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Human one-on-one coaching involves complex multimodal interactions. Successful coaching
requires teachers to closely monitor students’ cognitive-affective states and provide support of
optimal type, timing, and amount. However, most of the existing human tutoring studies fo-
cus primarily on verbal interactions and have yet to incorporate the rich aspects of multimodal
cognitive-affective experiences. Meanwhile, the research community lacks principled meth-
ods to fully exploit the complex multimodal data to uncover the causal relationships between
coaching supports and students’ cognitive-affective experiences and their stable individual fac-
tors. We explore an analytical framework that is explainable and amenable to incorporating do-
main knowledge. The proposed framework combines statistical approaches in Sparse Multiple
Canonical Correlation, causal discovery and inference methods for observations. We demon-
strate this framework using a multimodal one-on-one math problem-solving coaching dataset
collected at naturalist home environments involving parents and young children. The insights
derived from our analyses may inform the design of effective technology-inspired interventions
that are personalized and adaptive.
Keywords: multimodal learning analytics, causal discovery, causal inference, parent coaching,
affective and cognitive support

1. INTRODUCTION

Studies on human one-on-one tutoring or coaching have a long history (Du Boulay and
Luckin, 2016). The insights of effective tutoring strategies and tactics have informed the
design the machine-supported tutoring systems such as Intelligent Tutoring Systems
(ITS) (Graesser et al., 2000). Human tutoring is inherently a rich multimodal interac-
tion process where the students’ cognitive-affective experiences and teachers’ coaching
decisions intertwine. However, most of the existing human tutoring studies focus on
the cognitive processes by considering only a single modality of verbal interactions
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(e.g. (Lehman et al., 2012)) and rarely incorporate important signal exchanges via non-
verbal channels such as eye gaze or body postures, and the affective experiences.

In recent years, Multimodal Learning Analytics (MLA, (Ochoa, 2017)) has emerged
as a new sub-field of Learning Analytics which provides methodological frameworks to
study a wide range of learning and teaching phenomena. Using MLA, students’ certain
behaviors can now be tracked and measured using sensors in various contexts, which
then may be used to infer students’ cognitive and affective states. However, most work
is situated in learning contexts when students interact with computer systems rather
than with human tutors or coaches. Therefore, there are under-explored opportunities
to study human tutoring from the multimodal perspective by leveraging the new sens-
ing technology. On the other hand, we recognize the various challenges in conducting
in-depth analyses on a large scale with human tutoring data. The challenges are exacer-
bated when we move beyond the perceptual level of machine intelligence of recogniz-
ing cognitive-affective states, and quest for the in-depth causal knowledge to be mined
from the complex multi-party multimodal datasets. One of this paper’s objectives is
to fill the gaps in the analytical tools to gain deeper insights into the human-human
interactions by observing coaching processes. Those tools are building blocks toward
the vision of computer-supported tutoring systems that are equipped with higher level
human intelligence in reasoning and decision making.

This paper introduces a novel analytical framework that enables researchers to per-
form causal inference of the multimodal data collected from human one-on-one coach-
ing data. The proposed framework goes beyond the traditional human tutoring anal-
ysis and attempts to address three additional aspects of human-tutoring data analysis
that are under-represented in the current literature:

1. How to leverage rich multimodal data to capture a wide range of behavioral sig-
nals observed in the tutoring process;

2. How to discover and characterize the relationship between two intimately re-
lated processes, i.e., the coach’s decisions and the child’s affective-cognitive ex-
periences;

3. How to uncover causal relationships among the descriptors from multimodal
dyadic interaction data.

Achieving those goals requires us to resolve the tension between the complexity of
the multimodal data streams that are also often highly-dimensional and observed at
high frequencies, and the desire for explainable and transparent modeling to support
interpretable causal discovery and inference. The proposed pipeline is a two-step pro-
cedure that combines the sparsity-induced search for systems of multiple composite
variables with high correlation, followed by causal discovery and inference.

We demonstrate the framework using a dataset collected from 15 parent-child dyads
when parents coach their children on challenging math problem-solving at home. We
frame the coaching process as an implicit optimization process by a parent to resolve
an instance of Assistance Dilemmas (Koedinger and Aleven, 2007). Specifically, on a
moment-by-moment basis, parents need to render supports to induce the right amount
of productive struggle (Kapur, 2014). In essence, parent coaches need to strike a delicate
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balance between coaching supports that are too limited, leading to overly frustrating
experience, and supports that are too intense, which may degrade the perseverance
opportunity and lead to undesirable child’s state of “learned helplessness” (Miller and
Norman, 1979). Concretely, parents need to make decisions on the amount, type (cog-
nitive, meta-cognitive, or social/emotional) and timing of their support. In this paper,
we are interested in understanding parents’ coaching decisions regarding the amount
and type of supports that we explore in the context of children’s cognitive-affective ex-
periences, which can be observed and estimated from multimodal behavioral signals.
Additionally, we study how the interactions are influenced by a child’s stable traits
such as personality or belief. We are interested in recognizing what kind of interven-
tion has happened. More importantly, we seek to understand why certain types of
intervention take place and what are the consequences of those interventions. We hope
to recover those intricate pathways of influence from the observational data we gath-
ered in the multi-subject study and, where appropriate, from domain knowledge. The
methodology we employ is a combination of structural model discovery and statistical
hypothesis testing.

The analyses described in this paper are based primarily on ground-truth obtained
through manual annotations of the multimodal dataset. To explore the potential of the
proposed approach to scale up with automatic annotation, we investigated machine
learning models (Goswami et al., 2020) to derive automatic recognizers for those anno-
tations in an independent line of work, laying the foundation for future efforts towards
large scale multimodal human tutoring studies. It is, however, not in the scope of this
paper to discuss details of those models.

In the remainder of the paper, we will first have an overview of related work in
math education, multimodal learning analytics, and causal inference in educational
applications. We will then introduce the dataset in Section 3 and highlight a few key
measures to be considered in the down-stream analysis, followed by an overview of the
analysis pipeline in Section 4. Section 5 will then introduce the application of multiple
canonical correlation analysis (multiple CCA, or mCCA) and report results obtained
with it. In Section 6, we will detail the procedure for causal discovery and inference
using the output from mCCA. To scaffold the complex analysis, we will first introduce
a simplified model with only four factors. We will then present results from an enriched
model with seven factors. We will conclude the paper by summarizing the findings,
discussing their implication and future directions of research.

2. RELATED WORK

2.1. COGNITIVE-AFFECTIVE STATES DURING MATH PROBLEM SOLVING AMONG YOUNG
CHILDREN

Different from math practice, which consists of routine exercises (i.e., problem-as-exercise),
math problems come without immediate solutions (i.e., problem-as-problematic) (Schoen-
feld, 2009). This distinction leads to potentially very different cognitive-affective expe-
riences for students. Due to the inherent uncertainty in reaching a solution, authentic
math problem solving often sends students onto a ride of emotional roller-coaster (Chen
et al., 2016), wavering between positive affect when progressing smoothly (i.e., Engage-
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ment Concentration or EC, (Baker et al., 2010)), and negative confusion or frustration
states when the progress is obstructed (i.e., Cognitive Disequilibrium or CD, (D’Mello
et al., 2012)).

Studies on affect dynamics show that while productive struggles can induce deeper
learning (Kapur, 2014) , unresolved issues may lead to disengagement or boredom and
eventually diminish learning outcomes (D’Mello and Graesser, 2012). It is then cru-
cial to engineer the learning environment to maximize the productive struggle while
minimizing the unproductive effects. This can be especially challenging with young
children whose self-regulation skills (SRL, (Zimmerman, 2000)) are still being devel-
oped (Di Leo et al., 2019).

In recent years, a thread of work has emerged with a specific focus on studying math
problem-solving induced cognitive-affective experience with the young age group, be-
ginning to shed light on that challenging issue. For example, (Di Leo et al., 2019) study
young students in 5th and 6th grades while engaged in independent math problem-
solving. They illustrate the pathway from students’ belief to affective experience, problem-
solving strategy, and problem-solving experience. These findings have motivated a
follow-up intervention study by the same authors (Di Leo and Muis, 2020) who lever-
age explicit instructions in problem-solving strategies. We study math problem solving
with similarly aged children; however, we take an alternative approach. Instead of
focusing on a child’s self-regulation in the face of obstacles, we study how assisted reg-
ulation provided by parent coaches may play out amid children’s cognitive-affective
states in the process. Similar to (Di Leo et al., 2019), we also measure the aspects of
personal traits that may serve as the antecedent of academic emotion as predicted by
the control-value theory (Pekrun and Stephens, 2010). In our study, control is approx-
imated by children’s belief in their math ability, while children’s self-reported math
interest indicates value.

From a methodological point of view, our work differs from (Di Leo et al., 2019)
in two critical dimensions. Firstly, in our study the cognitive-affective states are objec-
tively observed. This practice is different from (Di Leo et al., 2019), which comprises
retrospective self-reporting or verbal coding of students’ think aloud transcripts. Sec-
ondly, we adopt a data-driven causal discovery framework while incorporating do-
main knowledge instead of solely relying on theory in determining the causal struc-
tures, as implied in their path analysis method.

2.2. MULTIMODAL LEARNING ANALYTICS

Multimodal Learning Analytics (MMLA) is an emerging multidisciplinary research
area that integrates learning science, affective computing, and human-computer-interaction
(Cukurova et al., 2020). It leverages modern sensing technology and computational ad-
vances to analyze complex human behavior and holds the potential to render a detailed
and holistic picture of the learning processes (Drachsler and Schneider, 2018).

As noted from recent reviews by (Sharma and Giannakos, 2020) and (Mu et al.,
2020), most of the existing research pertains to the online learning context where stu-
dents interact with computer systems such as Intelligent Tutoring Systems, e.g., (Hutt
et al., 2019), or educational games, e.g., (Giannakos et al., 2019; Emerson et al., 2020).
There is a relatively small amount of work situated in offline or physical spaces. For
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example, (Worsley and Blikstein, 2018) uses MMLA to explore learning in maker space
when students work with physical objects. (Zhu et al., 2019) study the cognitive and
emotional dynamics of elementary school students in physical classrooms. Addition-
ally, we note that most of the work model students (either as an individual or as part
of a group, as in (Martinez-Maldonado et al., 2019)), however teachers or coaches are
rarely the modeling targets. Exceptions include work from (Prieto et al., 2016) or (Prieto
et al., 2018), where the objective is to model how a teacher manages a classroom. Be-
sides, as noted in (Sharma and Giannakos, 2020), most of the research takes place in the
lab environment with college students dominating the subject pool. It might be because
data collection from the ecologically-valid environment such as home or school could
be challenging and complicated. Our work leverages a unique multimodal one-on-one
coaching dataset collected from the naturalistic home environments involving parent
coaches and young children. This dataset renders a rare opportunity to explore the
multimodal interactions between children and their parent coaches, which is largely
missing from the current MMLA literature.

This paper’s second unique feature is the exploration of methods for the down-
stream analysis of teacher’s decisions given students’ cognitive-affected states, recog-
nized from the detection layers. The goal of this analysis is different from the majority
of educational affect-related multimodal work reviewed in (D’Mello and Kory, 2015)
and (Yadegaridehkordi et al., 2019), in which detection is the main objective. There
are only a few lines of work that aim to achieve similar goals as we do, however,
those studies involve students in online learning environments. For example, as de-
scribed in (Grawemeyer et al., 2017), the authors explicitly model a reasoning layer to
infer the type of feedback that teachers tend to give based on the student affect estima-
tion. The inference model uses data from Wizard-of-Oz experiments1 when students
interact with a fraction tutoring system. Another example is from (Santos et al., 2014),
where a model is learned from educators who responded to students’ affect dynamics
while a student is working with an online learning tool. In this observational study
(Porayska-Pomsta et al., 2008), the tutors worked with students in an online learning
environment via a text chat interface. The tutors were asked to reflect on how students’
contextual factors (e.g. confidence, interest and effort) may have contributed to their
tutoring actions. Those information was gathered through tutors’ think alouds and
post-hoc walkthroughs. In our study, we don’t have access to tutors’ cognitive process
in decision making, instead, we rely on the causal inference from empirical observa-
tions data to illuminate the plausible relationship between students’ affect and tutors’
coaching decisions.

Overall, our work can be viewed as a particular case of model-based discovery
(Baker and Yacef, 2009); specifically, model-based causal discovery as pointed out in
(Fancsali, 2015). Our main objective is to discover the causal relationship between par-
ents’ coaching decisions and their children’s cognitive-affective states.

1In those experiments, students interact with a system that is controlled by teachers. As such, what is
effectively being modeled is the human teachers behind the scenes.
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2.3. CAUSAL INFERENCE FROM OBSERVATIONAL DATA IN EDUCATION APPLICATIONS

The ultimate goal of educational research is to identify potentially useful interventions
to improve educational outcomes. While Randomized Control Trial (RCT) is the gold
standard methodology to uncover causal knowledge, it is often expensive and time-
consuming, and sometimes impractical or unethical to implement with students in the
real world. Causal inference from observational data provides an alternative that al-
lows us to exploit even large amounts of empirical data, in the search for answers
beyond apparent correlations. However, its adoption in the educational data mining
or learning analytics community is still rather limited. For example, using a discovery
and inference framework, (Fancsali, 2015) explored the confounding role of careless-
ness in explaining the counter-intuitive relationship between affective states of confu-
sion/boredom and learning outcomes by mining a dataset of student interactions with
the Algebra cognitive tutor. In a different paper with a similar dataset, the authors
elucidate the causal relationship between prior knowledge, affective experiences, gam-
ing behaviors, and learning outcome via the framework of causal discovery with model
(Fancsali, 2014). With data gathered from an online learning environment, (Koedinger
et al., 2016) analyzed the student interaction log data. They demonstrated the causal
effect of active engagement on learning outcomes, using a causal discovery and in-
ference toolkit TETRAD2, which we also adopt as part of our pipeline. (de Carvalho
et al., 2018) conducted causal inference on students’ online behavior patterns using a
different toolkit, GeNIe3, using data from a learning management system. Besides, we
see the applications of causal inference to discover knowledge dependencies (Scheines
et al., 2014).

3. DATASET

We demonstrate the proposed analytical framework using a multimodal one-on-one
coaching dataset collected in the naturalist home environments. In this section, we first
give an overview of the study protocol and data collection procedures. We then intro-
duce a few critical preprocessing steps, including the annotations of child participants’
cognitive-affective states and parent coaches’ support types. We end the section with a
description of the session-level dataset compiled for the subsequent analyses.

3.1. DATA COLLECTION

With the Institute Research Board’s approval at Carnegie Mellon University, we re-
cruited 15 parent-child dyads from the local community. Child participants were eight
to twelve years old (equivalently: third to sixth grades) whose parents were inter-
ested in math problem-solving coaching at home. Two thirds of the children were
in 4th or 5th grades at the time of data collection, with an almost even gender dis-
tribution. Regarding ethnic background, only 1 out of 15 child-parent dyads was from
African American family with the rest coming from Caucasian (n=9) or Asian (n=5)
backgrounds. All parents hold at least bachelor degrees from a diverse disciplinary

2https://github.com/cmu-phil/tetrad
3https://www.bayesfusion.com/
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backgrounds including professional writing, biology, humanity, business, management,
computer science and engineering. Three of them hold PhD degrees with one parent
having a doctoral degree in mathematics.

In each session, the child works through one problem while thinking-aloud 4as
much as feasible, and his or her parent provides support as needed. We supplied par-
ents with a pool of math problem-solving resources5 from which they chose what based
on their subjective assessment might pose a sufficient challenge for their children. We
made this decision as we were concerned that individual children may have varied
problem-solving experience and levels of frustration tolerance. As such, parents may
be better informed than researchers given the amount of their implicit knowledge of
their own child capabilities, including cognitive skills and affective responses that are
often not easily accessible to outsiders.

We collected data from 76 sessions with a cumulative duration of about 624 min-
utes, or 10.4 hours, a mean duration of 8.2 minutes per session. The shortest session
lasts less than 1 minute, while the longest one is about 22 minutes long. We collected
audio/video recordings of these sessions taken at home by parents using consumer
grade recording devices such as webcams or smartphones. Specifically, we collected
audio streams of both parent and child participants while frontal view video streams
only of child participants. In addition to the audio/video data, we also asked parents
to complete questionnaires describing their subjective assessment of the child’s experi-
ence during and after each session (Appendix section 9.1). Those assessments mainly
reflect the academic affect commonly mentioned in literature including frustration, con-
fusion, joy or surprise etc. In addition, we also collect child participants’ response to
survey instruments on achievement/goal (Elliot and Murayama, 2008), math interest
(Linnenbrink-Garcia et al., 2010), self control (Tsukayama et al., 2013), self-efficacy (Ban-
dura, 2006), grit (Duckworth and Quinn, 2009), effort regulation (Pintrich et al., 1991),
help-seeking (Pintrich et al., 1991) and personality (John et al., 1999).

3.2. DATA PREPROCESSING AND ANNOTATION

Multimodal interaction data is inherently rich and notoriously challenging to analyze.
Its practical use requires preprocessing and annotation steps to support the goals of
analysis, in our case we aim to elucidate the relationship between child’s cognitive-
affective experience and parents’ support decisions. The annotation work was carried
out by the first author and her research assistants.

We annotated the voice activity from video recordings of parent-child interactions at
the utterance level. Those annotations explicate “who talks when”. All the utterances
are further transcribed. In addition, we annotated child’s eye gaze toward his/her
parent. Besides those, we have also implemented additional types of annotations and
featurizations unique to our study as described below.

4Before the recording started, we provided training to parent and child on thinking-aloud. During the
session, parents were asked to remind, but not force, their child to think-aloud. Often time, we observe
that child will stop think-aloud if he or she was engaged in deep thinking.

5The resources include problem sets from math competitions for elementary and middle students,
such as MOEMS (https://www.moems.org/), Math Kangaroo (http://www.mathkangaroo.us), MATH-
COUNTS (www.mathcounts.org), or AMC series (https://www.maa.org/math-competitions)
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ANNOTATION OF COGNITIVE-AFFECTIVE STATES. We annotated the apparent child
participants’ cognitive-affective states for each 10s video segment6 over duration of
each session, using multimodal behavioral cues from visual channels such as gross
body movements and facial expressions, and from verbal channels such as talking
speed, dis-fluency (e.g., “uhm” utterances), as well as energy and loudness. We specif-
ically annotate data for three different types of cognitive-affective states:

• Cognitive Disequilibrium (CD) (D’Mello et al., 2012): A state of confusion, frus-
tration, indecisiveness or struggle in face of an impasse. It may occur during any
problem-solving stage including problem understanding, planning or implemen-
tation;

• Engagement Concentration (EC) (Baker et al., 2010): A state suggesting a smooth
progression in problem solving. Compared with the flow experience described in
(Csikszentmihalyi, 2013), those states observed with young children in our study
are more likely characterized by lower intensity and/or shorter duration;

• Neutral: A state with no strong indications of either CD or EC.

Please refer to section 9.4 for details of the coding guides.
To evaluate inter-rater reliability, we randomly select one session from each subject

for which annotations from two independent raters were collected. We then compared
the codes and resolved any discrepancy after discussion. For videos with large dis-
crepancy, raters recoded the videos from scratch until a certain level of consensus was
reached and then the same two raters coded a second video from the same subject un-
til two raters converge. As the result, around 20% of the total number of segments in
the complete dataset were coded by two raters. The overall final inter-rater reliability
(measured with Cohen’s Kappa) is 0.51 [95% CI: 0.46, 0.57] for three-class-category (CD,
Neutral and EC); two-class Kappa (CD vs. Non-CD) is 0.58 [0.51, 0.66]; and two-class
Kappa (EC vs. Non-EC) is 0.61 [0.54, 0.58]. The observed moderate inter-rater consis-
tency of collected annotations suggests that it is not unreasonable to use these labels in
the subsequent analyses as a somewhat noisy proxy of ground truth. The coding task
for the rest of the videos was then split between the same two raters.

In a separate study (Goswami et al., 2020), we explored machine learning models
to automatically discriminate between CD and EC segments using a semi-supervised
framework based on the low level signals extracted from audio/video streams. Those
models achieved reasonable predictive accuracy measured via cross-validation on the
manually labeled subsets of data. The model achieved Area of Under Curve (AUC)
score of about 0.80. When further validated, those automatic recognition methods have
the promise to scale up our methodology to future large datasets.

6The decision of using 10s video segment as the unit of analysis was largely informed by the “thin-
slice” (Ambady and Rosenthal, 1992) approach. From our empirical observation, video segments of this
length of duration tend to give us sufficient information to understand the context and evaluate the
affective state of the child, however not too long so that it become difficult to capture the fine-grained
affect dynamics.
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RESERVE CHART FEATURES. Reserve charts summarize the moment-by-moment tem-
poral evolution of a child’s cognitive-affective experience during a given problem-
solving session. These charts are derived from the cognitive-affective state annotations
described above. Statistics such as current values, trends, or cumulative level of the
states estimated at any point in the session can be used as features in downstream anal-
ysis to characterize children’s cognitive-affective experiences.

Figure 1: A reserve chart for an example session A001c. The top panel displays the time
series of annotated cognitive-affective states to which we assign numeric values: Cogni-
tive Disequilibrium (CD, value=-1), Neutral (value=0) and Engaged Concentration (EC,
value=1). The bottom panel shows the cumulative sum of the numeric values of the
states from the top panel, assuming initialization at 0 at the start of the session.

Figure 1 shows an example reserve chart. The top panel tracks the state (EC = 1,
CD = −1, Neutral = 0) for each 10s segment of a session. The bottom panel depicts the
cumulative sum of these state values. We view it as a proxy for the temporal evolution
of the “reserve level” of a child’s psychological resources while he or she is progressing
through problem-solving exercise. The reserve level initializes at zero and will trend up
with continuous exposure to positive experience from smooth progression (EC) while
trending down with sustained negative experience of struggle (CD). Neutral states will
not alter the reserve levels. Visually, a straight downward path, reflective of a pro-
longed stretch of struggles, would warrant close monitoring as the child is likely to run
the risk of depleting their reserve soon, thus justifying an immediate intervention. On
the other hand, if a child is progressing smoothly without much trouble (as manifested
by an upward trend), fewer monitoring resources may be necessary.

ANNOTATIONS OF THE TYPE OF SUPPORT. We annotated parents’ support types based
on audio streams of parents’ utterances. In annotation, we refer to the audio/video
segments around the target utterance. In doing so, we implicitly consider multimodal
signals including parents’ para-linguistic features while talking such as loudness, tone,
and voice pitch. Contextual information of child participants’ verbal or non-verbal re-
sponses may also play a role in the annotation process.
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A high-level taxonomy of parents’ support types is summarized below.

• Cognitive Support: Direct and targeted support in the form of explicit coaching
statements, including asking questions or providing explanations that are specific
to a given problem;

• Meta-cognitive Support: Hints on general problem-solving strategies such as draw-
ing a picture or making a list, often without detailed instruction or guidance as in
case of Cognitive Support.

• Social/Emotional Support: Support for boosting a child’s self-efficacy. Parents may
use language to provide assurance (e.g., by saying “it’s okay to struggle”), com-
municate growth mindset messages (Dweck, 2008), praise effort (e.g., “you’ve
been working so hard”) or encourage (e.g., “you can do it!” or “keep trying”).
Where applicable, we attached a modifier of “+” or “-” to the labels. For exam-
ple, S+ indicates a positive social/emotional support, while S- denotes a negative
alternative. While positive social/emotional supports use encouraging phrases
such as “you are doing great” or “why not trying a little bit”, negative supports
may involve discouraging messages that may threaten self-efficacy, examples in-
cluding “this should not be a very hard problem” or “how does it make any
sense?”

Please refer to section 9.5 for details of the coding guides.
About 20% of parents’ utterances are randomly selected to be annotated by two in-

dependent raters. The overall inter-rater reliability (Cohen’s Kappa) for multivariate
labels is 0.74 [95%CI 0.68, 0.78] (with modifiers) and 0.86 [0.81, 0.90] (without modi-
fiers). Kappa for binary labels are 0.91 [0.88, 0.95] for Cognitive Supports (66% of annota-
tions); 0.82 [0.68, 0.94] for Meta-Cognitive Supports (6% of annotations); 0.65 [0.47, 0.82]
for Social/Emotional Supports (4% of annotations). The observed relatively high inter-
rater reliability scores suggest consistency of the resulting labels that can be feasibly
used in the down-stream analyses that depend on those annotations.

3.3. SESSION LEVEL DATASET

The analysis is based on the session-level summary statistics from 53 sessions.7 In this
dataset, each instance represents one session. We compiled a list of 59 features charac-
terizing these sessions, organized into seven groups summarized below. We present a
detailed description of all the 59 variables in Appendix 9.3.

1. Child’s affective-cognitive experience

• Affect: Metrics describing the aggregated amount and mixture of CD/EC/Neutral
of each session;

7From the total of 77 sessions observed, we leave out sessions without complete information. Com-
mon instances of incomplete information arose when the parents forgot to answer the post-session ques-
tionnaire on child’s affect evaluation. Because the data was collected at home, it is hard to recover this
information after the data was collected.
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• Stress: Metrics describing the dynamics of reserve chart (Figure 1) highlight-
ing extreme points of the chart (peaks and valleys) and streaks of continuous
”up” (EC) or ”down” (CD) episodes.

While Affect describes the overall mixture of affective experience, Stress summa-
rizes the details of the fine-grained process of a child’s affective-cognitive experi-
ence.

2. Parent’s support

• Support: Metrics describing the types of support with regard to cognitive,
meta-cognitive and social/emotional types;

• Interact: Metrics describing the interaction patterns between parent and child,
including voice activities (“who talks when”) and eye gaze patterns. We may
view those metrics as proxies of the amount of support.

We may interpret Support and Interact along two different dimensions of parents’
support in terms of the type and amount respectively.

3. Assess: Per-session assessment of child’s experience during and at the end of the
session, completed by the parent at the end of each session (Appendix 9.1).

4. Profile: Per-child measurements from survey instruments and questionnaires com-
pleted by the child. (Appendix 9.2).

5. Tot: Time-on-task, or duration of the session.

4. ANALYSIS PIPELINE

Figure 2 depicts the analysis pipeline designed to automatically or semi-automatically
extract and identify structural and causal relationships from high-dimensional human-
to-human interaction data by combining data streams with varying temporal resolu-
tions from multiple modalities.

Figure 2: Analysis pipeline designed to support discovery of causal insights from mul-
timodal interaction data.
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The pipeline inputs include data streams with high temporal resolution, such as
those describing child participants’ affective-cognitive processes, parents’ moment-by-
moment supports, and the interaction dynamics between parent and child. We ex-
tracted session-level summary statistics or descriptors from those data streams, com-
bined with data elements with low temporal resolution data such as the elements col-
lected from per-session logs or per-subject survey responses. We organize the resulting
high-dimensional feature set into multiple groups of features according to their roles in
the coaching processes, for example, with respect to child’s affect, parents’ supports, or
child’s profile or stable traits. These groups of variables are used as inputs to the Sparse
Multiple CCA (Witten and Tibshirani, 2009) procedure to learn a sparse representation
for each group by simultaneously maximizing the correlations among the groups of
multiple features. The resulting composite variables, represented by linear combina-
tions of small sets of features, are then used as inputs for causal structural discovery
and inference. Section 5 briefly explains the sparse multiple CCA method and presents
relevant results. Section 6 details the procedures and results from causal structure dis-
covery and inference.

5. SPARSE MULTIPLE CCA

The standard Canonical Correlation Analysis (CCA) takes as inputs two matrices of
numbers, X1 ∈ Rn×p1 and X2 ∈ Rn×p2 , each of them comprised of a set of features
in dimensions p1 and p2 respectively, represented on the same set of n data samples.
The goal of CCA is to find linear combinations of variables in each dataset that yield
high linear correlations between features in X1 and X2. The core idea is similar to that
of Principal Components Analysis (PCA) in that both methods produce linear combi-
nations of the original features of data, with the exception that CCA’s ”principal com-
ponents” consist of pairs of such linear combinations – one for each of the data sets –
while PCA only yields single combination per component, since it only works with one
data set. When we project the original data on the resulting composite dimensions de-
fined by these linear combinations, we will notice that while the principal components
are selected by PCA to maximize variance of data after such projections, CCA selects
projections that maximize correlations between data sets.

Sparse multiple CCA or sparse mCCA (mCCA) (Witten and Tibshirani, 2009) ex-
tends the standard CCA by imposing sparsity constraints. This yields CCA projections
that rely on subsets of all features in X1 and X2, and therefore to compact, more in-
terpretable representations of data. This capability makes mCCA a good candidate for
discovering meaningful multiple-to-multiple correlations between datasets of high di-
mensionalities compared with the number of samples. Another benefit of sparsity is
the improved transparency and interpretability of the resulting composite variables.
This benefit results from the L1-norm regularization procedure that effectively shrinks
many of the feature weights to zero. Additional useful extension of mCCA allows the
optimization algorithm to operate on multiple datasets Xi (i = 1 . . . K), instead of just
two at a time, as in the standard CCA setting. As a result, for each set of features we can
devise a compact composite variable to represent it. The composition of this variable
will be optimized to maximize its correlation with all other such composite variables
devised simultaneously for all other feature sets. Formally, the goal of mCCA is to find
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vectors of feature weights Wi, i = 1 . . . K that optimize:

maxW1...WK ∑
i<j

WT
i XT

i XjWj subject to‖Wi‖ ≤ 1, L1(Wi) ≤ ci∀i (1)

where L1 is the regularization penalty function in the L1 norm form, and ci are hy-
perparameters that upper-bound Wis. The higher the upper bounds, the more complex
models the algorithm will be willing to explore. It is assumed that 1 ≤ ci ≤

√
pi, where

pi is the dimensionality of the ith dataset.
Both the ability to jointly handle multiple datasets and to induce sparse representa-

tions are relevant properties of the mCCA approach in support of our analysis goals.
Our dataset comprises descriptors grouped into several distinct categories. Each cat-
egory describes a different aspect of the coaching process or specific factors that may
influence the processes, such as child participants’ affective-cognitive experience and
stable traits, and parents’ support characterization. To efficiently discover causal re-
lationships among those factors, we hope to find a representation for each group of
features that would maximize the overall correlations, given that correlation is often
a prerequisite for causation. mCCA helps to achieve and maintain such focus. More-
over, with 59 features and 53 instances of data, we simply need to encourage sparse
models to mitigate the risks of over-fitting. Further, the learned sparse weights of the
original features of data allow us to assign meaning to the composite variables, which
enhances the interpretability of downstream analysis for causal structural discovery
and inference. This improved transparency not only makes it easier to incorporate
domain knowledge, but it may also further facilitate the model understanding and cri-
tique, which are essential steps toward human-centered analytics, very often beneficial
in various contexts of practical application of artificial intelligence.
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Figure 3: Grid search for the optimal setting of the mCCA regularization parameter.
The plot shows model performance, measured as average correlation of returned CCA
projections, as a function of penalty upper bounds ci. Labels on the plotted line reflect
the average number of non-zero weights across all involved feature groups. Dotted line
reflects the chosen compact model with sparse weights and reasonable overall correla-
tion.

We fit mCCA using R package PMA8. The data was first standardized per feature

8https://cran.r-project.org/web/packages/PMA/index.html
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to zero mean and unit standard deviation before applying mCCA. We then performed
grid search for optimal values of ci to find a model with a reasonable total correlation
and compactness. Figure 3 plots the average correlation (total correlation (see Equation
1) normalized by the number of pairs of correlating CCA components) as a function of
ci. The overall model complexity (approximated by the average number of non-zero
weights) is printed as a digit on top of the curve. This plot shows an overall trend
of increasing correlation with the increased allowed model complexity. For the sake
of interpretability, we, however, prefer simple models capturing reasonable amount of
correlation in data, even if the captured correlation is slightly lower than the attainable
maximum. The dotted line corresponds to a penalty value of 1.4 (i.e., ci = 1.4, ∀i),
which leads to a model with an average of 3 variables per group. In the following
analysis, we will use composite variables derived from this specific model.

Table 1 lists the composite variables and the underlying features and weights de-
rived using the mCCA approach. Each of the composite variables is a linear com-
bination of features selected from a specific feature set. By enforcing sparsity of the
resulting mCCA models, each composite variable only uses a few original data fea-
tures which had been assigned non-zero weights. For example, the composite variable
Support = 0.49 · C count + 0.87 · C length + 0.04 · CM count. In this equation, C count is
total counts of cognitive supports observed during a given session, C length is the cu-
mulative duration of cognitive supports and CM count is the total counts of cognitive
and meta-cognitive supports combined.

In Table 1, we also provide plausible interpretations for the high value of a compos-
ite variable by accounting for the weights and their signs in the context of underlying
original features. For example, when interpreting the composite variable Support, we
note that most of the underlying variables are related to cognitive support. Since the
signs of the weights are all positive, we pose that a high value of Support should be
associated with a high level of cognitive support, and vice versa. As another exam-
ple, the value of the composite variable Stress may be reduced by increasing the value
of e.g. max EC length (i.e. the longest EC streaks) as well as other original features se-
lected to form this composite variable, which collectively signal struggle experienced
by the child during one of their problem-solving session.

In some cases, however, the assignment of meaning is not obvious when the signs
of weights fail to render a coherent interpretation of the composite variable’s in ques-
tion. For example, composite variable Profile is defined as Profile = 0.20 · Grit− 0.95 ·
Extrovert − 0.26 · Self-efficacy. Those weights suggest that a child with a high Profile
score is likely to have a high grit score, with an introvert personality type and low
self-efficacy. It is unclear how we could characterize a child with this specific profile.
Therefore, we leave the interpretation of this composite variable as undefined and will
consult the underlying variables in downstream analysis, as necessary.

Figure 4 shows the scatter-plot matrix of composite variables after applying sparse
weights to the original feature sets as shown Table 1 to each sample in the dataset.
The diagonal plots depict density distributions of each feature set data projected onto
their composite variable. The below-diagonal plots show scatters of data projected on
pairs of composite variables corresponding to the feature sets in the respective rows
and columns of the matrix plot. The above-diagonal cells show the values of linear cor-
relation coefficients computed from the scatter plots in the corresponding cells located

14



●

●

●
●

●

●

●
●●● ●

●

●

●
●

●
●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●●

●

●

●

●
●

●
●

●●
●

●●
●●

●

●
● ●

●

● ●

●●

●
●

●
●

●

●
●●

●

● ●

●

●

●

●●

● ●

●

●

●

● ●
● ●

●

●

●

●

●
●●

●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●

● ●

●

● ●

●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

● ●

●

●

●
● ●●

●●

●●

●●● ●●● ●●● ●
●

●

●

●●●
●●

●

●
● ● ●

●
●

●

●●
●

● ●

●

●
●

●●

●

●
●●
●●

●

●●

●

●
●●

●● ●●●●● ●●● ●●

● ● ●●

● ●●●●●

●●

● ● ●

● ●● ●

●● ● ●●

●● ●● ●

●●●●
● ●●●

●● ●●

Corr:

0.89

●●
●

●●
● ●

●

●
●● ●

● ●

●●

●
●

●
●

●

●
●●

●

●●

●

●

●

●●

● ●

●

●

●

●●
● ●

●

●

●

●

●
●●

●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●

● ●

●

● ●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

● ●

●

●

●
● ●●

●●

●●

●● ●●●●● ●● ●
●

●

●

●●●
● ●

●

●
● ●●

●
●

●

●●
●

● ●

●

●
●

●●

●

●
●●

●●

●

●●

●

●
●●

●● ●●●● ●●●●● ●

● ● ●●

● ●●●● ●

●●

● ●●

● ●● ●

●● ● ●●

●●●● ●

●●●●
● ●●●

●● ●●

Corr:

0.444

Corr:

0.552

●
●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●

●

●

●
●●●

●●

●●

●●●● ●●●● ●●
●

●

●

● ●●
●●

●

●
● ●●

●
●

●

●●
●

● ●

●

●
●

●●

●

●
●●

● ●

●

●●

●

●
●●

●● ●●●●●● ●●●●

●● ●●

●● ●● ●●

●●

● ●●

● ●● ●

●●● ●●

●●●●●

● ●●●
●●●●

● ●●●

Corr:

0.421

Corr:

0.574

Corr:

0.803

●●

●●

●● ●● ●● ●●● ●
●

●

●

● ●●
●●

●

●
● ●●

●
●

●

● ●
●

● ●

●

●
●

● ●

●

●
● ●

● ●

●

●●

●

●
●●

●● ●●●● ●● ●● ●●

● ●● ●

●● ●●●●

●●

● ●●

● ●● ●

●● ● ●●

●●● ●●

● ● ●●
●● ●●

●●●●

Corr:

0.572

Corr:

0.607

Corr:

0.41

Corr:

0.5

●● ●●●●●●●●●●

●● ●●

●●●● ●●

●●

●●●

● ●● ●

●● ●●●

●●●● ●

●●● ●
● ●●●

● ● ●●

Corr:

0.194

Corr:

0.402

Corr:

0.327

Corr:

0.529

Corr:

0.623

Support Interact Stress Affect Assess Profile

S
upport

Interact
S

tress
A

ffect
A

ssess
P

rofile

−10 1 2 3 −2−1 0 1 2 −2−10 1 2 3 −2−10 1 2 −1 0 1 2 −1 0 1 2

0.0
0.1
0.2
0.3

−2
−1

0
1
2

−2
−1

0
1
2
3

−2
−1

0
1
2

−1
0
1
2

−1
0
1
2

Figure 4: Scatter-plot matrix of the composite variables yield by the Sparse Multiple
CCA model.
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Composite High Value Feature Weights
Variable Means Name
Support More C count 0.49

cognitive C length 0.87
support CM count 0.04

Interact More Parent talk count 0.17
parent Parent talk duration 0.29
talk Parent talk pctg 0.94

Stress More Global low -0.93
struggle Global high -0.23

Max EC length -0.28
Num EC -0.06

Affect More Pctg EC -0.95
struggle Pctg CD2 0.23

Pctg EC2 -0.23
Assess High During frustrated 0.90

frustration/ End accomplished -0.06
confusion End confused 0.44

Profile Undefined G(Grit) 0.20
PE(Extrovert) -0.95
SE(Self-efficacy) -0.26

Table 1: Composite variables (first column) with associated underlying original features
(second and third column) and weights (fourth column), estimated using the Sparse
Multiple CCA model. Each composite variable is a linear combination of the underlying
features. Please refer to Appendix 9.2 and 9.3 for feature name description.

symmetrically across the diagonal of the matrix plot. As can be seen, the pair of com-
posite variables Support and Interact exhibits a relatively high correlation, which does
not come as a surprise since they describe two related but complementary aspects of
parents’ support decisions. While Support reflects the mix of the types of support given
(e.g., proportion of cognitive support), Interact is mainly concerned with the amount
of support as approximated by the number of parent talk episodes. We also observe a
high correlation between Stress and Affect, presumably because they originate from the
same underlying affective-cognitive processes of child participants. Permutation test of
significance (n=1000) shows that for all but one pair (Support and Profile), the observed
correlations are statistically significant with p-values < 0.01.

Figure 5 shows the 2-dimensional Multi-Dimensional Scaling embedding of the con-
sidered composite variables using the complements of pairwise correlations as the dis-
tance metric (1 − rij, where rij is the observed linear correlation coefficient between
composite variables i and j). In this plot, composite variables that correlate well are
projected in each others vicinity, and vice versa. It is not surprising to note that the
affect-related variables (i.e., Affect and Stress) are grouped together, as well as, and re-
spectively, the support-related variables (i.e., Interact and Support).

16



Support

Stress

Interact

Assess

Profile

Affect

−0.2

0.0

0.2

−0.50 −0.25 0.00 0.25 0.50
Dimension 1

D
im

en
si

on
 2

Figure 5: Multi-Dimensional Scaling plot using the complement of pairwise correlation
as a distance metric.

6. CAUSAL STRUCTURAL DISCOVERY AND INFERENCE

We will now discuss methods to explore the casual relationships among multiple com-
posite variables constructed using the mCCA approach described above. We compile a
dataset of 53 instances (as before, one per session) each represented by a vector of the 6
composite variables, with an additional scalar variable Tot (“Time-on-task”). This vari-
able is believed to be highly correlated with the individualized calibration of the level
of difficulty of the problem. Presumably, the more difficult a problem is for a given
child, the longer he or she may need to work on it, and the more likely the parent will
need to intervene, which would then stretch the session longer.

At a high level, we are interested in understanding the multivariate causal relation-
ships among children’s affective-cognitive experience, parents’ support as well as other
factors such as children’s profile variables. To accomplish that, we present two sets of
analyses. The first relies on a model with only four factors, while the other uses all
seven factors.

ANALYSIS OF THE 4-FACTOR-MODEL The input to the 4-factor-model includes Affect,
Support, Tot, and Profile which are representative of four main types of session-level
measures captured in this study. Except for Tot, other variables are composite variables
derived from data using mCCA approach as shown in Table 1.

The analysis starts with a search for the most probable causal graph pattern (i.e.
“Equivalence Class of Graphs”, or ECG). We then derive a few variations of Directed
Acyclic Graphs (DAGs) from the found causal graph patterns by incorporating domain
knowledge. Each DAG represents a competing hypothesis about true causal relation-
ships among a set of variables. Those DAGs are then used as inputs to estimate linear
Gaussian Structural Equation Models (SEMs). We evaluate the goodness-of-fit of those
alternative models to underlying data to assess their plausibility. All procedures, in-
cluding causal model discovery, model specification and estimation, as well as statisti-
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cal testing of goodness-of-fit, were carried out using TETRAD toolkit version 6.8.0-0.9
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Figure 6: Causal models for the 4-factor-model. Subplot (a) represents the Equivalence
Class Graph discovered by the GFCI search algorithm implemented in TETRAD; Sub-
plots (b), (c) and (d) are three alternative DAGs derived from (a). Numeric values on the
directed edges denote coefficient estimates and those on double-headed arrows reflect
correlations of error terms. Model p-value is from the goodness-of-fit χ2 test.

Figure 6 presents the results of causal graph search and model estimations. Subplot
(a) is the Equivalence Class Graph discovered by TETRAD using the GFCI algorithm
with Fisher Z-test score and SEM BIC score as objectives. The interpretation of the
graph structure in shown in Figure 6(a) is as follows:

• Tot and Support: either Tot is a direct cause of Support or there is unmeasured
confounder between those two variables, or both;

• Affect and Support: either Affect is a direct cause of Support or there is unmeasured
confounder between those two variables, or both;

• Profile and Affect: either (i) Profile is a cause of Affect or (ii) Affect is a cause of Profile
or (ii) there is unmeasured confounder between the two variables or (i) and (iii)
or (ii) and (iii);

• Missing links: there is no direct causal relationship between the disconnected
variables. For example, there is no edge between Profile and Support, which sug-
gests that Profile has no direct influence on parent’s decisions regarding rendering
support.

9http://www.phil.cmu.edu/tetrad/
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The graph in Figure 6(a) does not fully specify causal relationships. The other three
graphs in Figure 6 use it as a starting point and make specific hypothetical assignments
based on application of domain specific intuition. For example, for the pair of variables
Tot and Support, we believe that there is a possible unmeasured confounding variable
related to the problem difficulty level as calibrated to individual child’s ability. As such,
we assign double-headed arrow link between those two variables to encode this belief.
For the pair of Profile and Affect, we believe Profile is an exogenous variable that can
only be the cause but not the effect. As such, we designated a directional arrow edge
leading from Profile to Affect. Regarding the relationship between Support and Affect,
we are interested in testing the following three alternative hypotheses:

• H1 as in subplot 6(b): Support influences Affect, yielding Structural Equivalence
Model SEM #1;

• H2 as in subplot 6(c): Affect influences Support, SEM #2;

• H3 as in subplot 6(d): Affect and Support are influenced by a common cause or
unmeasured confounder, SEM #3.

Each of these structural hypotheses can be independently evaluated for how well they
represent the underlying data, and the best-fit solution can be admitted for use.

Model SEM #1 SEM #2 SEM #3
Degrees of Freedom 3 3 3
χ2 8.4580 5.6140 9.6886
P-Value 0.0374 0.1320 0.0214
BIC Score -3.4530 -6.2970 -2.2230

Table 2: Goodness-of-fit testing statistics for three alternative structural equation models
corresponding to graph structures in Figure 6(b), (c), and (d).

Model From To Type Value Std.Err T-Value P-value
SEM #1 Profile Affect Edge Coef. 0.51 0.1298 3.9376 0.0002

Support Affect Edge Coef. 0.32 0.1121 2.8931 0.0056
Tot Support Covariance 0.62

SEM #2 Profile Affect Edge Coef. 0.71 0.1364 5.1764 ≤ 0.0001
Affect Support Edge Coef. 0.44 0.1280 3.4102 0.0013
Tot Support Covariance 0.49

SEM #3 Profile Affect Edge Coef. 0.58 0.1364 4.2641 0.0001
Tot Support Covariance 0.54
Affect Support Covariance 0.48

Table 3: Estimated parameters from three alternative structural equation models corre-
sponding to graph structures in Figure 6(b), (c), and (d).
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Table 2 summarizes the goodness-of-fit test results for those three models, obtained
by comparing the implied covariance matrix (derived from Structural Equation Mod-
els) with the empirically observed data covariance10. A higher p-value suggests a good
fit of the data given the model (both SEM and graph structure), while a lower p-value
may suggest inconsistency between the data and model. As shown, model SEM #2
has the highest p-value, comparing with two other models. Since the only difference
among the three models is the configuration of the arrow between Support and Affect,
this result suggests that the data provides more evidence of Affect as an antecedent
rather than as a consequence of Support. In other words, parents seem to use their ob-
servation of child’s affective experience as input to decide on the types of support they
provide.

Table 3 summarizes the estimated parameters and related statistical testing results
for the three structural equation models SEM #1, SEM #2 and SEM #3 corresponding
to the graph structures in Figure 6 subplots (b), (c) and (d), respectively. All estimated
coefficients are positive and significantly different from zero as evidenced by very low
p-values.11 Focusing on SEM #2 model which appears to be the best-fit model among
the three, we note that the sign between Affect and Support is positive, which suggests
that parents’ observation of a higher level of child’s struggle may lead them to activate
more intensive types of support. Often, this means the cognitive support that is explicit
and elaborate which may take more time to implement than less involved forms of
support. It is also interesting to note that there is a positive coefficient for the path from
Profile to Affect. This suggests that a child with a high profile score (i.e., higher Grit-
scale score, low self-efficacy and with more introvert personality) may experience more
struggles, which in turn is likely to trigger higher level of support from their parent.

ANALYSIS OF THE 7-FACTOR MODEL This analysis expands the input space of our
causal reasoning by including three additional composite variables:

• Interact: this composite variable describes parent’s talk relative to child’s talk,
which is an indirect measure of the amount of support since most of parent’s talk
involves coaching. This variable provides complementary information to the ex-
isting composite variable Support included in the 4-factor-model, which primarily
captures the composition of a mix of the types of support;

• Stress: this composite variable is comprised of variables derived from the moment-
to-moment dynamics of the reserve level, providing complementary information
to the session level marginal distribution of CD and EC states as reflected in the
Affect variable;

• Assess: this composite variable aims to encode parents’ assessment of child par-
ticipants’ cognitive-affective experience during and toward the end of a session,
using session logs completed at the time of recording.

10To be precise, the test statistics, due to (Bollen, 1989), is derived from minimizing a function of
Maximum-likelihood (FML). When FML is minimized, the distance from the minimum point to zero is
proportional to the χ2 of the model. Latent variables are allowed as long as the model is linear Gaussian.

11This p-value is derived for the null-hypothesis that the edge coefficient is zero. Unlike the model
p-value discussed above, lower p-values here suggest greater utility of the particular edge, as it supports
rejecting the null-hypothesis of zero value of edge coefficient.
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Figure 7: Causal models for the 7-factor-model. Subplot(a) is the Equivalence Class
Graph discovered from search algorithm in TETRAD; subplot (b),(c) and (d) are alter-
native refined models taking into account domain knowledge and hypothesis to tested.
The numeric values on the edge are estimated edge coefficients from the structural equa-
tion models. All edge-coefficients are significantly different from zero except for the one
noted.

Subplot (a) in Figure 7 depicts the Equivalence Class of Graph discovered by the
same search algorithm (GFCI) and parameters as in the 4-factor model. From this
graph, we observed several high-level patterns of connectivity with the introduction of
new variables. For example, the discovered model reveals that Affect is a direct cause of
Stress without any latent confounders (as indicated by the solid directional arrow). The
relationship between Interact and Support however carries more uncertainty: Interact
could be a cause of Support, but it is also possible that those two variables are related
through a common confounder. In addition, we note that Affect variable interacts di-
rectly with Interact variable but not with Support given the missing edge between the
two. Likewise, Assess does not directly interact with Affect, it however interacts through
Profile. Meanwhile, Assess is also related to the Interact variable, but the directionality
cannot be determined without further hypothesis testing, in addition to the possibility
of involving a common confounder.

We then derived alternative causal models which are largely consistent with the
patterns in Figure 7(a). We incorporated following specifications as informed by our
understanding of the data: (1) designated a bi-directional arrow between Support and
Tot as we believe there could be an unmeasured confounder reflective of the problem
level of difficulty level; (2) designated a directional arrow out of Profile as it is believed
to be an exogenous variable. Given those imposed constraints, we are still interested in
testing the three remaining alternative hypotheses regarding the relationship between
Affect and support-related variables (Support and Interact), which are reflected in the
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configuration of corresponding edges or arrows in subplots shown in Figure 7(b)-(d).
Since the discovered causal graphs in Figure 7(a) does not support the direct rela-

tionship between Affect and Support, as it did in the 4-factor-model, we test the rela-
tionship between Affect and Interact instead. Since the result from the 4-factor-model
supports evidence of the causal linkage from Affect to Support, we test an additional
hypothesis by adding a direct edge from Affect to Support. The hypotheses to be tested
and the corresponding graphs are:

• H1 as in subplot 7(b): Interact influences Affect, yielding Structural Equivalence
Model SEM #1;

• H2 as in subplot 7(c): Affect influences Interact, SEM #2;

• H3 as in subplot 7(d): Affect influences both Interact and Support, SEM #3.

Model SEM #1 SEM #2 SEM #3
Degrees of Freedom 14 14 13
χ2 20.2181 21.7320 18.8729
P Value 0.1234 0.0843 0.1271
BIC Score -35.3660 -33.8521 -32.7409

Table 4: Goodness-of-fit testing statistics for three alternative structural equation models
corresponding to graph structures in Figure 7(b), (c), and (d).

Table 4 summarizes the goodness-of-fit test for the three alternative SEM models,
and Table 5 summarizes the estimated parameters and related statistical testing results
for the three structural equation models.

We observe that we cannot reject either of the alternative formulations of directional
influence between Affect and Interact (Figure 7(b) and (c)), as indicated by the insignif-
icant p-values reported for them in Table 4. This suggests that those models are able
to explain data reasonably well. By examining the signs of the edge coefficients and
their statistical significance shown in Table 5, we note that SEM #1 model that assumes
a direct positive causal pathway from Interact (intervention) to Affect, suggesting that
more parent’s talking may in fact give rise to more struggles for the child. This seems to
reflect the sub-optimal scenarios when parents rendering excessive help. We note this
kind of behaviors often occurred in sessions where parents took early control in the
problem solving process, leaving little room for the child to be engaged independently
thus reducing their likelihood for experiencing positive affect such as Engaged Con-
centration. In some extreme cases, intensive supports not only failed to reduce child’s
struggles, it may backfire causing more frustration for the child when he or she finds
the parents’ help disruptive rather than helpful.

Similarly, from model fitting results for SEM #2 and #3, we note that Affect may also
be the cause of parents’ support (both in terms of the extent and type), in other words,
parents may take into account child’s affect as input in deciding on providing the sup-
port. This finding is generally consistent with the results from the 4-factor-model, it is
however worth to notice a slight difference. While the ”4-factor-model” identifies Af-
fect as the direct cause to the types of support (Support), here the model seems to favor
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Model From To Type Value SE T-value P-value
SEM #1 Affect Stress Edge Coef. 0.6960 0.073 9.6 ≤ 0.0001

Profile Affect Edge Coef. 0.3660 0.133 2.747 0.0080
Interact Support Edge Coef. 0.9530 0.069 13.765 ≤ 0.0001
Assess Interact Edge Coef. 0.6410 0.114 5.612 ≤ 0.0001
Interact Affect Edge Coef. 0.4840 0.124 3.891 ≤ 0.0001
Profile Assess Edge Coef. 0.9070 0.114 7.941 ≤ 0.0001
Tot Support Covariance 0.1020

SEM #2 Profile Assess Edge Coef. 0.8982 0.1143 7.8602 ≤ 0.0001
Assess Interact Edge Coef. 0.4239 0.1224 3.463 0.0011
Affect Interact Edge Coef. 0.3614 0.1112 3.2502 0.0020
Profile Affect Edge Coef. 0.7160 0.1364 5.2483 ≤ 0.0001
Affect Stress Edge Coef. 0.6883 0.0725 9.4889 ≤ 0.0001
Interact Support Edge Coef. 0.9085 0.0692 13.1291 ≤ 0.0001
Tot Support Covariance 0.1060

SEM #3 Profile Affect Edge Coef. 0.7321 0.1364 5.3665 ≤ 0.0001
Affect Interact Edge Coef. 0.3513 0.1112 3.1598 0.0026
Assess Interact Edge Coef. 0.4491 0.1224 3.669 0.0006
Affect Support Edge Coef. -0.1214 0.0772 -1.5718 0.1221
Profile Assess Edge Coef. 0.8402 0.1143 7.3533 ≤ 0.0001
Interact Support Edge Coef. 0.9790 0.0829 11.8162 ≤ 0.0001
Affect Stress Edge Coef. 0.7115 0.0725 9.809 ≤ 0.0001
Tot Support Covariance 0.1124

Table 5: Estimated parameters from the structural equation model corresponding to
graph structures in Figure 7(b), (c) and (d).

the pathway from Affect to the amount of support (Interact) than to type of support. In
fact, as shown in SEM #3, the additional edge from Affect to Support seems to be a weak
one with insignificant (large) p-value as shown in Table 5, even though it improves the
model fit slightly. This finding suggests that the amount of support is a more actionable
variable from parents’ point of view. Instead of deciding on the nuances of the type of
support, parents’ simply need to decide whether or not he or she likes to intervene by
engaging in or withholding from talking, which seems to be aligned with human deci-
sion making intuitions. As such, we speculate that the pathway from Affect to Support
in the 4-factor-model indeed reflects the indirect pathway from Affect to Interact, and
then onto Support, as explicitly demonstrated in the 7-factor-model.

Compared with the 4-factor alternative, the 7-factor model provides additional in-
sights: (1) Complementary composite variables such as Affect and Stress are found to
have definite positive directional causal relationship. We note that a higher prevalence
of cognitive disequilibrium episodes, captured in Affect, will lead to high value of stress
index (e.g., the higher likelihood of reaching a lower point of the valley of the emotional
roller-coaster); (2) We note a positive relationship between the pair of variables describ-
ing parent’s support: Interact (the amount and proportion of parent’s talk) has direct
positive influence on the type of Support. In other words, more parent’s talk leads to
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higher likelihood that he or she is rendering cognitive support. This is consistent with
our definition of support types: cognitive support is more elaborate thus more time
consuming than meta-cognitive or social/emotional types.

We also note an interesting role the composite variable Profile plays in this model.
Similarly to the 4-factor-model, it has influence on the Affect variable. Interestingly,
it also contributes to the intervention variable Interact indirectly via Assess variable.
It is possible that parents may take into account child’s profile (e.g., personality, self-
efficacy, etc.) in assessing the child’s affective experience and this assessment is then
reflected in the Assess variable. Furthermore, this assessment may in turn determine
their intervention strategies, which is reflected in the amount of talking they contribute
to the coaching sessions. This causal pathway seems to suggest that it is not the child’s
profile itself, but indeed parents’ interpretation of child’s profile (which are reflected in
their subjective assessment of child’s affective experience) that influences their support
decisions.

7. DISCUSSION

We have explored an analysis pipeline that identifies patterns of correlations between
functionally distinct feature sets of multimodal behavioral data, and uses the derived
composite variables as factors in causal analysis. The proposed methodology combines
Sparse Multiple Canonical Correlation Analysis and causal structure discovery and in-
ference methods. This pipeline is suitable for analyzing datasets comprising a relatively
small number of samples compared to the dimensionality of the feature space. In par-
ticular, it caters to representing variables that can be grouped into multiple categories
from which we are interested in discovering and validating causal relationships. This
framework can facilitate the interpretation of interaction processes readily to be discov-
ered from empirical data, making it relatively easier to incorporate domain knowledge
or intuitive beliefs. This type of data is often seen in multimodal human-human interac-
tion studies, where data collected asynchronously through different sensing modalities,
and at various temporal resolutions.

7.1. SUMMARY OF FINDINGS

We demonstrated our methodology using a multimodal one-on-one coaching dataset.
There are several insights we were able to derive from this analysis.

Firstly, we note a clear causal pathway between the group of variables describing
parents’ support and another group representing the child’s cognitive-affective expe-
rience. It is worth pointing out that these two groups of variables are derived from
two different sensing modalities and are independently annotated. Specifically, affect
related descriptors are mainly informed by visual channels (e.g., facial expressions and
gross body movements), and support-associated descriptors are derived from audio
streams. Based on the collective evidence from multiple model-fitting exercises, what
comes to light is the insight that supports a two-way interaction between those two
streams of data. Also, we note that the richer 7-factor-model identifies Interact vari-
able (a proxy for the amount of support) as a more actionable variable than the type
of support, which was not captured by the less potent 4-factor-model. This distinc-
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tion demonstrates the benefit of including more variables in causal modeling, given a
sufficient supply of reliable and relevant empirical data.

Secondly, we note the causal pathway from Profile to Affect and, indirectly, to Sup-
port. Especially, as evidenced in SEM #1 variant of the 7-factor-model, child’s affective-
cognitive experience is a function of both the stable factors (e.g., child’s profile) and
the situational factors (e.g., parent’s intervention that may be adaptive to the given
coaching session). This empirical finding informs us about how parents approach sup-
porting their child during one-on-one coaching, and highlights the kind of information
they might have took into account in their support decisions.

It should be noted that the causal models discussed here are dependent on the an-
notation labels for child’s affective/cognitive states and parents’ support types. As
such, the uncertainty arising from the annotations may influence the resulting model
structures, parameters and interpretation.

7.2. IMPLICATIONS

This research proposed a multimodal analytics framework which allows researchers
to gain insights into the “blackbox” of the complex, multi-party, fine-grained multi-
modal interactions data streams collected from human-to-human one-on-one coaching.
The unification of a sparse modelling procedure and causal analysis framework brings
transparency into this complex process. In addition to a concrete understanding of
“what” is happening, we now have the tool to ask interesting “why” questions. This
additional benefit in transparency is essential to make multimodal learning analytics
accessible to multiple stakeholders such as teachers, students and researchers. When
used appropriately and creatively, it also has the potential to open up opportunities
to turn the learned causal knowledge into actionable insights to ultimately improve
learning outcomes.

In addition, this research contributes to several research communities. Firstly, it
enriches the research portfolios in mathematics education, particularly in the areas of
affect dynamics, self-regulation, and effective intervention with young children. Re-
searchers in this community may use the methodology framework introduced in this
paper to derive deep insights into audio and video data typically collected, ultimately
to guide the design of technology-enhanced interventions to improve learning out-
comes. Secondly, this research contributes to the affective computing community by
exploring analytical methods operating at the reasoning layer on top of the perceptual
layers, which has been the focus of most of the recent work in this space. Thirdly, this
research contributes to the relatively sparse literature in multimodal learning analytics
by providing a balanced view of the teacher and student interactions with a data set
collected in naturalistic home environments.

7.3. LIMITATIONS AND FUTURE WORK

There are several limitations to this work that should motivate further investigations.
Firstly, size of the dataset used is relatively small, and the subject pool is not overly
diverse, limiting our ability to reliably explore culture or ethics-related factors in the
model. As part of the future work, we intend to expand the study to recruit addi-
tional subjects from more diverse backgrounds. Secondly, the study collected only
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audio data instead of multimodal audio/video streams from parents. While this de-
cision reflects the compromise with the logistic complexity of data collection, it limits
the opportunity to account for multimodal bi-directional interactions between children
and parents. Thirdly, instead of using experienced tutors as most traditional tutoring
studies do, we let parents take up the coaching roles. While parents possibly excel
at interpreting the child’s affective experience, they may not be the ideal tutors capa-
ble of rendering optimal supports. However, it does not hinder us from applying the
methods discussed here to future data collected with participation of experienced tu-
tors. Fourthly, this work analyzes the causal relationships at the level of individual
coaching session. While this is a first step towards the complete understanding of the
intertwining processes of a child’s cognitive-affective experience and parent’s coaching
decisions, further work is necessary to model the moment-by-moment causal relation-
ships by exploiting temporal relationships of various events and variables at a granular
level.

8. CONCLUSION

With a multimodal one-on-one coaching dataset, we introduced a methodological frame-
work to support causal inference and discovery of causal relationships among groups
of variables that describe parents’ coaching decisions, children’s cognitive-affective ex-
periences, and children’s individual stable factors. When complemented with compu-
tational models for recognizing learning and teaching-related constructs at the percep-
tual layer, we envision the causal-chains based on reasoning layer analysis may be scaled
up to large datasets. This will augment our ability to uncover the complex relationships
between teachers’ actions and students responses. We believe that causal understand-
ing is crucial in achieving the ambitious goal of designing a brilliant teaching machine
with human-like reasoning that could provide personalized and adaptive supports to
optimize learning outcomes for all.
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9. APPENDICES

9.1. SESSION LOG COMPLETED BY PARENTS

ACTIVITY LOG

1. What was the activity your child was doing immediately before working on the
given math problem? (eg: eating dinner, other math homework, playing soccer,
etc)

2. Approximately for how long was your child engaged in that activity?

Due to the sparsity of the data, this part of the log is not coded into the session-level descrip-
tors

PARENT’S ASSESSMENT OF CHILD’S EMOTIONAL EXPERIENCE DURING AND AFTER
EACH SESSION

1. During this session, how frustrated do you believe your child became? (1=not
frustrated; 5= very frustrated)

2. During this session, how much do you think your child was enjoying working on
the problem? (1=not enjoyed 5= very enjoyed)

3. During the session, how engaged do you think your child was while working on
the problem? (1= disengaged; 5= very engaged)

4. At the end of the session, how would you describe how your child felt? Check all
that apply.

• Accomplished

• Joyful

• Frustrated

• Confused

• Surprised

• Neural

• Other (please specify)

9.2. LIST OF SUBJECT-LEVEL DESCRIPTORS

Please refer to Table 6 for a list of subject-level descriptors.

9.3. LIST OF SESSION-LEVEL DESCRIPTORS

Please refer to Table 7 for a list of session-level descriptors.
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Name Description
A Achievement score
E Effort Regulation score
G Grit scale score
H Help-seeking score
M Math Interest score
PA Personality - Agreeableness sub-score
PC Personality - Conscientiousness sub-score
PE Personality - Extroversion sub-score
PN Personality - Neuroticism sub-score
PO Personality - Openness sub-score
S C Self-control score - Child assessment
S P Self-control score - Parent assessment
SE Self-efficacy score

Table 6: Subject-level descriptors.
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9.4. CODING GUIDES FOR CHILD’S COGNITIVE/AFFECTIVE STATES

CD=Cognitive Disequilibrium ; EC=Engagement Concentration
Contextual Information Off

Task
Disengaged Engaged

Main Secondary CD Neutral EC
Patterns Patterns
Active
(child in
control)

Child exhibits
overt produc-
tive behaviors
(e.g. think-
aloud and/or
writing)

NA Unlikely Verbal
Cues
[Note A]

No obvi-
ous clues
suggestive
of CD

Coherent,
cohesive
or fast
talking
speed; fast
writing
speed

Child is think-
ing in silence
(no talking or
writing)

NA Unlikely Visual
Cues
[Note B]

No obvi-
ous clues
suggestive
of CD

Unlikely

Passive
(parent in
control)

Mainly parent
monologue
with child pas-
sively listening

NA Child
shows
signs of
distraction
(e.g. look
around)
or bore-
dom (e.g.
yawning)

Visual
cues [Note
B] or Ver-
bal cues
[Note A]

No obvi-
ous clues
suggestive
of CD

Unlikely

Interactive
(equal
control)

Parent and
child engaged
in dialogue

NA Unlikely Visual
cues [Note
B] or Ver-
bal cues
[Note A]

Most
likely

Less likely

Off Task Irrelevant with
current tasks
(e.g. device
malfunction
or lookup an
answer)

Yes NA NA NA NA

Notes:
(A): Examples of verbal cues: “I don’t understand”; “that does not make sense”;
(B): Examples of visual cues: Confused or frustrated facial expression; scratching head
or biting pen

29



9.5. CODING GUIDES FOR PARENTS’ SUPPORT TYPES

Code
Level1

Code
Level2

Description Definition Examples

F F+ Positive
Feedback

Positive Feedback “Yes”

F F- Negative
Feedback

Negative Feedback “No”

F F Neutral
Feedback

Back channel response
without clear indication of
positive or negative

“Okay”;“Uhm”

C C Cognitive
Support

Direct and targeted sup-
port such as asking ques-
tions specific to the given
problem

Re-read questions;Make
corrections; Ex-
plain/clarify; Scaffolding;
Ask questions (Infre-
quently, C- for detailed but
unhelpful or misleading
support)

M M Meta-
cognitive
Support

Indirect support, hints on
general problem solving
strategy, without specific
or detailed hints

High level scaffolding,
may refer to general prob-
lem solving strategies (e.g.
re-read question, draw a
diagram, etc.)

S S+ Positive
Social or
Emotional
Support

Praise or reassur-
ance/encouragement

“You are doing great!”

S S- Negative
Social or
Emotional
support

Utterance that likely to dis-
courage child and generate
negative feelings

“How does this make any
sense?”, “This should not
be a very hard problem.”

O O Others Irrelevant/Off Task Utter-
ance

Misc.

H H Help Dy-
namics

Utterance related to inten-
tions such as offering help,
refusing to help, initiation
of help etc.

“Do you need help?” “You
can do it by yourself”(Note
A)

Note A: Those utterances may look similar to C or M, however, since they appear
at the beginning of the assistance phase, we annotate them as H instead of C or M to
identify their unique functions in the interaction.
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Category Name Description
Time Tot Time on Task; in minutes
Affect n CD Number of segments labeled as CD
Affect n EC Number of segments labeled as EC
Affect CD EC ratio The ratio between CD segments and EC segments
Affect Pctg CD Percentage of CD segments
Affect Pctg EC Percentage of EC segments
Affect Pctg neutral Percentage of Neutral segments
Affect Pctg CD2 Percentage of CD and Neutral segments combined
Affect Pctg EC2 Percentage of EC and Neutral segments combined
Support C count Number of cognitive support utterances
Support C length Cumulative duration of cognitive support utterances
Support M count Number of meta-cognitive support utterances
Support M length Cumulative duration of meta-cognitive support utterances
Support S plus count Number of positive social/emotional support utterances
Support S minus count Number of negative social/emotional support utterances
Support M prop Proportion of meta-cognitive support in terms of counts
Support M prop duration Proportion of meta-cognitive support in terms of duration
Support C prop tot Cumulative cognitive support; normalized by Tot
Support M prop tot Cumulative meta-cognitive support; normalized by Tot
Support CM count The number of cognitive and meta-cognitive support
Stress Global low Global low of reserve(this could be a negative quantity)
Stress Global high Global high of reserve
Stress Global delta Global high minus global low
Stress Max up The longest non-decreasing streaks
Stress Max down The longest non-increasing streaks
Stress Num up Number of non-decreasing streaks lasting 60+ secs
Stress Num down Number of non-increasing streaks lasting 60+ secs
Stress Max CD length The longest CD streaks
Stress Max EC length The longest EC streaks
Stress Num CD Number of CD streaks that last at least 30 seconds
Stress Num EC Number of EC streaks that last at least 30 seconds
Interact Child eyeGaze count Number of child’s eye gazes toward parent
Interact Child eyeGaze duration Cumulative duration of child’s eye gaze toward parent
Interact Child talk count Number of child’s utterance
Interact Child talk duration Cumulative duration of child’s utterance
Interact Parent talk count Number of parent’s utterance
Interact Parent talk duration Cumulative duration of parent’s utterance
Interact Parent talk pctg Duration wise,proportion of talk that is from parent
Assess During frustrated Parent’s rating of child’s frustration during session
Assess During enjoy Parent’s rating of child’s enjoyment during session
Assess During engaged Parent’s rating of child’ engagement during session
Assess End accomplish Parent’s rating of child’s accomplished feeling end of session
Assess End joy Parent’s rating of child’s joy end of session
Assess End frustrated Parent’s rating of child’s frustration end of session
Assess End confused Parent’s rating of child’s confusion end of session
Assess End surprised Parent’s rating of child’s surprise end of session
Assess End neutral Parent’s rating of child’s neutral feeling end of session

Table 7: Session-level descriptors.
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