Detecting When a Learner Requires Assistance with
Programming and Delivering a Useful Hint

Marcus Messer
King’s College London

marcus.messer@kcl.ac.uk

ABSTRACT

Over the last few years, computer science class sizes have in-
creased, resulting in tutors providing more support to strug-
gling students, and instructors having less time per-student
in larger classes. Universities typically assign multiple tu-
tors to lab sessions, especially introductory programming
courses, to maximise the help available to students during
their sessions. However, using multiple tutors does not help
struggling students outside of official sessions. The lack of
support outside official settings is especially the case for on-
line courses and remote learning. To help resolve student
frustration from not being able to get support when they
need it, we propose a tool that can detect when a student
is struggling with their programming task and give them a
hint that gets them closer to their goal.

Keywords
computer science education, computer programs, sequence
mining, learning behaviours, feedback

1. INTRODUCTION

Over the last few years, the number of students enrolled in
computer science courses has increased [12] and self-directed
learning is becoming more prevalent. As class sizes grow,
it becomes more difficult for course leaders and assistants
to assist in programming labs. This difficulty is because it
takes time to solve and explain various programming issues,
and instructors have less time per-student in larger classes.
Multiple tutors are frequently assigned to a single lab to
maximise the availability of expert assistance. However, not
all students will receive assistance during their scheduled
lab sessions in some circumstances, particularly approaching
deadlines, when multiple requests for help occur in a single
lab session. Even if a tutor is available, many students do
not seek assistance when struggling to solve a problem [15].
However, if a tutor offers a student support, they will usually
accept it.

M. Messer. Detecting when a learner requires assistance with pro-
gramming and delivering a useful hint. In A. Mitrovic and N. Bosch,
editors, Proceedings of the 15th International Conference on Educa-
tional Data Mining, pages 778-781, Durham, United Kingdom, July
2022. International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6852958

Students have limited access to expert support outside of
regular classes and office hours. The limited access is espe-
cially true for online courses, distance learning and students
undertaking self-directed learning. The limited expert help
in and outside official settings may lead to prolonged frus-
tration, one of the leading causes of students dropping out
[20].

A student could seek help for numerous programming areas,
including compiler errors, logical errors, code style and best
practice. Detecting code style issues and best practices are
solved using various static code analysis tools, such as Find-
Bugs and CheckStyle. FindBugs detects bad practices, per-
formance, correctness, and “dodgy code” using pre-defined
bug patterns, including common issues for novice program-
mers. Examples of which includes the comparison of String
objects using “== or !=" and issues that cause Index0Qut0f-
BoundsException [2]. CheckStyle detects various code style
issues, including incorrect naming conventions and code de-

sign [7].

Some of the most challenging errors to solve are compiler er-
rors, examples of which include “missing return statement”,
“method call: parameter type mismatch”, and “method call
targeting the wrong type” [16]. Understanding compiler
error messages and correcting them is difficult and time-
consuming for programmers of any degree of experience, es-
pecially novices [22]. Poorly written error messages could
lead to a student not solving a problem for hours or days
without help. Even with skilled help, an error could take
several minutes to correct [13]. While compiler errors can
be challenging to solve, logical errors are considerably more
challenging to correct because they usually necessitate un-
derstanding the problem’s context and the student’s written
work.

The proposed research will focus on detecting when a stu-
dent requires assistance with compiler, logic and style errors
and providing a meaningful hint on how to solve the error.

2. BACKGROUND & RELATED WORK

Previous work on detecting a struggling student has focused
on other aspects than the source code. Spacco et al. used
measures based on time and number of submissions to de-
tect flailing students [21]. Rodrigo and Baker investigated
detecting the aggregate frustration over many labs, using
compilation based measures [20].


https://doi.org/10.5281/zenodo.6852958

The compilation measures that Rodrigo and Baker imple-
mented were the average time between compilations, the to-
tal number of compilations, the total number of errors, and
Jadud’s Error Quotient (EQ) [20]. The EQ indicates how
well a student can handle syntax errors while programming.
It looks at successive pairs of compile events to see if both
result in an error and if the error type is the same [9] (refined
in [10]).

Recent research has investigated how EQ could be improved.
Watson and Godwin created the Watwin algorithm, using
consecutive compiler events to calculate a score; however,
they also included checks for whether the error is on the same
line and penalties for the time taken to solve each compila-
tion pairing [23]. In addition, Becker developed the repeated
error density (RED), which calculates a score based on re-
peated error strings, accounting for the lengths of repeated
error strings in a sequence and assigning higher penalties for
higher repeated error density [4].

While programming, students are given different types of
feedback, the most common of which is next-step hints. Af-
ter a student is stuck in a state and requires help to progress,
a next-step hint will guide them to a more complete and cor-
rect version of the code [1].

There have been many implementations of next-step hints

in different programming environments. Obermiiller et al.

have recently implemented next-step hints into Scratch. They
first select a set of suitable candidate solutions using an au-

tomated test suite, then find the best matching candidate

solution as the target solution. After they have the stu-

dents and the target solution, they determine differences

in the Abstract Syntax Tree (AST) to synthesise the hints

[17]. However, this solution requires abundant candidate

solutions.

There have been multiple attempts to provide hints in vast
and sparsely populated spaces. Paafien et al. produced the
Continous Hint Factory (CHF'), which uses a supervised ma-
chine learning approach to provide a hint to the student.
CHF uses the edit distance of the student’s current state
and traces data of past students who have visited the same
state in similar states to choose the edit with the lowest error
as the hint [18].

While Paaf3sen et al.’s approach still require some trace data,
Rivers and Koedinger use at least one reference solution and
a test method to produce a solution space to find the next-
step hint. They use a path construction algorithm to find
the edit path from the current state to the solution, then
finds the closest correct state within the space to find the
edit that will be the basis of the next-step hint [19].

The previous approaches to next-step hint generation re-
quire trace data or a reference solution, but what if the
student is the first to attempt such a task? Efremov et
al. have used a reinforcement learning-based neural network
hint policy to enable next-step hints for students attempting
a programing task for the very first time [8].

3. PROBLEM STATEMENT

As Computer Science courses grow, the need for expert help
increases; this is especially the case for online courses, re-
mote learning and approaching coursework deadlines. Al-
though having more tutors in regular sessions allows for
more help, increasing the support offered in and out of the
classroom would be beneficial.

Our research will investigate the following research ques-
tions:

RQ1 How can traces of student code changes be used to
detect struggling students?

RQ2 After detecting a struggling student, when is the most
effective time to give them a hint?

RQ3 Can we generate next-step hints that focus on syntac-
tic and logical errors comparable to the support offered
by human tutors in these areas?

4. PROPOSED METHOD

The first phase of this project will determine whether or
not a student is struggling. We will use Blackbox, a large
dataset of novice programming data collected over the last
eight years [6], to look for trends that could signal a strug-
gling student. Blackbox is a large scale repository of novice
programmers’ activity, including the length of programming
sessions, compilation event history, and editing behaviour
[6]. The editing behaviour includes a history of source code
changes, allowing researchers to step through each change of
a student’s code iteratively. We will explore patterns that
could identify struggling students using the source code and
compiler histories.

We will use existing research to detect at-risk students using
compiled histories and invocations, such as the “Watwin” al-
gorithm [23] and Repeated Error Density [5]. In conjunction
with the compiler history, we will investigate the source code
patterns that indicate that a student is struggling. We will
use data mining approaches to derive developers’ behaviour
patterns, similar to Kinnewbrew’s research into learners’ be-
haviour. Kinnebrew et al. used interaction trace data from
Betty’s Brain, which introduced students to a science topic
(climate change). They abstracted and labelled different ac-
tivities into different categories to analyse the data using dif-
ferential sequence mining, identifying differentially frequent
patterns across two groups of sequences [11].

We will investigate using interaction traces of source code
to detect struggling students. Source code traces will allow
us to examine how the student develops and any patterns
in their programming and debugging practices that could
indicate that they are struggling. Using source code traces
could detect more struggling students than just compiler
histories, as source code traces enable us to analyse more
than just compiler related issues. An example pattern of a
struggling student could be commenting out large chunks of
code, potentially followed by uncommenting small portions
to figure out which part of the code is causing their problem,
which could signify that the student has trouble debugging
and locating the problem. Another example may be the
number of revisions made to a single code block in a given
timeframe, suggesting that they are having trouble solving



a logical or syntactic mistake, depending on the compilation
result.

We will use the patterns we found to detect when a student
is struggling and give them a hint.

In order to give students a next-step hint, we will integrate
the ideas of the Continuous Hint Factory (CHF) [18] and
Evremov et al.’s research on using reinforcement learning to
generate next-step hints [8]. We will use CHF as our primary
method of producing hints, using Blackbox as the basis of
potential candidate solutions. Blackbox contains data from
opted-in users of BlueJ [14]. BlueJ is an educational IDE
used worldwide by many different institutions at many dif-
ferent education levels. Accompanying BlueJ is a widely
used textbook [3] that provides example projects and tasks,
of which there are multiple solutions within Blackbox. How-
ever, there will be cases where a student is programming a
task for the first time, such as new coursework. These cases
are where Evremov et al.’s approach comes into effect, the
ability to still provide next-step hints for the very first at-
tempts of new programming tasks without the requirement
of producing candidate or model solutions.

We will use Blackbox to learn patterns of struggling students
and for elements of hint generation, as Blackbox contains
both compile history and source code changes. To imple-
ment the ideas discussed in this section, we will create a
plugin for BlueJ, which will run continuously in the back-
ground analysing the students’ compile history and source
code traces, comparing them to any patterns we have learnt
from Blackbox. The plugin will include a “human-in-the-
loop” process, enabling the user to give feedback to the sys-
tem if the detection of their struggle was correct or if the
hint helped solve their issue.

The following are the proposed steps that the system will
follow:

1. While the student develops and compiles, the system
will analyse the source code and compile histories for
defined patterns.

2. If a pattern is detected, ask the user if they would like
a hint.

(a) If yes, give the student a hint and ask them to
rate the quality and usefulness of the hint.

(b) If no, log that they did not want a hint. If enough
students give feedback that they do not want a
hint for this specific pattern, flag it for investiga-
tion.

3. If the same pattern on the same part of the code is de-
tected, repeat steps 2a and 2b, but with a more specific
hint.

4. Repeat the steps above while the student develops.

We will conduct a series of trials to evaluate our proposed
tool to determine if our system correctly detects struggling
students and if the hints delivered are meaningful. Our tri-
als could include asking students of various skills levels to

complete a set of programming tasks of increasing difficulty,
with and without our proposed tool. After they complete
the programming tasks, we could interview the students to
determine if they thought they were offered a hint at the cor-
rect time and if the hint given was helpful. In addition to
interviewing students, we may ask tutors for their feedback
on whether the suggested method provided timely assistance
and whether the hints assisted students in learning.

5. RISKS OF NEXT-STEP HINTS

This project aims to generate hints that will trigger a learn-
ing effect. We will have to hypothesise what area of the
programming task the student is struggling with in order to
generate a hint that will increase the students’ understand-
ing in that area. Using patterns of student development be-
haviour with next-step hint techniques could indicate which
area the student is struggling with and give them a hint that
increases their understanding and help them continue with
their programming task.

While employing next-step hints might help students learn,
there is a risk that using incrementally more specific hints
can harm learning by giving students answers without teach-
ing them how to improve. Students who abuse the hint sys-
tem in this way exacerbate the risk of them not learning
how to improve. We will investigate different methods to
decrease the possibility of abuse in traditional hint systems,
including providing a hint only when the system recognises
that the student is having difficulty. However, this may not
eliminate the risk, as some students will learn how to ma-
nipulate erroneous detections in order to obtain consecutive
suggestions that will lead to the correct answer.

These risks lead to the pedagogical question: Should the
system give the student the answer if they have fundamen-
tal misunderstandings? While undertaking this project, we
will aim to minimise the risks discussed in this section and
maximise the learning effect of the generated hints.

6. PROPOSED CONTRIBUTIONS

The proposed contributions of the above research will in-
clude:

e A method that can detect a struggling student using
compiler error history and source code changes.

e Investigate when is the optimal time to hint after de-
tecting a struggling student.

e A tool for detecting struggling students and giving
them an appropriate next-step hint at the right time.

These contributions will benefit the Computer Science Ed-
ucation community by offering a tool to support students
inside and outside formal education settings and alleviate
some growing pressure on tutors of large classes.

7. CONCLUSION

We proposed the development of a tool that can detect when
a programmer, mainly a novice programmer, is struggling
and provide them with a next-step hint. We will look into
how various pattern recognition techniques and past work on



metrics can be used to identify a struggling student based
on compiler and code change histories.

8.
1]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

V. Aleven, I. Roll, B. M. Mclaren, and K. R.
Koedinger. Help helps, but only so much: Research on
help seeking with intelligent tutoring systems. Int J
Artif Intell Educ, 26:205-223, 2016.

N. Ayewah, D. Hovemeyer, D. J. Morgenthaler,

J. Penix, and W. Pugh. Using static analysis to find
bugs. IEEE Software, 25:22-29, 2008.

D. J. Barnes and M. Kolling. Objects First With Java
- A Practical Introduction Using BlueJ. Pearson, sixth
edition, 2016.

B. A. Becker. A new metric to quantify repeated
compiler errors for novice programmers. Annual
Conference on Innovation and Technology in
Computer Science FEducation, ITiCSE,
11-13-July-2016:296-301, 7 2016.

B. A. Becker. A new metric to quantify repeated
compiler errors for novice programmers. Annual
Conference on Innovation and Technology in
Computer Science Fducation, ITiCSE,
11-13-July-2016:296-301, 7 2016.

N. C. C. Brown, M. Kélling, D. Mccall, and I. Utting.
Blackbox: A large scale repository of novice
programmers’ activity. Proceedings of the 45th ACM
technical symposium on Computer science education,
2014.

O. Burn. Checkstyle. hitp://checkstyle. sourceforge.
net/, 2003.

A. Efremov, A. Ghosh, and A. Singla. Zero-shot
learning of hint policy via reinforcement learning and
program synthesis. International Conference on
Educational Data Mining (EDM), 2020.

M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. ICER 2006 - Proceedings of
the 2nd International Computing Education Research
Workshop, 2006:73-84, 2006.

M. C. Jadud, M. Mercedes, T. Rodrigo, E. Tabanao,
M. Beatriz, and E. Lahoz. Analyzing online protocols
to characterize novice java programmers. Philippine
Journal of Science, 138:177-190, 2009.

J. S. Kinnebrew, K. M. Loretz, and G. Biswas. A
contextualized, differential sequence mining method to
derive students’ learning behavior patterns. Journal of
Educational Data Mining, 5:190-219, 2013.

S. Krusche, L. M. Reimer, B. Bruegge, and N. von
Frankenberg. An interactive learning method to
engage students in modeling. Proceedings of the
ACM/IEEFE 42nd International Conference on
Software Engineering: Software Engineering Education
and Training, 20, 2020.

M. Kélling. The design of an object-oriented
environment and language for teaching. pages
145-146, 1999.

M. Koélling, B. Quig, A. Patterson, and J. Rosenberg.
The bluej system and its pedagogy.
http://dx.doi.org/10.1076/csed.13.4.249.17496,
21:249-268, 2010.

F. Lee. When the going gets tough, do the tough ask
for help? help seeking and power motivation in

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

organizations. Organizational Behavior and Human
Decision Processes, 72:336—363, 12 1997.

D. McCall and M. Kolling. A new look at novice
programmer errors. ACM Transactions on Computing
Education (TOCE), 19, 7 2019.

F. Obermiiller, U. Heuer, and G. Fraser. Guiding
next-step hint generation using automated tests.
Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science
FEducation V. 1, 2021.

B. Paaflen, B. Hammer, T. W. Price, T. Barnes,

S. Gross, and N. Pinkwart. The continuous hint
factory - providing hints in vast and sparsely
populated edit distance spaces. 8 2017.

K. Rivers and K. R. Koedinger. Data-driven hint
generation in vast solution spaces: a self-improving
python programming tutor. International Journal of
Artificial Intelligence in Education 2015 27:1,
27:37-64, 10 2015.

M. M. T. Rodrigo and R. S. J. Baker. Coarse-grained
detection of student frustration in an introductory
programming course. ICER’09 - Proceedings of the
2009 ACM Workshop on International Computing
Education Research, pages 75-79, 2009.

J. Spacco, P. Denny, B. Richards, D. Babcock,

D. Hovemeyer, J. Moscola, and R. Duvall. Analyzing
student work patterns using programming exercise
data. Proceedings of the 46th ACM Technical
Symposium on Computer Science Education.

V. J. Traver. On compiler error messages: What they
say and what they mean. Advances in
Human-Computer Interaction, 2010, 2010.

C. Watson, F. W. Li, and J. L. Godwin. Predicting
performance in an introductory programming course
by logging and analyzing student programming
behavior. Proceedings - 2013 IEEE 13th International
Conference on Advanced Learning Technologies,
ICALT 2013, pages 319-323, 2013.



