
Mining Artificially Generated Data to Estimate Competency
Robby Robson1, Fritz Ray2, Mike Hernandez3, Shelly Blake-Plock4, Cliff Casey5, Will Hoyt6,

Kevin Owens7, Michael Hoffman8, Benjamin Goldberg9

ABSTRACT
The context for this paper is the Synthetic Training Environment
Experiential Learning – Readiness (STEEL-R) project [1], which
aims to estimate individual and team competence using data
collected from synthetic, semi-synthetic, and live scenario-based
training exercises. In STEEL-R, the Generalized Intelligent
Framework for Tutoring (GIFT) orchestrates scenario sessions and
reports data as experience API (xAPI) statements. These statements
are translated into assertions about individual and team
competencies by the Competency and Skills System (CaSS).
Mathematical models use these assertions to estimate the
competency states of trainees. This information is displayed in a
dashboard that enables users to explore progression over time and
informs decisions concerning advancement to the next training
phase and which skills to address.

To test, tune, and demo STEEL-R, more data was needed than was
available from real-world training exercises. Since the raw data
used to estimate competencies are captured in xAPI statements, a
component called DATASIM was added. DATASIM simulated
training sessions by generating xAPI statements that conformed to
a STEEL-R xAPI Profile. This facilitated testing of STEEL-R and
was used to create a demo that highlighted the ability to map data
from multiple training systems to a single competency framework
and to generate a display that team leaders can use to personalize
and optimize training across multiple training modalities.

This paper gives an overview of STEEL-R, its architecture, and the
features that enabled the use of artificial data. The paper explains
how xAPI statements are converted to assertions and how these are
used to estimate trainee competency. This is followed by a section
on xAPI Profiles and on the xAPI Profile used in STEEL-R. The
paper then discusses how artificial data were generated and the
challenges of modeling longitudinal development and team in these
data. The paper ends with a section on future research.

1. INTRODUCTION
The research reported in this paper relates to the US Army Synthetic
Training Environment (STE) initiative that “brings together live
and virtual training environments, aiming to deliver accessible
exercises that mimic the full complexity of the physical world” [2].
To support this initiative, the initiative is developing infrastructure
and a suite of Training Management Tools (TMT) that permit
diverse training systems – including desktop game-based, mixed
reality, virtual reality, augmented reality, and sensor-instrumented
live training – to be rendered and integrated in a single training
environment and training to be optimized within this environment.

The goal of the STE Experiential Learning – Readiness (STEEL-
R) project is to support the STE TMT with software that collects
evidence from training scenarios and uses this to estimate team and
individual competency and performance probabilities, recommend
training interventions, and inform the design of training scenarios.
Research to date has focused on US Army battle drills [3], i.e., short
tactical team scenarios intended to train individuals and teams to an
automated response level. These include cognitive, psychomotor,
and affective skills and behaviors that can be trained in a series of
training systems that progress from first-person shooter game-like
environments such as Virtual Battle Space 3 [4] (synthetic in this
paper), to mixed reality and augmented reality environments (semi-
synthetic), and field exercises in which trainees are instrumented
with sensors (live). Traditionally, observer controllers / trainers
(OC/Ts) are present and can alter conditions on the fly to change
difficulty or add stressors. A goal of the STE TMT is to accelerate
development and skill retention by using data-driven automation
and the capabilities of intelligent tutoring systems to support
assessment and facilitate personalized coaching.

The training addressed by STEEL-R is experiential, meaning that
learning and mastery require repeated deliberate practice under
varied conditions. To support experiential skill acquisition, the
underlying competency and predictive models in STEEL-R must
take longitudinal data and progression into account. This type of
training also heavily involves team tasks and team dimensions such
as cohesion, communication, and backup behaviors [5]. This adds
further complexity to the underlying models and places further
requirements on the data that must be collected to generate and test
these models. Since the demand for such data is too large to be met
by small trials, and since it is important that STEEL-R demonstrate
good results prior to deployment in high-stakes real-world training,
we saw artificial data as the best way to proceed in the early and
middle stages of our research. We use the term artificial rather than
synthetic in this paper to avoid confusion with synthetic training.

This paper focuses on the use of artificial data, on the use of xAPI
Profiles and DATASIM to produce artificial data, on the challenges
encountered, and on the results obtained. We start with an overview
of the STEEL-R architecture and it critical features, which is next.

2. STEEL-R ARCHITECTURE
Three systems play a central role in the STEEL-R architecture,
shown in green in Figure 1. The first is the Generalized Intelligent
Framework for Tutoring (GIFT) [6], which orchestrates scenario
sessions. It connects to and collects data on trainee actions from
training systems via connectors. GIFT examines these actions and
assesses whether specified tasks, activities, and expected behaviors
are performed or demonstrated at, below, or above expectations.

Do not delete, move, or resize this block. If the paper is accepted, this block will
need to be filled in with reference information.

R. Robson, B. Goldberg, S. Blake-Plock, C. Casey, W. Hoyt, M. Her-
nandez, and F. Ray. Mining artificially generated data to estimate
competency. In A. Mitrovic and N. Bosch, editors, Proceedings of the
15th International Conference on Educational Data Mining, pages
828–833, Durham, United Kingdom, July 2022. International Educa-
tional Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852926

https://doi.org/10.5281/zenodo.6852926

Figure 1: STEEL-R Component Architecture

The second core component is a set of two Learning Record Stores
(LRSs). Every time an assessed performance state changes, GIFT
reports the state and associated session data to a “noisy” LRS via
experience API (xAPI) [7] statements. This noisy LRS captures
everything that is happening in a session. A second “transactional”
LRS filters noisy LRS data, retaining only the overall assessment
of each trainee in a session. Data from the transactional LRS is
polled by an instance of the Competency and Skills System (CaSS)
[8], the third core component.

CaSS stores competency objects that represent the individual and
team tasks, skills, knowledge, attitudes, and behaviors that a given
instance of STEEL-R is intended to train and track. These are stored
in competency frameworks that include relations among the skills,
competencies, and behaviors these objects represent. As STEEL-R
runs, CaSS collects xAPI statements and formulates assertions. An
assertion is a statement to the effect that a trainee or team has or has
not demonstrated competency based on identified evidence under
specified conditions [9].

A GIFT performance assessment generated can generate multiple
assertions about multiple competency objects. As explained in
Section 3, CaSS computes competency states from these assertions
using mathematic models. Competency states and other data are
sent by CaSS to a Dashboard that can be used use to view states,
track progress, and make informed training decisions. Throughout
this process, the chain of evidence is preserved so an OC/T can
review and audit it. Dashboard data can be traced back through
CaSS, the LRS, and GIFT to trainee actions that can be replayed in
a GIFT “gamemaster” interface.

A crucial feature of this architecture is that the data from all training
systems is filtered through GIFT, where it is referenced against a
common set of competency objects. Data from desktop games,
mixed reality simulations, and live exercises can thus be combined
to estimate and track the state of each single skill and competency.

2.1 STEEL-R Implementation
STEEL-R uses a Multiple Open System Architecture (MOSA) that
integrates GIFT and the US Advanced Distributed Learning (ADL)
initiative’s Total Learning Architecture (TLA) [10] [11]. Most
components (including GIFT and CaSS) are customized versions
of open-source software. The LRSs are instances of the Yet
Analytics SQL LRS [12], and all components are hosted on a
hybrid container-based platform (Docker™). Since STEEL-R is
intended to support field operation, it is designed for offline use and
the entire system can be deployed on a mid-range rugged laptop. In
field deployments, STEEL-R collects data in offline mode and
forwards it to a cloud hosted instance when it comes back online.
The mechanisms that permit offline operation enable STEEL-R to
assemble data received from multiple sources at different times into

a coherent sequence of events along a single timeline. This feature
turned out to be crucial, as will be discussed in Section 5.2.

3. ESTIMATING COMPETENCY
The current version of STEEL-R considers three competency states
– untrained, practiced, and trained – and three training phases –
crawl, walk, and run. The three states are derived from US Army
doctrine, while the training phases roughly correspond to synthetic,
semi-synthetic, and live training The Dashboard component of
STEEL-R informs OC/Ts how an individual or team is progressing
from untrained to practiced to trained within each training phase
and how ready they are for the next training phase, i.e., to move
from crawl to walk and walk to run. In future Army versions, an
expert state may be added, and different states and phases may be
used for different application domains.

3.1 The Math Model
CaSS populates the STEEL-R Dashboard with longitudinal data
about the competency state of each individual or team. These states
are estimated using a mathematical model (the “math model”) that
involves a repetition function, an evidence function, and rollup
rules. The repetition function represents the number of times a skill
or competency has been trained, weighted by a forgetting function
and a function that accounts for the value of spaced repetition.
Similar methods are used in ACT-R [13] and the work of
Jastrzembski and others on predicting future training performance
[14]. The evidence function assigns a score between -1 and 1 that
is derived from the history of performance assessments, taking skill
decay, the trustworthiness of the evidence, and performance on
related skills and competencies into account. Rollup rules allow
performance on related skills and competencies to contribute to an
evidence function and allow dependencies on performance under
varied conditions and on the states of sub-skills to be added. More
details model can be found in [15].

3.2 The Role of CaSS Assertions
The raw data used to evaluate the repetition and evidence functions
comes from assertions. Assertions are a fundamental data type in
CaSS that expresses conclusions drawn from evidence in a uniform
way. An assertion can identify its source, the on which the source
relied, the source of the evidence, the person or team and the CaSS
competency object about which the assertion is made, a timestamp,
a decay function, and a parameter that indicates the confidence its
source has in the assertion [15]. Assertions can assert that a skill or
competency was or was not demonstrated or is or is not possessed.
Assertions can also identify the conditions under which the
evidence was gathered e.g., difficulty factors and stressors.

CaSS computes the repetition and evidence functions from data in
assertions. For example, if a competency object represents the
ability of a team or person to perform a task, CaSS examines all
assertions about their performance on that task and uses these to
determine when and how often and with what results the task was
attempted under varied conditions. This information is used to
compute the repetition and evidence functions, which are in turn
used to estimate whether they are untrained, practiced, or trained
within the crawl, walk, and run phases.

3.3 Generating Assertions from xAPI
GIFT does not directly make CaSS assertions. Instead, it assesses
actions, activities, and expected behaviors based on data from a
training system and emits xAPI statements that require translation
into CaSS assertions. CaSS does this with a decoder. The decoder
has a lookup table that maps activities to competency objects and
specifies how the three states reported by GIFT (at, above, and

below expectations) translate into positive or negative assertions
about these objects. At present, this lookup table is hard-coded
based on subject matter expert (SME) input.

3.4 The Need for Data
The math model and decoder have weights and parameters that can
be set in a STEEL-R instance and control competency estimates.
As STEEL-R develops, these will be used to compute performance
probabilities and to recommend interventions and scenario designs.
The system is designed so that its weights and parameters can be
machine-learned, but at this stage they are manually set based on
experimentation guided by theory. This requires significant data,
and machine learning will require even more.

The best data would be data from real-world training exercises.
Unfortunately, there are limited opportunities to deploy STEEL-R
in such exercises, and since many involve high-stakes training,
STEEL-R must be thoroughly stress-tested and shown to produce
reasonable results before deployment can be considered. For these
reasons, we took the approach of generating artificial data.

Referring to Figure 1, there is a choice as to where artificial data is
inserted. One choice is to inject it into CaSS in the form of
assertions. This can be used to test the math model, and early on we
developed a small web app to do this, see Section 5. This allowed
us to check formulas and code and to demonstrate how evidence
affected competency estimates, but it was not sufficient to test the
entire architecture. As a result, we decided to generate artificial
xAPI statements that mimicked those generated by GIFT. This
involves xAPI profiles, which are explained next.

4. XAPI PROFILES
The experience API (xAPI) is a mechanism for reporting and
retrieving learner activities in an actor – verb – object – context -
results format [7], [16]. xAPI statements in this format are sent to
an LRS where they can be retrieved by other systems with
appropriate permissions. xAPI statements are usually generated by
an education or training system such as an LMS, simulation, or
intelligent tutoring system, but statements can come from another
LRS, as is done in the STEEL-R handoff between the noisy and
transactional LRS. This ability enables multiple LRSs at the edge
of a network to feed a central LRS, which improves scalability. The
xAPI specification, which includes specifications for LRSs, was
first developed by the ADL and is now undergoing more formal
standardization in IEEE [16].

The xAPI specification is intended to be usable in any education or
training ecosystem. To maintain flexibility, it does not specify the
context or semantics of xAPI statements. In implementations it is
necessary to add definitions and place restrictions on the format and
elements in statements to ensure that data is properly reported and
interpreted. This is done via xAPI Profiles [17].

xAPI Profiles define concepts, templates, patterns, and extensions
for use in forming xAPI statements. Concepts define the vocabulary
and attributes that may appear in xAPI statements, including verbs
and activity types, and specify rules for how and when they can be
used. Templates provide rules for constructing statements. Patterns
are collections and sequences of templates that describe the actions
associated with a task, performance, or learning path. Extensions
enable new (externally defined) attributes to be used in statements.
Together, these rules and definitions enable xAPI statements to be
properly formed and interpreted. The xAPI profiles specification
[18] establishes rules for serializing profiles in JavaScript Object
Notation (JSON) and in JSON for Linked Data (JSON-LD). Using

JSON-LD, vocabulary can link to the same or similar terms in other
profiles, creating a semantic web of xAPI statements.

4.1 Designing the STEEL-R xAPI Profile
A critical factor in designing any xAPI Profile is creating concepts,
statement templates, and patterns that are flexible enough to be used
in many different scenarios but restrictive enough to enable data to
be reported and understood in use cases of interest. The challenge
for STEEL-R is that STEEL-R is meant to support many types of
experiential learning. Even in relatively narrow domains, it may be
necessary to track and capture data on hundreds (or more) tasks,
activities, and behaviors. Profiles could be created that specify the
names of tasks and performance levels for each domain, but a more
flexible approach is enabled by exploiting the capabilities of GIFT.

4.2 The STEEL-R xAPI Profile
As a scenario session unfolds, GIFT determines if performance on
tasks, activities, and behaviors stored in a Domain Knowledge File
(DKF) exceeds, meets, or is below expectations [19]. At present,
CaSS only uses summative assessments at the session level, but
GIFT generates a formative assessment each time a performance
state changes and can record information about the exercise, such
as the conditions under which performance was assessed.

The xAPI profile designed for STEEL-R uses statement templates
that enable tasks, activities, and behaviors to be referenced from the
DKF and that report results on the GIFT three-step scale. This
simplifies the form of statements, leaving the list of specific
activities to GIFT. The STEEL-R templates also allow scenario
conditions to be reported and include extensions for linking a GIFT
assessment to a recording of the session segment that produced it.

To form a complete chain of evidence, STEEL-R xAPI statements
can capture current performance states, changes in performance
state, the factors that changed, and the conditions present when the
state changed. Of particular interest to our future research is the
ability to identify stressors and difficulty factors, both of which can
be dynamically altered mid-session. Stress and difficulty are now
being included in xAPI statements as discrete variables that are
evaluated by GIFT and that CaSS can use in its math models.

Patterns represent the lifecycle of trainee participation in a training
session. The templates in these patterns are populated by system
events such as starting or joining a session, interactions within the
session that could result in changes to a trainee’s psychomotor,
cognitive, or affective state, and GIFT’s conclusions about a
learner’s overall performance with respect to specified tasks. Event
data reported by GIFT is used to select the appropriate template and
to filled in the template based template rules.

5. GENERATING ARTIFICIAL DATA
For testing purposes, artificial data was generated in two ways. The
first was through a small app that was purpose-built to test and
demonstrate the math model. This app allows users to apply hard-
coded assertions about competency objects in a framework and
displays how the repetition and evidence functions, competency
state, and performance probabilities change with each statement.

Figure 2: User applying a competency assertion

A second screen shows how the estimated probability of successful
performance varies over time as both positive and negative
assertions are activated. This visualization proved useful for both
demonstrating and validating the math model.

Figure 3: Display showing how applying assertions changed the
estimate of performance probability as evidence accumulated.

5.1 DATASIM
The second method used to generate artificial data used an open-
source component of the ADL’s TLA reference implementation
[11] called the Data and Training Analytics Simulated Input
Modeler (DATASIM) [20]. DATASIM can produce xAPI datasets
that conform to one or more xAPI Profiles at small scale (tens to
thousands of statements) and large scale (over a billion statements).
DATASIM is controlled by a simulation specification that a user
defines via a user interface. Each simulation specification includes
an xAPI Profile, the actors in the simulation, and parameters that
specify the involvement of each actor in each type of activity as
well as start and stop times, a seed value, and the maximum number
of xAPI statements to be generated.

Within a given simulation, DATASIM generates a pseudo-random
autoregressive moving average (ARMA) time series (called the

common time series) and a pseudo-random ARMA time series for
each actor, each determined by the seed value. An actor generates
an xAPI statement whenever their time series graph crosses the
common time series graph [21]. When that happens, a Gaussian that
is weighted by parameters in the simulation profile is sampled for
each possible pattern and the pattern with the highest value is used.
The same is then done to select templates in the pattern, statements
in each template, and concepts in each statement.

5.2 Applications to STEEL-R
We used DATASIM to benchmark and stress-test STEEL-R, which
was the original purpose of DATASIM [21]. By using the same
actors, we could simulate multiple successive training sessions
across each training phase and by referencing the same competency
objects in the CaSS decoder, we could generate assertions about
same competencies, skills, and behaviors at each stage. This let us
validate system operation and benchmark performance at every
point and for every component downstream of GIFT. It did not,
however, give us the desired level of realism.

Although xAPI profiles enable DATASIM to generate data that
statistically reflects the right mix of training events and outcomes
at the macro level, DATASIM has no mechanism that allows a
given actor to develop competency as they engage in successive
activities and no mechanism to realistically correlate individual and
team behavior. Thus, if DATASIM is used to simulate people
performing a series of tasks, it will produce about the right number
of successful and unsuccessful task completions but cannot alter its
parameters during a simulation so that a person who successfully
completes the early tasks will be more likely to successfully
complete later ones. Similarly, if one of the actors is a team,
DATASIM, the probability of team events cannot be changed based
on the activities of team members during a simulation. Since
longitudinal data and developmental progression are fundamental
to experiential learning, we needed a way to reflect individual
development and team dynamics.

We did this by running series of micro-simulations instead of one
large one and by manually set parameters between runs. Each
micro-simulation produced data for the same actors in a small time
slice. This gave us greater control over the progression of outputs
and implied team dynamics. STEEL-R treated these as offline data,
automatically stringing them together to create a sequence of
activities along a single timeline. This produced enough data to test
and tune STEEL-R and to implement the use case described next.

5.3 A Use Case and Implementation
In November of 2021 we used DATASIM to implement and demo
a use case in which a small team underwent three days of training.
Our goal was to highlight how team competency improved and
progressed from crawl to walk as interactions with multiple training
systems activated cognitive, psychomotor, and affective skills.

On day one, the team trained on Army battle drill 6 (BD6) [3] in a
synthetic game-based environment. This was done in multiple
sessions with under varied conditions and with varied difficulty
levels. DATASIM micro-simulations were manually configured to
show performance improvement over the course of day one. On day
two, BD6 training continued in a mixed reality environment that
activated psychomotor skills. The data from day one showed that
the team knew what to do, so day two provided opportunities to
apply that knowledge in a safe controlled environment with more
realistic interactions. The data generated by DATASIM represented
exposure to numerous scenarios and showed further performance
improvement. At the start of day three the team leader looked at the

Dashboard (Figure 4) and noticed that the team was progressing
well on BD6 but there were potential skill decay issues with a
related task trained in a previous battle drill. As a result, the team
leader initiated training of this previous battle drill. The third day
of training activated some of the same skills as the first two days
and resulted in improvements in skills that seemed to have decayed.

Figure 4: Part of the Dashboard, showing progress on reported
by CaSS and derived from artificial data.

6. CONLUSION
The use case we implemented and demonstrated with artificial data
showed the art of the possible. It showed a team leader using
competency estimates derived from multiple and varied training
environments to personalize a training plan and the potential to
optimize training time by leveraging multiple training modalities
within a given training cycle. The ability to mine artificial data
enabled us to stress-test and benchmark STEEL-R and permitted us
to visualize the effects of parameters in the formulas and models
used to estimate competency. This served as an excellent tool for
debugging, tuning, and demonstrating the models, and we continue
to take this approach as we make changes and add features.

We note that as of November of 2021, neither difficulty or stress
levels were reported by GIFT or used by CaSS. These are critical
factors that can be manipulated during training sessions and that
should be used when determining whether an individual or team is
trained and ready to advance. GIFT is now reporting difficulty and
stress levels in xAPI statements, and we are incorporating difficulty
and stress into the decoder, math model, and Dashboard.

Finally, our work with DATASIM exposed the need to model the
progress of simulated individuals and to correlate individual and
team behaviors. We did this with manually manipulated micro-
simulations, which is labor intensive and will not scale. In this
regard, we are exploring two further research directions. The first
is to implement ways to dynamically alter the parameters used to
generate artificial data during a single simulation. The second is to
enable the parameters that control these alterations to be machine-
learned. These will create a virtuous cycle wherein artificial data
are used to test and tune new features and models, these features
and models are used to improve real-world training, and real-world
training data are used to improve the generation of artificial data.

7. ACKNOWLEDGEMENTS
This work was supported by U.S. Army Research Laboratory
contract #W912CG20C0020. It is dedicated to Tom Buskirk who
contributed to this project as a software developer and who died
suddenly in 2021 at the age of 47. He was a joy to work with, was
a talented developer, and is dearly missed by the STEEL-R team.
1 Eduworks Corporation. robby.robson@eduworks.com
2 Eduworks Corporation. fritz.ray@eduworks.com

3 Eduworks Corporation. mike.hernandez@eduworks.com
4 Yet Analytics. shelly@yetanalytics.com
5 Yet Analytics. cliff@yetanalytics.com
6 Yet Analytics. will@yetanalytics.com
7 University of Texas at Arlington. kowens@arlut.utexas.edu
8 Dignitas Technologies. mhoffman@dignitastechnologies.com
9 U.S. Army DEVCOM Soldier Center
benjamin.s.goldberg.civ@army.mil

8. REFERENCES
[1] B. Goldberg et al., “Forging Competency and Proficiency

through the Synthetic Training Environment with an
Experiential Learning for Readiness Strategy,” presented at
the Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC), Orlando, FL, 2021.

[2] A. Stone, “US Army makes headway on Synthetic Training
Environment,” Defense News, 30-Sep-2021. [Online].
Available: https://www.defensenews.com/training-
sim/2021/09/30/us-army-makes-headway-on-synthetic-
training-environment/. [Accessed: 13-Feb-2022].

[3] U. S. Army, “Appendix J - selected battle drills,” Army
Training Publication (ATP) 3-21.8. 2022.

[4] BISIMS, “VBS3,” Bohemia Interactive Simulations, 2022.
[Online]. Available: https://bisimulations.com/products/vbs3.
[Accessed: 04-Mar-2022].

[5] R. A. Sottilare, C. Shawn Burke, E. Salas, A. M. Sinatra, J.
H. Johnston, and S. B. Gilbert, “Designing Adaptive
Instruction for Teams: a Meta-Analysis,” International
Journal of Artificial Intelligence in Education, vol. 28, no. 2,
pp. 225–264, Jun. 2018.

[6] R. A. Sottilare, K. W. Brawner, A. M. Sinatra, and J. H.
Johnston, “An updated concept for a Generalized Intelligent
Framework for Tutoring (GIFT).” 2017.

[7] ADL Initiative, “Experience API (xAPI) standard,”
Experience API (xAPI) Standard. [Online]. Available:
https://adlnet.gov/projects/xapi/. [Accessed: 20-Feb-2022].

[8] ADL, “Competency & Skills System (CaSS),” Advanced
Distributed Learning Initiative. [Online]. Available:
https://adlnet.gov/projects/cass/. [Accessed: 04-Apr-2020].

[9] R. Robson and J. Poltrack, “Using competencies to map
performance across multiple activities,” in Proceedings of
the I/ITSEC, 2017.

[10] P. S. Gallagher, J. T. Folsom-Kovarik, S. Schatz, A. Barr,
and S. Turkaly, “Total Learning Architecture development:
A design-based research approach,” in Proceedings of the
I/ITSEC, 2017.

[11] ADL, “Understanding the TLA reference implementation,”
Advanced Distributed Learning Initiative, 2022. [Online].
Available: https://adlnet.gov/guides/tla/service-
definitions/TLA-Reference-Implementation.html. [Accessed:
28-Feb-2022].

[12] Yet Analytics, “SQL LRS,” SQL LRS. [Online]. Available:
https://www.sqllrs.com/. [Accessed: 27-Feb-2022].

[13] J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A
Theory of Higher Level Cognition and Its Relation to Visual
Attention,” Human–Computer Interaction, vol. 12, no. 4, pp.
439–462, Dec. 1997.

[14] T. S. Jastrzembski, K. A. Gluck, and G. Gunzelmann,
“Knowledge tracing and prediction of future trainee
performance,” Florida State University, 2006.

[15] R. Robson, X. Hu, E. Robson, and A. C. Graesser,
“Mathematical Models to Determine Competencies,” in
Design Recommendations for Intelligent Tutoring Systems -
Competency-Based Scenario Design, vol. 9, A. M. Sinatra,
A. C. Graesser, X. Hu, B. Goldberg, A. J. Hampton, and J. H.
Johnston, Eds. Orlando, FL: US Army Research Lab, 2022,
pp. 107–112.

[16] IEEE LTSC, “P9274.1.1,” JavaScript Object Notation
(JSON) Data Model Format and Representational State
Transfer (RESTful) Web Service for Learner Experience
Data Tracking and Access. [Online]. Available:
https://standards.ieee.org/ieee/9274.1.1/7321/. [Accessed:
20-Feb-2022].

[17] ADL, “xAPI-profiles: A set of documents addressing the
structure of and supporting services for xAPI Profiles,” 2018.
[Online]. Available: https://github.com/adlnet/xapi-profiles.
[Accessed: 27-Feb-2022].

[18] IEEE LTSC, “P9274.2.1,” Standard for JavaScript Object
Notation for Linked Data (JSON-LD) for Application
Profiles of Learner Experience Data, 2022. [Online].
Available: https://standards.ieee.org/ieee/9274.2.1/10570/.
[Accessed: 27-Feb-2022].

[19] GIFT, “Domain knowledge file 2021-2,” GIFT Tutoring
Portal, 2021. [Online]. Available:
https://www.gifttutoring.org/projects/gift/wiki/Domain_Kno
wledge_File_2021-2. [Accessed: 27-Feb-2022].

[20] ADL, “Data Simulator for TLA (DATASIM),” ADL
Initiative, 2020. [Online]. Available:
https://adlnet.gov/projects/datasim/. [Accessed: 24-May-
2020].

[21] S. Blake-Plock, “DATASIM: Data and Training Analytics
Simulated Input Modeler,” Yet Analytics, Mar. 2020.

