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ABSTRACT

Deep generative models with a specific variational autoen-
coding structure are capable of estimating parameters for
the multidimensional logistic 2-parameter (ML2P) model
in item response theory. In this work, we incorporated Q-
matrix and variational autoencoder (VAE) to estimate item
parameters with correlated and independent latent abilities,
and we validate Q-matrix via the root mean square error
(RMSE), bias, correlation, and AIC and BIC test score.
The incorporation of a non-identity covariance matrix in a
VAE requires a novel VAE architecture, which can be uti-
lized in applications outside of education such as players
performance evaluation, clinical trials assessment. More-
over, results show that the ML2P-VAE method is capable
of estimating parameters and validating Q-matrix for models
with a large number of latent variables with low computa-
tional cost, whereas traditional methods are infeasible for
data with high-dimensional latent traits.
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1. INTRODUCTION

Item Response Theory (IRT) is a popular model for the
understanding of human learning and problem-solving skill
and to predict human behavior and performance. Since the
1950s [21], thousands of researchers have used IRT in fields,
e.g., education, medicine, and psychology, and this includes
many critical contexts such as survey analysis, popular ques-
tionnaires, medical diagnosis, and school system assessment.

More recently, computer-assisted open-access learning has
gotten more popular worldwide, e.g., Khan Academy, Cours-
era, and EdX have developed a new challenge to handle
large-scale student and trace performance [15].
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In the deep learning domain, a revolution in deep generative
models via variational autoencoders [12] [14], has demon-
strated an impressive ability to perform fast inference for
complex MIRT models. In this research, we present a novel
application of variational autoencoders to MIRT, explore in-
dependent and correlated latent traits in the MIRT model
via simulated data, and apply them to real-world examples.
We then show the impact of Q-miss (wrong Q-matrix) when
mixed compared with the original Q-matrix (Q-true).

Specifically, in this paper, we have explored two research
questions as follows: first, how to use variational autoen-
coder in the estimation of MIRT models with large numbers
of correlated and independent latent traits? Second, how are
the effects of various factors such as the percentage of misfit
items in the test and item quality (e.g., discrimination) on
item and model fit in case of misspecification of Q-matrix?

Most closely related to the present work, Converse [2] uti-
lized variational autoencoders(VAE) to estimate item pa-
rameters with correlated latent abilities and directly com-
pared ML2P-VAE with traditional methods. Curi [1] intro-
duces novel variational autoencoders to estimate item pa-
rameters with independent latent traits. Guo [16] explored
the neural network approach and compared the outcome
with the DINA model. Converse [3] compared outcomes
between autoencoders (AE) and variational autoencoders
(VAE). Wu [21] investigated the novel application of varia-
tional inference and incorporated IRT in the model via sim-
ulated and real data. Different from Converse [2], and Curri
[1], we use both independent and latent traits in the VAE
model. Moreover, we have explored the effect of Q-matrix
misspecification in MIRT parameter estimation via different
fit statistics, e.g., RMSE, BIAS, AIC, & BIC score measures.

The Multidimensional Logistic 2-Parameter (ML2P) model
gives the probability of students answering a particular ques-
tion as a continuous function of student ability [14]. There
are two types of parameters associated with each item: a
difficulty parameter b; for the item ¢, and a discrimination
parameter a;; > 0 for each latent trait, £ quantifying the
hierarchy of ability k required to answer the item ¢ correctly.
The ML2P model gives the probability of a student j with
latent abilities answering an item ¢ correctly as
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2. VARIATIONAL AUTOENCODERS
The variational autoencoder (VAE) is a directed model that
uses learned approximate inference and can be trained purely

with gradient-based methods[12]. It is similar to auto-encoders

but with a probabilistic twist. VAE makes the additional
assumption that the low-dimensional representation of data
follows some probability distribution N(0,I), and fits the
encoded data to this distribution.

The main use of a VAE as a generative model, VAE gen-
erates X to X after training and feed-forward through the
decoder. By Bayes’ rule, we can write the unknown posterior
distribution. In our case, we generalized VAE as N (p, X). In
order to keep both P and Q distribution similar, Kullback-
Liebler divergence Dkr.(P || @) plays a key role in the neural
network loss function. The KL-Divergence is given by as fol-
lows:

KL[q(® | z) || [£(© | 2)] = Eo~ q(© | a)ltosa(©lx) =t (Ol

(2)
As shown by Kingma and Welling [12] that minimizing Eq.
2 while still reconstructing input data is equivalent to max-
imizing.

Ep ~q(0] m)[logP(X:x\@)—KL[q(@p;)\|f(@)] (3)

Next, the VAE is trained by a gradient descent algorithm
to minimize the loss function. In this case, Lo is the cross-
entropy loss function and A is a regularization hyperparam-
eter.

L(W) = Lo(W) + AKL[g(© | z) || f(©)] (4)

Root mean squared error (RMSE): RMSE criterion reflects
the average magnitude of the bias between the true item pa-
rameters and their associated estimates. A smaller RMSE
suggests higher estimation accuracy. Moreover, we also looked
into Akaike information criterion (AIC), and Bayesian infor-
mation criterion (BIC) score to explore MIRT model estima-
tion when using Q-Miss.

First, we have incorporated the independent and correlated
latent traits via the ML2P-VAE model proposed by Curi [1],
and Converse [2]. We have extended this work by validating
Q-matrix based on root, mean, square, error (RMSE), BIAS,
and Correlation score.

We made modifications to the architecture of the neural net-
work to allow for the interpretation of weights and biases
in the decoder as item parameter estimates, and activation
values in the encoded hidden layer as ability parameter esti-
mates. As we know, sometimes researchers call neural net-
works are usually uninterpretable and function as a black-
box model. However, following the addition of Q-matrix in
the second from the last layer will make NN more inter-
pretable.

The required modifications are as follows. The decoder of
the variational autoencoder has no hidden layers. The non-
zero weights in the decoder, connecting the encoded dis-
tribution to the output layer, are determined by a given

Q-matrix [19]. Thus, these two layers are not densely con-
nected. The output layer must use the sigmoid activation
function as follows: 1

o) = 1 (5)
When latent traits are assumed to be correlated, a full corre-
lation matrix must be provided for the ML2P-VAE model.
However, a correlation matrix is not required when latent
traits are assumed to be independent. This corresponds to
the fixed covariance matrix ;. ML2P-VAE can estimate
ability, discrimination, and difficulty parameters, but it does
not estimate correlations between latent traits.

Also, the input to our neural network consists of n nodes,
representing items on an assessment. After a sufficient num-
ber of hidden layers of sufficient size, the encoder outputs K
+ K(K + 1)/2 nodes. The architecture for correlated latent
traits is more complex than we think (See Visualization of
Deep-VAE architecture for two correlated latent traits and
ten input items model via this link[tinyurl.com/aied22].

2.1 Q-Matrix and Misspecification of Q-matrix

Specification of Q-matrix is mainly criticized because of its
subjective nature [17]. Misspecification in the cognitive di-
agnostic model (CDM) mostly occurs because of the types
of the attributes, construct of the attribute, Q-matrix, or se-
lected cognitive diagnostic model [6]. In this experiment, we
utilized only a misfit source because Q-matrix misspecifica-
tion was examined, and no changes were made in students’
responses. In the study, the Q-matrix was misspecified by
a mixed approach, and misfit items used in this study are
presented in Table 1 (See misfit items table in Appendix
2:tinyurl.com/aied22). When the Q-matrix was misspeci-
fied, one attribute was translated from 1 to 0, and another
attribute was translated from 0 to 1, but the number of
measured attributes didn’t change, which is referred to as
mixed.

In the architecture of the model ML2P-VAE, we train the
neural network with the ADAM optimizer (pure stochastic
gradient descent). A simulated assessment with six latent
abilities used two hidden layers of sizes 50 and 25. The
largest network we used was for an assessment of 20 latent
abilities, which utilized two hidden layers of sizes 100 and
50.

3. THE DEEP-Q ALGORITHM

For convenience, we are calling this algorithm the Deep-Q
algorithm. The steps of the Deep-Q algorithm are as follows-

Step 1: Use the variational autoencoder and multidimen-
sional item response theory (MI12P-VAE) model [2] to
estimate students’ ability and item parameters based
on Q-True and the response data.

Step 2: Compute all items’ via RMSE, BIAS, and Correla-
tion test score values based on Q-True and the stu-
dent’s ability and item parameters estimated at Step
1. We also use AIC and BIC scores to compare Q-true
and Q-miss.

Step 3: Randomly misspecify Q-true by 10% and 20% to
change Q-True.



Table 1: Q-matrix validation measures via RMSE, BIAS and Correlation score for discrimination (a), difficulty (b), and ability
0 parameters with correlated latent traits

Data Miss Method a.RMSE a.BIAS a.Corr b.RMSE b.BIAS b.Corr 6.RMSE 6.BIAS 6.Corr
QTrue 0.1465 0.0100  0.9427 0.0750 0.0100  0.9988 0.8120 0.0476  0.5815

N=18000 10%nriss  Qnriss 0.2297  0.0195 0.8562  0.0993 0.0083 0.9986  0.8398  0.0637  0.5486
20%nriss Qs 0.2621  0.0466 0.7984  0.1684  0.0268 0.9962 0.8684  0.1660 0.5351

QTrue 0.1007 0.0259  0.9094 0.2098 -0.0186  0.9984 0.5614 -0.0013 0.8686

N=60000 10%nsiss  Qmiss 0.2525  0.0654 0.8430  0.2881 0.0129 0.9926  0.7288  0.0037  0.6859
20%nriss  Quiss 0.2200  0.0367 0.8777  0.2191 0.0243 0.9952  0.6561  0.0166 0.7551

Step 4: Repeat step-1 with Q-miss (Q-miss, Step 3).

Step 5: Compare Q-True(top row, boldface) with Q-miss.
Q-true should yield a small RMSE/BIAS and a strong
correlation score, AIC, and BIC score for difficulty,
discrimination, and ability parameters.

4. METHODOLOGY

We ran experiments on two data sets: (i) 6 traits, 35 items,
and 18000 students, and (ii) 20 traits, 200 items, and 60,000
students. It is also important to mention here that true pa-
rameter values, for both students and items, are only avail-
able for simulated data. When simulating data, we used the
Pythons SciPy package to generate a symmetric positive def-
inite matrix with 1s on the diagonal (correlation matrix) and
all matrix entries non-negative. All latent traits had correla-
tion values between 0,1. We assumed that each latent trait
was mean-centered at 0. Then, we sampled ability vectors
to create simulated students. We generated a random Q-
matrix where each entry ¢;; ~ Bern(0.2). If a column for
each element after sampling from this Bernoulli distribution,
one random element was changed to a 1. Discrimination pa-
rameters were sampled from a range so from 0.25 to 1.75
for each item i, and difficulty parameters were sampled uni-
formly from - 3 to 3. Finally, response sets for each student
were sampled from the ML2P model using these parameters.

S. RESULTS

All experiments were conducted using TensorFlow for R
and the ML2Pvae package [4] on an iMac computer with
a 3.1 GHz Intel Core i5 via Google Colab Premium, 12 GB
NVIDIA Tesla K80 GPU.

Table 1 presents the estimation accuracy of Q under Q-True
and Q-miss. The range of values for each criterion is pro-
vided in the second and third row of Table 1, and the num-
bers in bold denote better performance in the associated
criterion for the corresponding method, e.g., Q-Miss.

Overall, Table-1 indicates that the Deep-Q method yields
a better fit statistic score and strong correlation score than
the Q-miss situation when using a wrong Q-matrices. This
result is corroborated by the correlation plots between the

true discrimination parameters and the weights of the de-
coder, displayed in Fig. 1 and 2 (see Appendix for larger
view).

In addition, Q-matrix validation measures via AIC, BIC
score for discrimination (a), difficulty (b), and ability 6 pa-
rameters with correlated latent traits remain consistent with
Table-1 outcome (see AIC and BIC scores in the Appendix).

In Fig 1(A and B), the correlation plots of discrimination pa-
rameter estimate for data with items and latent traits. Each
color represents discrimination parameters relating to one of
each latent skill. In the ability parameter, each color in the
plot represents discrimination and ability parameters associ-
ated with each latent trait. Difficulty parameters are on the
item level, not the latent trait level. So in each item, I have
exactly one difficulty parameter b;, regardless of the number
of latent skills. The interpretation is similar for independent
latent traits, as described in figure 1(A). Plots show corre-
lated latent traits and show better outcomes compared to
independent latent traits.

6. DISCUSSION AND CONCLUSION

An incorrect Q-matrix can lead to a significant change in the
assessment outcomes when applied to CDMs. As a result,
a Q-matrix validation strategy to reduce assessment error
is becoming increasingly important. Several approaches, in-
cluding EM-based and non-parametric methods, have shown
the ability to identify and create an acceptable Q-matrix.
However, to the best of the authors’ knowledge, their exper-
iment utilizes traditional IRT parameter estimation where
they utilize low-dimensional latent traits and students’ re-
sponses. However, the Deep-Q algorithm is most useful with
high and low-dimensional data.

Moreover, Converse’s [2] study shows that MIRT parameter
estimation results via the M12P-VAE model are competitive
compared to traditional IRT parameter estimation methods.
Our study used a Deep-Q algorithm, a deep learning-based
algorithm, to identify and validate a Q-matrix for small and
large-scale latent traits. Deep-Q could be useful for large-
scale assessments, e.g., PISA and TIMSS.

ML2P-VAE is a novel technique that allows IRT parame-
ter estimation of independent and correlated low and high-
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Figure 1: (A)Discrimination, Difficulty, and Ability Parameter Estimates with Independent Latent Traits (B) Discrimination,
Difficulty, and Ability Parameter Estimates with Correlated Latent Traits.

dimensional latent traits. Ultimately, it can be said that
the Deep-Q algorithm succeeds in detecting misfit items in
both large and small sample cases. ML2P-VAE methods
and Deep-Q are most useful on high-dimensional data, but
even when applied to smaller data sets where traditional
techniques are feasible, the results from current methods
are competitive.
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