
Mining Artificially Generated Data to Estimate Competency 
Robby Robson1, Fritz Ray2, Mike Hernandez3, Shelly Blake-Plock4, Cliff Casey5, Will Hoyt6, 

Kevin Owens7, Michael Hoffman8, Benjamin Goldberg9 
 

ABSTRACT 
The context for this paper is the Synthetic Training Environment 
Experiential Learning – Readiness (STEEL-R) project [1], which 
aims to estimate individual and team competence using data 
collected from synthetic, semi-synthetic, and live scenario-based 
training exercises. In STEEL-R, the Generalized Intelligent 
Framework for Tutoring (GIFT) orchestrates scenario sessions and 
reports data as experience API (xAPI) statements. These statements 
are translated into assertions about individual and team 
competencies by the Competency and Skills System (CaSS). 
Mathematical models use these assertions to estimate the 
competency states of trainees. This information is displayed in a 
dashboard that enables users to explore progression over time and 
informs decisions concerning advancement to the next training 
phase and which skills to address. 

To test, tune, and demo STEEL-R, more data was needed than was 
available from real-world training exercises. Since the raw data 
used to estimate competencies are captured in xAPI statements, a 
component called DATASIM was added. DATASIM simulated 
training sessions by generating xAPI statements that conformed to 
a STEEL-R xAPI Profile. This facilitated testing of STEEL-R and 
was used to create a demo that highlighted the ability to map data 
from multiple training systems to a single competency framework 
and to generate a display that team leaders can use to personalize 
and optimize training across multiple training modalities.  

This paper gives an overview of STEEL-R, its architecture, and the 
features that enabled the use of artificial data. The paper explains 
how xAPI statements are converted to assertions and how these are 
used to estimate trainee competency. This is followed by a section 
on xAPI Profiles and on the xAPI Profile used in STEEL-R. The 
paper then discusses how artificial data were generated and the 
challenges of modeling longitudinal development and team in these 
data. The paper ends with a section on future research.  

1. INTRODUCTION  
The research reported in this paper relates to the US Army Synthetic 
Training Environment (STE) initiative that “brings together live 
and virtual training environments, aiming to deliver accessible 
exercises that mimic the full complexity of the physical world” [2]. 
To support this initiative, the initiative is developing infrastructure 
and a suite of Training Management Tools (TMT) that permit 
diverse training systems – including desktop game-based, mixed 
reality, virtual reality, augmented reality, and sensor-instrumented 
live training – to be rendered and integrated in a single training 
environment and training to be optimized within this environment.  

The goal of the STE Experiential Learning – Readiness (STEEL-
R) project is to support the STE TMT with software that collects 
evidence from training scenarios and uses this to estimate team and 
individual competency and performance probabilities, recommend 
training interventions, and inform the design of training scenarios. 
Research to date has focused on US Army battle drills [3], i.e., short 
tactical team scenarios intended to train individuals and teams to an 
automated response level. These include cognitive, psychomotor, 
and affective skills and behaviors that can be trained in a series of 
training systems that progress from first-person shooter game-like 
environments such as Virtual Battle Space 3 [4] (synthetic in this 
paper), to mixed reality and augmented reality environments (semi-
synthetic), and field exercises in which trainees are instrumented 
with sensors (live). Traditionally, observer controllers / trainers 
(OC/Ts) are present and can alter conditions on the fly to change 
difficulty or add stressors. A goal of the STE TMT is to accelerate 
development and skill retention by using data-driven automation 
and the capabilities of intelligent tutoring systems to support 
assessment and facilitate personalized coaching.  

The training addressed by STEEL-R is experiential, meaning that 
learning and mastery require repeated deliberate practice under 
varied conditions. To support experiential skill acquisition, the 
underlying competency and predictive models in STEEL-R must 
take longitudinal data and progression into account. This type of 
training also heavily involves team tasks and team dimensions such 
as cohesion, communication, and backup behaviors [5]. This adds 
further complexity to the underlying models and places further 
requirements on the data that must be collected to generate and test 
these models. Since the demand for such data is too large to be met 
by small trials, and since it is important that STEEL-R demonstrate 
good results prior to deployment in high-stakes real-world training, 
we saw artificial data as the best way to proceed in the early and 
middle stages of our research. We use the term artificial rather than 
synthetic in this paper to avoid confusion with synthetic training. 

This paper focuses on the use of artificial data, on the use of xAPI 
Profiles and DATASIM to produce artificial data, on the challenges 
encountered, and on the results obtained. We start with an overview 
of the STEEL-R architecture and it critical features, which is next. 

2. STEEL-R ARCHITECTURE  
Three systems play a central role in the STEEL-R architecture, 
shown in green in Figure 1. The first is the Generalized Intelligent 
Framework for Tutoring (GIFT) [6], which orchestrates scenario 
sessions. It connects to and collects data on trainee actions from 
training systems via connectors. GIFT examines these actions and 
assesses whether specified tasks, activities, and expected behaviors 
are performed or demonstrated at, below, or above expectations.  
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Figure 1: STEEL-R Component Architecture 

The second core component is a set of two Learning Record Stores 
(LRSs). Every time an assessed performance state changes, GIFT 
reports the state and associated session data to a “noisy” LRS via 
experience API (xAPI) [7] statements. This noisy LRS captures 
everything that is happening in a session. A second “transactional” 
LRS filters noisy LRS data, retaining only the overall assessment 
of each trainee in a session. Data from the transactional LRS is 
polled by an instance of the Competency and Skills System (CaSS) 
[8], the third core component. 

CaSS stores competency objects that represent the individual and 
team tasks, skills, knowledge, attitudes, and behaviors that a given 
instance of STEEL-R is intended to train and track. These are stored 
in competency frameworks that include relations among the skills, 
competencies, and behaviors these objects represent. As STEEL-R 
runs, CaSS collects xAPI statements and formulates assertions. An 
assertion is a statement to the effect that a trainee or team has or has 
not demonstrated competency based on identified evidence under 
specified conditions [9].  

A GIFT performance assessment generated can generate multiple 
assertions about multiple competency objects. As explained in 
Section 3, CaSS computes competency states from these assertions 
using mathematic models. Competency states and other data are 
sent by CaSS to a Dashboard that can be used use to view states, 
track progress, and make informed training decisions. Throughout 
this process, the chain of evidence is preserved so an OC/T can 
review and audit it. Dashboard data can be traced back through 
CaSS, the LRS, and GIFT to trainee actions that can be replayed in 
a GIFT “gamemaster” interface. 

A crucial feature of this architecture is that the data from all training 
systems is filtered through GIFT, where it is referenced against a 
common set of competency objects. Data from desktop games, 
mixed reality simulations, and live exercises can thus be combined 
to estimate and track the state of each single skill and competency. 

2.1 STEEL-R Implementation  
STEEL-R uses a Multiple Open System Architecture (MOSA) that 
integrates GIFT and the US Advanced Distributed Learning (ADL) 
initiative’s Total Learning Architecture (TLA) [10] [11]. Most 
components (including GIFT and CaSS) are customized versions 
of open-source software. The LRSs are instances of the Yet 
Analytics SQL LRS [12], and all components are hosted on a 
hybrid container-based platform (Docker™). Since STEEL-R is 
intended to support field operation, it is designed for offline use and 
the entire system can be deployed on a mid-range rugged laptop. In 
field deployments, STEEL-R collects data in offline mode and 
forwards it to a cloud hosted instance when it comes back online. 
The mechanisms that permit offline operation enable STEEL-R to 
assemble data received from multiple sources at different times into 

a coherent sequence of events along a single timeline. This feature 
turned out to be crucial, as will be discussed in Section 5.2.  

3. ESTIMATING COMPETENCY 
The current version of STEEL-R considers three competency states 
– untrained, practiced, and trained – and three training phases – 
crawl, walk, and run. The three states are derived from US Army 
doctrine, while the training phases roughly correspond to synthetic, 
semi-synthetic, and live training The Dashboard component of 
STEEL-R informs OC/Ts how an individual or team is progressing 
from untrained to practiced to trained within each training phase 
and how ready they are for the next training phase, i.e., to move 
from crawl to walk and walk to run. In future Army versions, an 
expert state may be added, and different states and phases may be 
used for different application domains.   

3.1 The Math Model 
CaSS populates the STEEL-R Dashboard with longitudinal data 
about the competency state of each individual or team. These states 
are estimated using a mathematical model (the “math model”) that 
involves a repetition function, an evidence function, and rollup 
rules. The repetition function represents the number of times a skill 
or competency has been trained, weighted by a forgetting function 
and a function that accounts for the value of spaced repetition. 
Similar methods are used in ACT-R [13] and the work of 
Jastrzembski and others on predicting future training performance 
[14]. The evidence function assigns a score between -1 and 1 that 
is derived from the history of performance assessments, taking skill 
decay, the trustworthiness of the evidence, and performance on 
related skills and competencies into account. Rollup rules allow 
performance on related skills and competencies to contribute to an 
evidence function and allow dependencies on performance under 
varied conditions and on the states of sub-skills to be added. More 
details model can be found in [15]. 

3.2 The Role of CaSS Assertions 
The raw data used to evaluate the repetition and evidence functions 
comes from assertions. Assertions are a fundamental data type in 
CaSS that expresses conclusions drawn from evidence in a uniform 
way. An assertion can identify its source, the on which the source 
relied, the source of the evidence, the person or team  and the CaSS 
competency object about which the assertion is made, a timestamp, 
a decay function, and a parameter that indicates the confidence its 
source has in the assertion [15]. Assertions can assert that a skill or 
competency was or was not demonstrated or is or is not possessed. 
Assertions can also identify the conditions under which the 
evidence was gathered e.g., difficulty factors and stressors.   

CaSS computes the repetition and evidence functions from data in 
assertions. For example, if a competency object represents the 
ability of a team or person to perform a task, CaSS examines all 
assertions about their performance on that task and uses these to 
determine when and how often and with what results the task was 
attempted under varied conditions. This information is used to 
compute the repetition and evidence functions, which are in turn 
used to estimate whether they are untrained, practiced, or trained 
within the crawl, walk, and run phases. 

3.3 Generating Assertions from xAPI 
GIFT does not directly make CaSS assertions. Instead, it assesses 
actions, activities, and expected behaviors based on data from a 
training system and emits xAPI statements that require translation 
into CaSS assertions. CaSS does this with a decoder. The decoder 
has a lookup table that maps activities to competency objects and 
specifies how the three states reported by GIFT (at, above, and 



below expectations) translate into positive or negative assertions 
about these objects. At present, this lookup table is hard-coded 
based on subject matter expert (SME) input.  

3.4 The Need for Data 
The math model and decoder have weights and parameters that can 
be set in a STEEL-R instance and control competency estimates. 
As STEEL-R develops, these will be used to compute performance 
probabilities and to recommend interventions and scenario designs. 
The system is designed so that its weights and parameters can be 
machine-learned, but at this stage they are manually set based on 
experimentation guided by theory. This requires significant data, 
and machine learning will require even more.  

The best data would be data from real-world training exercises. 
Unfortunately, there are limited opportunities to deploy STEEL-R 
in such exercises, and since many involve high-stakes training, 
STEEL-R must be thoroughly stress-tested and shown to produce 
reasonable results before deployment can be considered. For these 
reasons, we took the approach of generating artificial data. 

Referring to Figure 1, there is a choice as to where artificial data is 
inserted. One choice is to inject it into CaSS in the form of 
assertions. This can be used to test the math model, and early on we 
developed a small web app to do this, see Section 5. This allowed 
us to check formulas and code and to demonstrate how evidence 
affected competency estimates, but it was not sufficient to test the 
entire architecture. As a result, we decided to generate artificial 
xAPI statements that mimicked those generated by GIFT. This 
involves xAPI profiles, which are explained next.  

4. XAPI PROFILES 
The experience API (xAPI) is a mechanism for reporting and 
retrieving learner activities in an actor – verb – object – context - 
results format [7], [16].  xAPI statements in this format are sent to 
an LRS where they can be retrieved by other systems with 
appropriate permissions. xAPI statements are usually generated by 
an education or training system such as an LMS, simulation, or 
intelligent tutoring system, but statements can come from another 
LRS, as is done in the STEEL-R handoff between the noisy and 
transactional LRS. This ability enables multiple LRSs at the edge 
of a network to feed a central LRS, which improves scalability. The 
xAPI specification, which includes specifications for LRSs, was 
first developed by the ADL and is now undergoing more formal 
standardization in IEEE [16]. 

The xAPI specification is intended to be usable in any education or 
training ecosystem. To maintain flexibility, it does not specify the 
context or semantics of xAPI statements. In implementations it is 
necessary to add definitions and place restrictions on the format and 
elements in statements to ensure that data is properly reported and 
interpreted. This is done via xAPI Profiles [17]. 

xAPI Profiles define concepts, templates, patterns, and extensions 
for use in forming xAPI statements. Concepts define the vocabulary 
and attributes that may appear in xAPI statements, including verbs 
and activity types, and specify rules for how and when they can be 
used. Templates provide rules for constructing statements. Patterns 
are collections and sequences of templates that describe the actions 
associated with a task, performance, or learning path. Extensions 
enable new (externally defined) attributes to be used in statements. 
Together, these rules and definitions enable xAPI statements to be 
properly formed and interpreted. The xAPI profiles specification 
[18] establishes rules for serializing profiles in JavaScript Object 
Notation (JSON) and in JSON for Linked Data ( JSON-LD). Using 

JSON-LD, vocabulary can link to the same or similar terms in other 
profiles, creating a semantic web of xAPI statements. 

4.1 Designing the STEEL-R xAPI Profile  
A critical factor in designing any xAPI Profile is creating concepts, 
statement templates, and patterns that are flexible enough to be used 
in many different scenarios but restrictive enough to enable data to 
be reported and understood in use cases of interest. The challenge 
for STEEL-R is that STEEL-R is meant to support many types of 
experiential learning. Even in relatively narrow domains, it may be 
necessary to track and capture data on hundreds (or more) tasks, 
activities, and behaviors. Profiles could be created that specify the 
names of tasks and performance levels for each domain, but a more 
flexible approach is enabled by exploiting the capabilities of GIFT. 

4.2 The STEEL-R xAPI Profile 
As a scenario session unfolds, GIFT determines if performance on 
tasks, activities, and behaviors stored in a Domain Knowledge File 
(DKF) exceeds, meets, or is below expectations [19]. At present, 
CaSS only uses summative assessments at the session level, but 
GIFT generates a formative assessment each time a performance 
state changes and can record information about the exercise, such 
as the conditions under which performance was assessed. 

The xAPI profile designed for STEEL-R uses statement templates 
that enable tasks, activities, and behaviors to be referenced from the 
DKF and that report results on the GIFT three-step scale. This 
simplifies the form of statements, leaving the list of specific 
activities to GIFT.  The STEEL-R templates also allow scenario 
conditions to be reported and include extensions for linking a GIFT 
assessment to a recording of the session segment that produced it. 

To form a complete chain of evidence, STEEL-R xAPI statements 
can capture current performance states, changes in performance 
state, the factors that changed, and the conditions present when the 
state changed. Of particular interest to our future research is the 
ability to identify stressors and difficulty factors, both of which can 
be dynamically altered mid-session. Stress and difficulty are now 
being included in xAPI statements as discrete variables that are 
evaluated by GIFT and that CaSS can use in its math models.  

Patterns represent the lifecycle of trainee participation in a training 
session. The templates in these patterns are populated by system 
events such as starting or joining a session, interactions within the 
session that could result in changes to a trainee’s psychomotor, 
cognitive, or affective state, and GIFT’s conclusions about a 
learner’s overall performance with respect to specified tasks. Event 
data reported by GIFT is used to select the appropriate template and 
to filled in the template based template rules.  

5. GENERATING ARTIFICIAL DATA 
For testing purposes, artificial data was generated in two ways. The 
first was through a small app that was purpose-built to test and 
demonstrate the math model. This app allows users to apply hard-
coded assertions about competency objects in a framework and 
displays how the repetition and evidence functions, competency 
state, and performance probabilities change with each statement.   



 
Figure 2: User applying a competency assertion  

A second screen shows how the estimated probability of successful 
performance varies over time as both positive and negative 
assertions are activated. This visualization proved useful for both 
demonstrating and validating the math model. 

 
Figure 3: Display showing how applying assertions changed the 
estimate of performance probability as evidence accumulated.  

5.1 DATASIM 
The second method used to generate artificial data used an open-
source component of the ADL’s TLA reference implementation 
[11] called the Data and Training Analytics Simulated Input 
Modeler (DATASIM) [20]. DATASIM can produce xAPI datasets 
that conform to one or more xAPI Profiles at small scale (tens to 
thousands of statements) and large scale (over a billion statements). 
DATASIM is controlled by a simulation specification that a user 
defines via a user interface.  Each simulation specification includes 
an xAPI Profile, the actors in the simulation, and parameters that 
specify the involvement of each actor in each type of activity as 
well as start and stop times, a seed value, and the maximum number 
of xAPI statements to be generated.  

Within a given simulation, DATASIM generates a pseudo-random 
autoregressive moving average (ARMA) time series (called the 

common time series) and a pseudo-random ARMA time series for 
each actor, each determined by the seed value. An actor generates 
an xAPI statement whenever their time series graph crosses the 
common time series graph [21]. When that happens, a Gaussian that 
is weighted by parameters in the simulation profile is sampled for 
each possible pattern and the pattern with the highest value is used. 
The same is then done to select templates in the pattern, statements 
in each template, and concepts in each statement. 

5.2 Applications to STEEL-R 
We used DATASIM to benchmark and stress-test STEEL-R, which 
was the original purpose of DATASIM [21]. By using the same 
actors, we could simulate multiple successive training sessions 
across each training phase and by referencing the same competency 
objects in the CaSS decoder, we could generate assertions about 
same competencies, skills, and behaviors at each stage. This let us 
validate system operation and benchmark performance at every 
point and for every component downstream of GIFT. It did not, 
however, give us the desired level of realism.  

Although xAPI profiles enable DATASIM to generate data that 
statistically reflects the right mix of training events and outcomes 
at the macro level, DATASIM has no mechanism that allows a 
given actor to develop competency as they engage in successive 
activities and no mechanism to realistically correlate individual and 
team behavior. Thus, if DATASIM is used to simulate people 
performing a series of tasks, it will produce about the right number 
of successful and unsuccessful task completions but cannot alter its 
parameters during a simulation so that a person who successfully 
completes the early tasks will be more likely to successfully 
complete later ones. Similarly, if one of the actors is a team, 
DATASIM, the probability of team events cannot be changed based 
on the activities of team members during a simulation. Since 
longitudinal data and developmental progression are fundamental 
to experiential learning, we needed a way to reflect individual 
development and team dynamics.  

We did this by running series of micro-simulations instead of one 
large one and by manually set parameters between runs. Each 
micro-simulation produced data for the same actors in a small time 
slice. This gave us greater control over the progression of outputs 
and implied team dynamics. STEEL-R treated these as offline data, 
automatically stringing them together to create a sequence of 
activities along a single timeline. This produced enough data to test 
and tune STEEL-R and to implement the use case described next. 

5.3 A Use Case and Implementation 
In November of 2021 we used DATASIM to implement and demo 
a use case in which a small team underwent three days of training. 
Our goal was to highlight how team competency improved and 
progressed from crawl to walk as interactions with multiple training 
systems activated cognitive, psychomotor, and affective skills.  

On day one, the team trained on Army battle drill 6 (BD6) [3] in a 
synthetic game-based environment. This was done in multiple 
sessions with under varied conditions and with varied difficulty 
levels. DATASIM micro-simulations were manually configured to 
show performance improvement over the course of day one. On day 
two, BD6 training continued in a mixed reality environment that 
activated psychomotor skills. The data from day one showed that 
the team knew what to do, so day two provided opportunities to 
apply that knowledge in a safe controlled environment with more 
realistic interactions. The data generated by DATASIM represented 
exposure to numerous scenarios and showed further performance 
improvement. At the start of day three the team leader looked at the 



Dashboard (Figure 4) and noticed that the team was progressing 
well on BD6 but there were potential skill decay issues with a 
related task trained in a previous battle drill. As a result, the team 
leader initiated training of this previous battle drill. The third day 
of training activated some of the same skills as the first two days 
and resulted in improvements in skills that seemed to have decayed.  

 
Figure 4: Part of the Dashboard, showing progress on reported 
by CaSS and derived from artificial data.  

6. CONLUSION  
The use case we implemented and demonstrated with artificial data 
showed the art of the possible. It showed a team leader using 
competency estimates derived from multiple and varied training 
environments to personalize a training plan and the potential to 
optimize training time by leveraging multiple training modalities 
within a given training cycle. The ability to mine artificial data 
enabled us to stress-test and benchmark STEEL-R and permitted us 
to visualize the effects of parameters in the formulas and models 
used to estimate competency. This served as an excellent tool for 
debugging, tuning, and demonstrating the models, and we continue 
to take this approach as we make changes and add features.  

We note that as of November of 2021, neither difficulty or stress 
levels were reported by GIFT or used by CaSS. These are critical 
factors that can be manipulated during training sessions and that 
should be used when determining whether an individual or team is 
trained and ready to advance. GIFT is now reporting difficulty and 
stress levels in xAPI statements, and we are incorporating difficulty 
and stress into the decoder, math model, and Dashboard.  

Finally, our work with DATASIM exposed the need to model the 
progress of simulated individuals and to correlate individual and 
team behaviors. We did this with manually manipulated micro-
simulations, which is labor intensive and will not scale. In this 
regard, we are exploring two further research directions. The first 
is to implement ways to dynamically alter the parameters used to 
generate artificial data during a single simulation. The second is to 
enable the parameters that control these alterations to be machine-
learned. These will create a virtuous cycle wherein artificial data 
are used to test and tune new features and models, these features 
and models are used to improve real-world training, and real-world 
training data are used to improve the generation of artificial data. 
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