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ABSTRACT
Knowledge space theory (KST) is a mathematical frame-
work for modeling and assessing student knowledge. While
KST has successfully served as the foundation of several
learning systems, recent advancements in machine learning
provide an opportunity to improve on purely KST-based
approaches to assessing student knowledge. As such, in this
work we compare the performance of an existing KST-based
adaptive assessment to that of a newly developed version—
with this new version combining the predictive power of a
neural network model with the strengths of existing KST-
based approaches. Using a cluster randomized experiment
containing data from approximately 140,000 assessments, we
show that the new neural network assessment engine im-
proves on the performance of the existing KST version, both
on standard classification metrics, as well as on measures
more specific to the student learning experience.

Keywords
Adaptive assessment, neural networks, knowledge space the-
ory

1. INTRODUCTION
Combining elements of probability theory and combinatorics,
knowledge space theory (KST) is a mathematical approach
to the modeling and assessing of student knowledge [12, 15].
KST-based adaptive assessments focus on identifying the set
of topics that are most likely to be known by a student, with
many such implementations having been developed over the
years [6, 7, 18, 20]. The particular system at the center of
this work is ALEKS, an adaptive learning system covering
subjects such as math, statistics, and chemistry. The foun-
dation of the system is an initial assessment that is given
to a student at the beginning of an ALEKS course, with
the information from this assessment being used to guide
their subsequent learning in the system. The current ver-
sion of the initial assessment engine uses a KST-based model
that employs many features and concepts described in the

KST literature (informative summaries of these ideas can be
found in [13] and Chapter 13 of [15]).

Several works have evaluated the validity and reliability of
KST-based assessments, with the results indicating that such
assessments are both accurate and valid [5, 6, 10, 28]. How-
ever, current innovations in machine learning and, in par-
ticular, neural network models provide an opportunity to
improve on purely KST-based approaches to adaptive as-
sessments. As such, a newer version of the ALEKS initial
assessment was recently developed and released into pro-
duction for testing. By augmenting the KST-based adap-
tive assessment approach with a neural network model that
can better leverage the years of accumulated ALEKS user
data, we hope to make improvements to the accuracy and
efficiency of the initial assessment. Thus, in the current
study we evaluate this new assessment engine by analyzing
the results from a randomized experiment—or, A/B test—
comparing the performance of the two different versions of
the ALEKS initial assessment.

2. BACKGROUND
In this section, we give a brief background of the ALEKS
system and the two versions of its initial assessment en-
gine. Within the ALEKS system, a topic is a problem type
that covers a discrete unit of an academic course—Figure 1
contains a screen capture of an example math topic titled
“Introduction to solving an equation with parentheses.” A
knowledge state is a collection of topics that, conceivably, a
student can know at any one time. The collection of knowl-
edge states is known as the knowledge space. Based on the
knowledge space, the topics in an ALEKS course contain
many prerequisite relationships. That is, topic a is a pre-
requisite for topic b if a contains certain core material that
must be mastered before learning the material in b.

In order to ensure students are learning the most appropri-
ate topics, the initial assessment is given at the start of an
ALEKS course, with the purpose of this assessment being to
measure the student’s incoming knowledge. In this assess-
ment, a student is presented topics from the course, and for
each topic they can either submit a response—which is then
graded as either correct or incorrect—or they can click on
the “I don’t know” button if they are unable to answer the
question. This assessment is adaptive, in that it selects the
current question based on the responses to the earlier ques-
tions in the assessment. At most 30 questions are asked,
which balances the need to acquire information on the stu-
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dent’s knowledge state with the possibility of overwhelming
the student.1 After each question, a probability is computed
for each topic in the course, with this probability estimating
how likely it is that the student knows the topic. At the
end of the assessment, based on both these probability es-
timates and the prerequisite relationships in the knowledge
space, the ALEKS system partitions the topics in the course
into the following three categories.

• Topics that are most likely known

• Topics that are most likely unknown

• All remaining topics (uncertain)

The student’s knowledge state consists of the topics in the
known category.2 Due to the enormous numbers of possi-
ble knowledge states, KST-based assessments typically use
simplifications in order to model the relationships between
topics. Perhaps the most common approach is to focus
solely on identifying the prerequisite—or, topic to topic—
relationships when developing the knowledge space; these
are variously known as partial order or ordinal knowledge
spaces [8, 9, 11, 15]. While adaptive assessments using these
approaches have been successful [6, 7, 10, 20], there is an
inherent loss of information when mainly focusing on the
pairwise relationships between the topics. Although meth-
ods have been outlined for moving beyond pairwise relation-
ships and looking at larger groups of topics simultaneously,
the computational complexity grows substantially with each
added topic, and research has thus far been mostly limited
to small groups of at most three or four topics [11].

Motivated by this issue, the new version of the ALEKS as-
sessment engine is powered by a neural network model that,
for each topic, estimates the probability of a correct an-
swer. The advantage of a neural network is that it has
the flexibility to model more complex relationships between
the topics—that is, it can go beyond focusing on specific
relationships between pairs or very small groups of topics.
However, for both practical and theoretical reasons, it’s de-
sirable that the neural network model work within the ex-
isting KST framework of the ALEKS system. While other
attempts have been made at applying neural networks to
ALEKS data [21, 22, 24], none of these previous models took
into account the specific details of the knowledge spaces. As
such, the distinguishing feature of the neural network used
for the initial assessment is that it applies a specially de-
signed architecture to output probabilities consistent with
the knowledge space—in particular, this architecture en-
sures that the probability estimates follow the prerequisite
relationships among the topics. Thus, the neural network
can leverage the vast amounts of ALEKS data to make ac-
curate predictions, while simultaneously respecting the set
of knowledge states and thereby ensuring these predictions
are pedagogically sound. Notably, similar ideas have been
successfully applied in knowledge tracing models, where it’s
been shown that leveraging prerequisite relationships can be
done effectively through the loss function of a neural network
[2], or by utilizing dynamic Bayesian networks [19].
1See [23] for evidence of a ‘fatigue effect’ experienced by
students towards the end of an ALEKS assessment.
2The distinction between the unknown and uncertain topics
is mainly relevant for the student’s learning in the system,
with these categorizations determining the amount of work
required before a topic is considered to be mastered.

Figure 1: Screen capture of the ALEKS topic “In-
troduction to solving an equation with parentheses.”

3. EXPERIMENTAL SETUP
Neural network models were trained for eight ALEKS prod-
ucts: middle school math courses 1-3 (in the U.S., these cor-
respond to grades 6 through 8); general chemistry A and B
(the first and second semesters of college-level general chem-
istry, respectively); and three college-level math classes (pre-
calculus, college algebra, and college algebra with trigonom-
etry). Although we do not have access to specific demo-
graphic information for the students in our data, we can say
that the majority of the middle school users are from U.S.
public schools, while the higher education users come from
both community colleges and four-year institutions, again
mainly from the U.S. We began evaluating the new assess-
ment engine in mid-December of 2021, using A/B testing
to compare its performance to that of the existing version
of the assessment, with data being collected through Febru-
ary of 2022. For the aforementioned products, we used a
cluster randomized design to assign the two versions of the
assessment at the class level, an approach commonly used
for educational studies [14, 27, 29]. Specifically, each class
was randomly assigned to receive either the new assessment
or the old assessment, whereupon all the students in that
class then received the same version of the assessment.

For the middle school and chemistry products, the neural
network models were trained with the exact data sets that
were used to build the models for the existing version of
the ALEKS assessment engine; as such, our analyses on
these products are the most informative when trying to pre-
cisely estimate the differences in performance between the
two engines. In comparison, rather than being restricted to
a certain time period, the college math neural network mod-
els were trained on all the available data. Thus, from the
purely scientific perspective of measuring the differences be-
tween the assessment engines, comparing the results on the
college math courses is perhaps less useful. However, from
the more practical standpoint of understanding the (pos-
sible) gains from updating existing ALEKS products with
the new engine, we believe this analysis to be informative.
That is, there are currently many older ALEKS products
that haven’t been updated over the past several years; thus,
if these products were updated with the new neural net-
work assessment engine, they would stand to gain from both
the application of the neural network and the extra data
used to train the model. As such, we believe this analysis
gives some insight into the potential benefits from converting
these older ALEKS products to the new assessment engine.
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Table 1: Summary statistics for the three groups of ALEKS products.

Product Type
Total Average number Extra problem

Classes Assessments of topics correct rate

Middle school math
KST 5,311 19,480 433.6 0.334

NN 5,407 19,313 436.4 0.330

Chemistry
KST 360 16,315 158.0 0.264

NN 381 18,812 155.2 0.257

College math
KST 1,247 33,207 258.2 0.317

NN 1,202 30,785 253.9 0.311

4. ANALYSIS
In order to compare the performance of the two assessment
models, in what follows we make use of an extra problem that
is asked during each initial assessment. This extra prob-
lem is chosen uniformly at random from the topics in the
course and presented to the student as an assessment ques-
tion. However, the answer to the extra problem does not af-
fect the results of the assessment—instead, the information
from the extra problem is used to evaluate and improve the
ALEKS system. In Table 1 we show summary statistics after
partitioning the products into three distinct groups—middle
school math (middle school math courses 1–3), chemistry
(general chemistry A and B), and college math (precalculus,
college algebra, and college algebra with trigonometry)—
and also the two treatment arms of our analysis—the KST-
based assessment, and the neural network assessment (NN).
In addition to showing the total numbers of classes and ini-
tial assessments taken, we also show the average number of
topics used by each class, weighted by the number of assess-
ments per class.3 Finally, in the last column we display the
average correct answer rate to the extra problem.

Our first analysis compares the performance of the two as-
sessment models by treating them as binary classifiers, where
we consider a positive outcome to be a correct answer to the
extra problem, while a negative outcome is either an incor-
rect or “I don’t know” response. We compare the assessment
engines using three metrics: area under the receiver operat-
ing characteristic curve (AUROC), point biserial correlation
(rpb), and accuracy score. AUROC is frequently used to
evaluate probabilistic classifiers, and it is known to perform
well even with some class imbalance [16]. The point biserial
correlation is a special case of the Pearson correlation co-
efficient in which one variable is dichotomous (the student
response) and the other variable is continuous (the prob-
ability estimate from the assessment).4 While the actual
probabilities are used in the computations of AUROC and
the point biserial correlation, for the accuracy calculation we

3While each course has a default set of recommended topics,
the instructor is free to add or remove topics from this set.
4The Matthews correlation coefficient (MCC) [25] is a re-
lated statistic that is regarded as being an informative mea-
sure for evaluating binary classifiers [1, 3, 4, 26]. As the
MCC is mathematically equivalent to the Pearson correla-
tion coefficient of two dichotomous variables—also known
as the phi coefficient—the only difference from computing
the point biserial correlation is that the MCC requires we
dichotimize the probability estimates. However, since this
would result in some loss of information, we prefer to use
the point biserial correlation for our current evaluations.

assume any probability at or above 0.5 is a positive predic-
tion, with anything below 0.5 then being considered a nega-
tive prediction. We should clarify that while this assignment
of prediction labels is a standard procedure used to evaluate
binary classifiers, it does not necessarily correspond to the
actual classifications made by the ALEKS system—we look
at these ALEKS-specific classifications in more detail later.

As students are grouped—or, “clustered”—into classes, to
compute confidence intervals around the point estimates we
use the following bootstrap procedure, applied separately to
each product and assessment engine pair. That is, we ap-
ply this procedure a total of six times: once for the middle
school products using the KST engine, then for the mid-
dle school products using the neural network engine, then
for the chemistry products with the KST engine, etc. The
first step in the procedure is to resample our data using the
cluster bootstrap, a modified version of the standard boot-
strap that specifically works with clustered data [17]. For
our analysis, classes are randomly sampled with replacement
from our original data set, until we have a sample of classes
equal to the number in our original data set. Then, we
combine all the assessments from these selected classes to
generate one bootstrap sample—note this means that some
classes, as well as the associated assessments, appear mul-
tiple times in the sample. Next, we compute our statistics
for this bootstrap sample, and we then repeat this entire
procedure until we’ve generated 20,000 bootstrap samples
in total. Finally, since each resulting bootstrap distribution
turns out to be symmetric and centered at the original val-
ues of the statistic—i.e., the value of the statistic computed
from our original set of data—we compute each confidence
interval by simply taking the 2.5th and 97.5th percentiles.

The results are shown in Table 2. For the middle school
products, we can see that the neural network engine per-
forms better according to each of the metrics, even after tak-
ing into account the confidence intervals. Next, the results
for the chemistry products are less conclusive. Although the
point estimates are all higher for the neural network engine,
based on the confidence intervals in the third column there’s
uncertainty with the signs of these differences. Finally, for
the college math products the neural network engine again
has much stronger performance compared to the KST-based
assessment—we reiterate that this is expected, as the college
math neural network models had access to more recent data
in comparison to the corresponding KST models.

While the results for the middle school and college math
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Table 2: Comparison of the two assessment engines, using the area under the receiver operating characteristic
curve (AUROC), point biserial correlation coefficient (rpb), and accuracy score. Numbers in parentheses
represent the 95% confidence intervals computed from 20,000 cluster bootstrap samples.

Product Metric
Assessment type Difference

KST NN NN−KST

Middle school math

AUROC 0.875 (0.870, 0.881) 0.894 (0.889, 0.899) 0.019 (0.011, 0.026)

rpb 0.624 (0.612, 0.635) 0.674 (0.664, 0.684) 0.050 (0.035, 0.065)

Accuracy 0.811 (0.805, 0.817) 0.831 (0.825, 0.836) 0.020 (0.012, 0.028)

Chemistry

AUROC 0.871 (0.861, 0.881) 0.880 (0.873, 0.888) 0.009 (-0.003, 0.022)

rpb 0.610 (0.585, 0.634) 0.629 (0.613, 0.646) 0.019 (-0.010, 0.049)

Accuracy 0.837 (0.829, 0.845) 0.838 (0.827, 0.849) 0.001 (-0.013, 0.014)

College math

AUROC 0.861 (0.856, 0.867) 0.898 (0.893, 0.902) 0.036 (0.029, 0.043)

rpb 0.599 (0.589, 0.610) 0.674 (0.664, 0.684) 0.075 (0.060, 0.089)

Accuracy 0.814 (0.807, 0.821) 0.838 (0.833, 0.843) 0.024 (0.015, 0.032)

products are encouraging, the performance of the chemistry
neural network models is slightly unexpected. Based on our
previous evaluations when training the neural network mod-
els, we expected a larger performance improvement over the
KST-based assessment for the chemistry products—in com-
parison, the performance of the middle school and college
math neural network assessments are consistent with our ex-
pectations. A possible concern is that there are differences
between the chemistry student populations using the two dif-
ferent assessment engines—while not conclusive, some of the
statistics in Table 1 are suggestive of such a difference. To
start, although there are over 35,000 total assessments taken
for the chemistry products, the number of unique classes is
low in comparison to the other products—for example, the
number of chemistry classes (741) is a small fraction of the
number of middle school classes (10,718). This is impor-
tant, since in a cluster randomized experiment such as ours,
the number of clusters is typically more restrictive than the
overall sample size [29], and such designs have a higher risk
of non-equivalence between the experimental groups [14, 27].
Additionally, for the chemistry products the neural network
group has about 15% more assessments taken than the KST
group, which is possibly another sign of non-equivalence be-
tween the groups. While these differences aren’t conclusive,
they at least suggest that the student populations may dif-
fer in some respect. Thus, in the next section we analyze
the chemistry products further in order to obtain a better
understanding of the results.

5. REANALYZING THE CHEMISTRY AS-
SESSMENTS

To investigate the possibility that the student populations
are not equalized across the chemistry experimental groups,
we take advantage of the fact that an ALEKS assessment
can be “replayed” on an assessment engine different from
the one that was originally used. For example, suppose a
student takes an assessment using the KST-based engine.
Once this assessment is completed, we can feed the questions
and responses to the neural network engine—taking care
to remove the extra problem from this process—generate
probability estimates, and then evaluate the probability for
the extra problem in the original assessment. The main

drawback to this approach is that the engine used for the
replay assessment won’t be able to choose the questions that
are given to the student, which could theoretically bias the
results somewhat. However, the advantage of this approach,
and the reason we employ it here, is that it allows us to
directly compare the assessment engines on the same sets of
data, removing any concerns about the non-equivalence of
the experimental groups.

To that end, using the data from the 16,315 chemistry as-
sessments originally taken with the KST engine, we feed the
questions and responses to the neural network models and
generate probability estimates. We then take these prob-
abilities and compute our evaluation metrics on the extra
problems. Next, we repeat the same procedure in the other
direction—that is, using the data from the 18,812 chemistry
assessments that originally used the neural network engine,
we take the questions and responses from each assessment
and feed them to the KST-based engine. As before, we use
the resulting probabilities to compute our evaluation metrics
on the extra problems.

Table 3: Comparison of the replayed assessments
on the chemistry products. Numbers in parenthe-
ses represent the 95% confidence intervals computed
from 20,000 cluster bootstrap samples.

Metric
Assessment type Difference
KST NN NN - KST

AUROC
0.856 0.889 0.033

(0.847, 0.866) (0.881, 0.898) (0.020, 0.046)

rpb
0.581 0.651 0.070

(0.561, 0.602) (0.630, 0.671) (0.041, 0.099)

Accuracy
0.824 0.844 0.021

(0.812, 0.835) (0.836, 0.853) (0.007, 0.035)

The results are shown in Table 3, where we can see a large
difference in performance between the two assessment en-
gines. In contrast to the results from Table 2, on the re-
played assessments the neural network engine does much
better, while the performance of the KST assessment en-
gine has dropped noticeably. As such, the contrast in per-
formance between the assessment engines is clearer, with
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the 95% confidence intervals for the differences (third col-
umn) all bounded away from zero. So, it does appear likely
that there are underlying population differences between the
groups of students using the two assessment engines. Thus,
arguably the fairest comparison is to use both the actual as-
sessment data and the replayed assessment data, and then
compare the assessment engines based on this combined data
set. The results are shown in Table 4, where we can see a
relatively clear performance gap between the two engines,
albeit not quite as large as in Table 3.

Table 4: Combined comparison of the two assess-
ment engines on the chemistry products, including
data from both the original and replayed assess-
ments. Numbers in parentheses represent the 95%
confidence intervals computed from 20,000 cluster
bootstrap samples.

Metric
Assessment type Difference
KST NN NN - KST

AUROC
0.863 0.885 0.022

(0.856, 0.870) (0.879, 0.891) (0.012, 0.031)

rpb
0.594 0.639 0.045

(0.578, 0.610) (0.626, 0.653) (0.024, 0.067)

Accuracy
0.830 0.841 0.011

(0.823, 0.837) (0.834, 0.848) (0.001, 0.021)

6. ALEKS KNOWLEDGE STATES
While the previous analyses have compared the performance
of the assessment engines assuming they are standard binary
classifiers, in this section we compare the models based on
measures more specific to the ALEKS system. In what fol-
lows, we restrict our analyses to the middle school data, as
we believe this data set gives the most balanced and fair
comparison between the two assessment engines.

Recall that the purpose of the initial assessment is to identify
the topics in a student’s knowledge state—that is, the topics
in the known category. Since the ALEKS system uses this
information to determine what a student is ready to learn,
inaccurately measuring a knowledge state would negatively
affect the student’s learning experience. For example, giving
a student credit for many topics that aren’t justified could
cause the student to start their learning with topics for which
they aren’t prepared, possibly leading to frustration. On the
other hand, not giving a student enough credit for topics
they know has an opposite effect, as the student may start
with topics that are too easy, causing boredom.

To start, in Figure 2 we show a relative frequency histogram
of the number of topics classified as known after each assess-
ment is completed. The striped (blue) bars represent the
19,313 assessments from the neural network engine, while
the solid bars show the proportions for the 19,480 assess-
ments from the KST engine. The mean and median are
112.5 and 98, respectively, for the neural network engine; in
comparison, these values are 106.9 and 85 for the KST en-
gine. Depending on whether we use the mean or median to
describe the outcome of a “typical” assessment, the knowl-
edge states from the neural network assessment engine are
larger by either 5.2% (mean) or 15.3% (median). Further-
more, the first and third quartiles for the neural network

engine are 52 and 159, respectively, with these values being
42 and 152 for the KST engine. These differences possibly
indicate that the advantages of the neural network engine
apply to a diverse sample of students, rather than only those
in a specific part of the distribution. Moreover, it’s encour-
aging that the gains are larger for the students in the first
quartile, as the relative benefit of the additional topics is
greater for students with smaller knowledge states.

0 100 200 300 400 500
Number of topics

0.00

0.02

0.04

0.06

NN
KST

Figure 2: Relative frequency histogram of the num-
ber of known topics for the middle school products.

While the knowledge states from the neural network engine
tend to be larger, it’s important that they are also accurate;
assigning more topics to the known category is of limited use
if the topics aren’t actually known by the students. As such,
in our next analysis we look at how often students answer
correctly to the extra problem based on the classification
(or, categorization) of the ALEKS system—either known,
unknown, or uncertain. The results are shown in Table 5.
Starting with the known category, we can see that students
answer correctly more often with the neural network engine
compared to the KST engine—0.792 vs. 0.788. Addition-
ally, the neural network classifies the extra problem as being
known more often than the KST model—0.271 vs. 0.259—
which is consistent with the results in Figure 2. Next, note
that while we want a high rate of correct answers to the
topics in the known category, for topics in the unknown cat-
egory we want the opposite—that is, a low correct answer
rate to the unknown topics indicates the classifications are
accurate. We can see that the unknown topics for the neural
network engine have a lower correct answer rate in compar-
ison to those from the KST engine—at the same time, the
proportions of topics labeled as unknown are comparable.
Finally, the neural network engine has a lower proportion
of topics in the uncertain category, showing that overall it’s
more aggressive in labeling topics as known or unknown.

In this last analysis we’d like to get a different perspective on
the performance of the models. In particular, both assess-
ment engines rely on the same underlying knowledge spaces,
which means the prerequisite relationships between the top-
ics are the same. Furthermore, when a topic is answered cor-
rectly during an assessment, the ALEKS system uses these
prerequisite relationships to classify topics as being known—
specifically, if a topic is answered correctly, that topic, as
well as all of its prerequisites, are classified as known. Since
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Table 5: Statistics for the assessment engines, par-
titioned by the classification of the extra problem.

Classification
Assessment type

KST NN

Known
Proportion 0.259 0.271

Correct rate 0.788 0.792

Unknown
Proportion 0.573 0.574

Correct rate 0.106 0.088

Uncertain
Proportion 0.168 0.154

Correct rate 0.412 0.421

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

NN (AUPRC = 0.687)
KST (AUPRC = 0.617)

Figure 3: Precision-recall curves for the extra prob-
lems that are not directly classified by the prerequi-
site relationships.

this behavior is the same for each assessment engine, we
want to remove these classifications and obtain a more nu-
anced view of the differences in performance. Additionally,
these“prerequisite”classifications tend to be the easiest ones
for the assessment engines to make, and so by removing them
we can evaluate the engines on a more challenging subset of
the data. To that end, we remove any extra problem that
(a) also appeared as a regular assessment question and was
answered correctly, or (b) is a prerequisite of a topic that
was correctly answered during the assessment—this leaves
us with 16,122 and 15,963 extra problems for the KST and
neural network engines, respectively. Since the performance
of the ALEKS system depends on the assessment’s ability to
correctly classify the topics in a student’s knowledge state
(i.e., precision), while simultaneously identifying as many
such topics as possible (i.e., recall), for these data points
we plot the precision-recall curves, as we can then compare
the performance of the assessment engines across a range
of thresholds. The results are shown in Figure 3, where we
can see that the neural network curve dominates for the vast
majority of the recall values, with the precision values being
substantially higher in many places. Overall, it’s informa-
tive to see the strong performance of the neural network
assessment engine on this specific subset of the data.

7. DISCUSSION
In this work we presented and analyzed the results of a ran-
domized experiment—or, A/B test—comparing two differ-

ent versions of the ALEKS initial assessment engine. The
purpose of this analysis was to validate the neural network
assessment engine and verify it improves upon the exist-
ing version that’s based on knowledge space theory (KST).
While an initial analysis indicated strong improvement for
the middle school and college math products, the difference
was less clear for the chemistry products. To investigate fur-
ther, we reanalyzed the chemistry assessments by“replaying”
each of them with the competing engine. This analysis sug-
gested that the student populations in the two experimen-
tal groups for the chemistry products were not completely
equivalent, confounding the comparison. Thus, we adjusted
for the non-equivalence of the student populations by com-
bining the data from both the replayed and actual assess-
ments, with the results indicating that the neural network
assessment outperformed the KST-based version. Finally,
we evaluated the assessment engines on metrics more specific
to the ALEKS system—in these analyses, we saw that the
neural network assessment gave students credit for knowing
more topics, while simultaneously being more accurate.

The chemistry results were interesting and somewhat sur-
prising. Given the large numbers of students in the two ex-
perimental groups, it was unexpected that, as suggested by
the replay results, these groups would be dissimilar. How-
ever, since many of the chemistry students are from large
universities, the class sizes also tend to be large—thus, as
seen in Table 1 the number of distinct classes is relatively
small. (In comparison, the middle school products have
a higher number of “independent” users—e.g., homeschool-
ing/home education students, or individual students seeking
extra help—resulting in smaller average class sizes.) In ex-
perimental designs with multilevel structure such as ours,
the number of clusters—represented by the student classes
in our data—is typically more important than the overall
sample size in ensuring the baseline equivalence of the ex-
perimental groups [14, 27, 29]. As such, our experience high-
lights the fact that the use of cluster randomized designs,
while desirable in education research for several reasons, can
lead to difficulties with the statistical analysis of the results,
and that this can be an issue even with seemingly large sam-
ples of data.

Overall, we found the performance of the neural network
assessment engine to be promising, in that it has the po-
tential to benefit students in multiple ways. For example,
the fact that it returns larger knowledge states in compar-
ison to the KST engine—and, importantly, without a drop
in accuracy—means that students do not have to spend
as much time working on topics they may already know.
Thus, students can learn more efficiently and spend more
time working on completely new material, hopefully allow-
ing them to progress further in the course. Yet another pos-
sible benefit pertains directly to the initial assessment itself.
User feedback from both students and teachers has informed
us that there is a desire for a shorter initial assessment, one
that asks fewer questions and takes less time to finish. Given
the gain in performance, it seems plausible that the neural
network assessment could still improve on the KST-based
assessment even if fewer questions are asked. We are cur-
rently looking at this possibility in detail, with the hope of
shortening the initial assessment and improving the student
experience within the ALEKS system.
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