 

[10] cognitive models frequently used within ITSs like Cognitive 

Tutor/MATHia [14] or in tutors built with tools like the Cognitive 

Tutor Authoring Tools [2].  

A bevy of research in EDS/EDM and related areas (e.g., [3, 15, 19]) 

consider different approaches to fitting the parameters of KC 

models deployed in ITSs, typically within the four-parameter 

framework of Bayesian Knowledge Tracing [6], holding the set of 

KCs that appear to a learner during the learning experience fixed. 

Contrast (1) studies that close the loop by contrasting two or more 

sets of parameter estimates for the same KC model with (2) studies 

that contrast two or more different specifications of a KC model, of 

which there are several examples in the literature (e.g., [11]). The 

second type of experiments are typically supported by semi-

automated, data-driven techniques (e.g., Learning Factors Analysis 

[5]), various types of task analysis (e.g., [4]), or more recent multi-

method approaches for “design loop adaptivity” [1, 8]. These 

techniques are used to re-evaluate the underlying KC model that 

drives the ITS’s adaptive learning and determine how the 

specification of the KCs themselves might better represent what a 

student is learning (not just the performance parameters related to 

their learning) as they practice in the ITS. 

In the first “parameter estimation” experiment in an ITS like 

MATHia, one or more experimental conditions and a control 

condition each have the same “skillometer” or dashboard display 

for students to see their progress toward KC mastery. Similarly, the 

same KCs or skills reported to teachers in their classroom analytics. 

The only difference in a parameter estimation experiment is likely 

to be exceedingly subtle, in that there are different parameters for 

subsets of KCs in each condition. In the latter “specification” 

experiment, the control condition and one or more experimental 

conditions vary in what KCs constitute the set of KCs used to drive 

adaptation for the topic as well as what is displayed to students and 

their teachers. 

In the hypothetical parameter estimation study, individual random 

assignment is likely to be a reasonable choice for the researcher 

running the experiment. If the ITS, for example, implements some 

form of mastery learning (e.g., [17]), then students will be 

accustomed to receiving different amounts of practice on KCs they 

encounter within different topics in the ITS. Different 

parameterizations for different students in the same classroom are 

not likely to lead to drastically different perceptions of the learning 

experience for students. Nevertheless, if the experiment is 

successful, one or more parameterizations may lead to more 

efficient practice or provide students with additional practice that 

they need to achieve mastery. Teachers’ experience of using 

analytics and reports are likely to be nearly indistinguishable across 

the different parameterizations. 

Though perhaps still subtle, KC model specification studies are 

more likely to create inconsistencies in K-12 learners’ and 

instructors’ experiences in an ITS if they were to be deployed 

within, for example, the same classroom, or even to all of the 

classrooms of the same teacher. Changes in the KC model 

specification may also be accompanied by design differences in the 



tasks presented to students (e.g., as in [8, 18]), presenting further 

opportunities for noticeable differences in learner experiences to 

emerge. 

Generally, the contrast we seek to illustrate is between any type of 

relatively “stealthy” experiment with more “conspicuous” and/or 

visually salient experiments. More stealthy examples, like the 

hypothetical experiment that only manipulates parameter estimates, 

are those in which differences in the learner experiences are subtle 

and likely to be unnoticed between conditions. Experiments are 

likely to be more conspicuous when they seek to test substantive 

differences in learning experiences and may have more easily-

discernable variations, as in the “specification” experiment.  

More conspicuous differences might reasonably be evaluated 

between instructional methods, encouraging students to adopt 

different problem-solving strategies for the same topic, and contrast 

along any number of a wide variety of instructional decisions 

content designers must make [9]. Many such differences between 

experimental conditions are easily perceived by students and 

teachers. If condition assignment is not thoughtfully considered 

(e.g., by considering a group-level assignment), students may 

realize that they are receiving a different experience compared to 

other learners in their classrooms, leading to unanticipated changes 

in learning patterns. Teachers might easily become overwhelmed 

by the need to support different learning experiences for the same 

topic, keep track of differences in analytics and reporting, and other 

potential inconsistencies. In what follows, we describe how the 

UpGrade platform can help educational technology developers and 

researchers not only deploy internet scale educational experiments 

but also do so in ways that handle many of the challenges that arise 

in such deployments in real world settings in which learning takes 

place. 

4. UPGRADE  
UpGrade1 [16] is an open source software architecture (available 

via GitHub2) intended to lower barriers to learning engineering and 

enable internet scale experiments (also sometimes referred to as 

“A/B tests” or randomized field trials) that test substantive changes 

to learning experiences in settings like K-12 classrooms while 

preserving consistent, high-quality learning experiences for end-

users. 
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Figure 1. Screenshot of the “overview” of an experiment in the 

UpGrade user interface for creating a new experiment 

We consider several of the major affordances provided by 

UpGrade, several of which are illustrated in the screenshot of 

Figure 1 that shows the preliminary “overview” of an UpGrade 

experiment as it is being specified. Group random assignment, 

consistency rules, post-experiment rules, and user segmentation are 

features of experiments that help to ensure that consistent learning 

experiences are delivered during experiments. Researchers 

determine how best to set these options as a part of designing 

experiments in UpGrade. 

4.1 Group Random Assignment 
While UpGrade has logic for assigning experimental conditions on 

an individual-student or user basis, the ability to randomly assign 

conditions by group (e.g., at the level of classrooms within a K-12 

school) enables researchers to conduct internet scale experiments 

in educational software products that are both deployed at scale and 

used in authentic classroom contexts. In educational settings, it may 

be undesirable for students within the same group (e.g., by class, 

teacher, school district, or some other grouping) to be assigned 

different conditions within the same experiment, particularly if 

such conditions involve conspicuous or salient visual changes (e.g., 

different “skillometers” displays and teacher analytics in the KC 

model specification experiment illustrated in §3) or substantively 

different models of instruction. UpGrade manages coherence of 

learning experiences by group as well as anomalies that may arise 

in group membership, enabling researchers to specify how an 

experiment should behave if a student switches classes or is in 

multiple classes simultaneously. 

4.2 Consistency Management 
The second way in which UpGrade helps deliver consistent 

experiences is via associating deployed experiments with 

consistency rules that govern how users are treated for 

inclusion/exclusion in an experiment who have already 

encountered pieces of instructional content or other design features 

that are included in experiments. This is particularly useful when 

instructional content is delivered via adaptive software in which 

self-paced progress is often a crucial feature of the learning 

experience; in such software students may reach the content of 

interest at different times. If a student in a class encounters the 

content of interest earlier (or later) than their fellow students, 

consistency management can specify whether condition assignment 

binds more strongly to group membership or individual students. 

4.3 Post-Experiment Rules 
A “post-experiment rule” is a parameter that manages delivery of 

experimental conditions once an experiment has stopped running, 

but students may still interact with the target content in the 

educational application. Researchers may wish to have a “winning” 

condition be delivered to subsequent students who encounter the 

content of interest, or may wish to maintain the condition 

assignment weighting even if the experiment has ended. For 

example, if a study using UpGrade runs from September-

November of a school year, but a student goes back to review 

content in preparation for an end-of-semester exam in December, a 

post-experiment rule can specify whether that student should 

receive the same experimental condition they were originally 

assigned, or whether they are permitted to experience a default or 

other condition. 

2 https://github.com/CarnegieLearningWeb/UpGrade  
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4.4 User Segmentation 
Another challenge when conducting internet-scale experiments in 

real-world classrooms is that researchers may not necessarily want 

or need to target all members of a population. Segmentation and the 

ability to pre-define include/exclude lists empowers researchers to 

target experimental interventions to groups of interest, at the level 

of interest: e.g., middle schools, 7th grade, specific districts, or even 

geographic regions. Similarly, districts or schools can fully “opt-

out” and join a global exclude list without impacting research at 

scale conducted by an educational technology company.  

 

While learning platforms often do not automatically collect data 

about individual learner demographics, when such data are 

available (or when such data are available at an aggregated level 

like that of particular schools), user segmentation is likely to also 

play an important role in better understanding what works for 

particular sub-populations of students, helping researchers close the 

loop in ways that promote inclusion and equity across diverse 

populations of learners. 

4.5 Monitoring Metrics 
UpGrade enables researchers running experiments to monitor their 

progress with respect to “enrolled” users (i.e., those users who have 

encountered relevant content and been assigned to a condition) as 

well as those who have been excluded. In addition, APIs are 

available for target learning applications to send specific metrics 

(e.g., time to complete a particular piece of content) of interest to 

UpGrade’s monitoring dashboards for real-time progress 

monitoring of experimental progress. The screenshot in Figure 2 

illustrates a particular case of an experiment with two conditions in 

the UpGrade platform, displaying enrollment data over time and by 

experimental condition. 

 

Figure 2. Screenshot of monitoring dashboard in UpGrade, 

showing enrollment metrics over time and by condition, for two 

experimental conditions, entitled “ddi_control” and 

“pre_ddi_variant,” where “ddi” stands for “data driven 

improvement” of particular content in Carnegie Learning’s 

MATHia platform. 

4.6 Support for Diverse Experimental Designs  
UpGrade currently supports relatively simple experimental 

designs, including weighted random assignment to two or more 

conditions (see “weight” column near the bottom of the screenshot 

in Figure 2) as well as within-subject, factorial, and partial-factorial 

designs. UpGrade developers have a roadmap for implementing 

additional designs including multi-arm bandits and stepped-wedge 

designs in the near future. More sophisticated designs and those 
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incorporating adaptive experimentation could be valuable 

contributions from the EDM and allied communities. This leads to 

our call for contributors and integrators. 

5. CALL FOR CONTRIBUTORS & 

INTEGRATORS 
Our goal in the present paper has been to introduce UpGrade to the 

EDM community. We hearken back to the “rise of the super 

experiment” and seek to build awareness of challenges often raised 

by internet scale, experimental “close the loop” studies and how 

UpGrade presents a solution that can be integrated within an 

existing or emerging educational technology product to help 

overcome those challenges. Efforts at the intersection of EDS/EDM 

and the emerging field of learning engineering rigorously seek to 

establish causal links between data-driven insights that inform 

improvements in educational technologies and practical learning 

outcomes resulting from the use of these technologies. We applaud 

efforts like E-TRIALS [12], MOOClets [13], and Terracotta3 that 

aim to provide similar support for rigorous experimental or A/B 

testing of learning innovations within particular contexts (e.g., E-

TRIALS within ASSISTments [7], TerraCotta within the Canvas 

Learning Management System). UpGrade can be integrated into 

existing or new learning applications and technologies to similarly 

drive rigorous data-driven improvements to learning platforms.  

Educational technology developers must still (as ever) address 

challenges to attracting large and diverse user-bases, instrumenting 

their technology to capture rich learning data, and appropriately 

abstracting features and content in their systems so that different 

learning experiences can be delivered to learners (Challenges #1-2 

and part of the third challenge described by [18]). However, 

UpGrade removes many of the barriers imposed by the challenges 

of large-scale experimental management in real-world learning 

settings. The educational technology developer need only 

implement software instrumentation that calls UpGrade’s API to 

determine which alternative learning experience (if any) ought to 

be delivered to a particular user, given characteristics of that user 

that the target system “knows” about (e.g., via communication with 

a rostering system) such as the class or school in which the user is 

learning. The target system for experimentation can also implement 

UpGrade’s API to provide metrics for monitoring experiments as 

they proceed. UpGrade handles complex logic of managing 

condition assignments and dealing with real-world complexities 

that inevitably arise in settings like K-12 schools. 

As an open source platform, developers can contribute new 

functionality and features to the codebase for the future benefit of 

all integrators and researchers using platforms that integrate with 

UpGrade. For example, code might be contributed to build 

connections to deliver A/B tests in different LMSs and implement 

appropriate APIs to have metrics for monitoring delivered to 

UpGrade. Support for new types of experimental designs and 

algorithms for adaptive experimentation are also a natural place for 

future development. We welcome such new contributions from the 

EDM community as well as from the broader educational 

technology and learning engineering communities. 

UpGrade has already been used to deliver experiments to tens of 

thousands of learners in a math game similar to that targeted in the 

paper that introduces the SEF [18]. A number of experiments are 

currently deployed in Carnegie Learning’s MATHia, and new 

experiments will be deployed in the coming months using 

https://terracotta.education/


UpGrade. These experimental field trials will close the loop 

between data-driven improvements to facets of learning 

experiences like KC models as well as personalization and 

motivational features, and we look forward to presenting those 

results in the near future. We encourage educational technology 

developers to consider integrating UpGrade into their platforms to 

enable rigorous, iterative learning engineering improvements and 

platform-enabled educational research. 
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